dense_test_mixins.py 8.42 KB
# Copyright (c) OpenMMLab. All rights reserved.
import sys
from inspect import signature

import torch
from mmcv.ops import batched_nms

from mmdet.core import bbox_mapping_back, merge_aug_proposals

if sys.version_info >= (3, 7):
    from mmdet.utils.contextmanagers import completed


class BBoxTestMixin(object):
    """Mixin class for testing det bboxes via DenseHead."""

    def simple_test_bboxes(self, feats, img_metas, rescale=False):
        """Test det bboxes without test-time augmentation, can be applied in
        DenseHead except for ``RPNHead`` and its variants, e.g., ``GARPNHead``,
        etc.

        Args:
            feats (tuple[torch.Tensor]): Multi-level features from the
                upstream network, each is a 4D-tensor.
            img_metas (list[dict]): List of image information.
            rescale (bool, optional): Whether to rescale the results.
                Defaults to False.

        Returns:
            list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is ``bboxes`` with shape (n, 5),
                where 5 represent (tl_x, tl_y, br_x, br_y, score).
                The shape of the second tensor in the tuple is ``labels``
                with shape (n,)
        """
        outs = self.forward(feats)
        results_list = self.get_bboxes(
            *outs, img_metas=img_metas, rescale=rescale)
        return results_list

    def aug_test_bboxes(self, feats, img_metas, rescale=False):
        """Test det bboxes with test time augmentation, can be applied in
        DenseHead except for ``RPNHead`` and its variants, e.g., ``GARPNHead``,
        etc.

        Args:
            feats (list[Tensor]): the outer list indicates test-time
                augmentations and inner Tensor should have a shape NxCxHxW,
                which contains features for all images in the batch.
            img_metas (list[list[dict]]): the outer list indicates test-time
                augs (multiscale, flip, etc.) and the inner list indicates
                images in a batch. each dict has image information.
            rescale (bool, optional): Whether to rescale the results.
                Defaults to False.

        Returns:
            list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
                The first item is ``bboxes`` with shape (n, 5),
                where 5 represent (tl_x, tl_y, br_x, br_y, score).
                The shape of the second tensor in the tuple is ``labels``
                with shape (n,). The length of list should always be 1.
        """
        # check with_nms argument
        gb_sig = signature(self.get_bboxes)
        gb_args = [p.name for p in gb_sig.parameters.values()]
        gbs_sig = signature(self._get_bboxes_single)
        gbs_args = [p.name for p in gbs_sig.parameters.values()]
        assert ('with_nms' in gb_args) and ('with_nms' in gbs_args), \
            f'{self.__class__.__name__}' \
            ' does not support test-time augmentation'

        aug_bboxes = []
        aug_scores = []
        aug_labels = []
        for x, img_meta in zip(feats, img_metas):
            # only one image in the batch
            outs = self.forward(x)
            bbox_outputs = self.get_bboxes(
                *outs,
                img_metas=img_meta,
                cfg=self.test_cfg,
                rescale=False,
                with_nms=False)[0]
            aug_bboxes.append(bbox_outputs[0])
            aug_scores.append(bbox_outputs[1])
            if len(bbox_outputs) >= 3:
                aug_labels.append(bbox_outputs[2])

        # after merging, bboxes will be rescaled to the original image size
        merged_bboxes, merged_scores = self.merge_aug_bboxes(
            aug_bboxes, aug_scores, img_metas)
        merged_labels = torch.cat(aug_labels, dim=0) if aug_labels else None

        if merged_bboxes.numel() == 0:
            det_bboxes = torch.cat([merged_bboxes, merged_scores[:, None]], -1)
            return [
                (det_bboxes, merged_labels),
            ]

        det_bboxes, keep_idxs = batched_nms(merged_bboxes, merged_scores,
                                            merged_labels, self.test_cfg.nms)
        det_bboxes = det_bboxes[:self.test_cfg.max_per_img]
        det_labels = merged_labels[keep_idxs][:self.test_cfg.max_per_img]

        if rescale:
            _det_bboxes = det_bboxes
        else:
            _det_bboxes = det_bboxes.clone()
            _det_bboxes[:, :4] *= det_bboxes.new_tensor(
                img_metas[0][0]['scale_factor'])

        return [
            (_det_bboxes, det_labels),
        ]

    def simple_test_rpn(self, x, img_metas):
        """Test without augmentation, only for ``RPNHead`` and its variants,
        e.g., ``GARPNHead``, etc.

        Args:
            x (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
            img_metas (list[dict]): Meta info of each image.

        Returns:
            list[Tensor]: Proposals of each image, each item has shape (n, 5),
                where 5 represent (tl_x, tl_y, br_x, br_y, score).
        """
        rpn_outs = self(x)
        proposal_list = self.get_bboxes(*rpn_outs, img_metas=img_metas)
        return proposal_list

    def aug_test_rpn(self, feats, img_metas):
        """Test with augmentation for only for ``RPNHead`` and its variants,
        e.g., ``GARPNHead``, etc.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                        a 4D-tensor.
            img_metas (list[dict]): Meta info of each image.

        Returns:
            list[Tensor]: Proposals of each image, each item has shape (n, 5),
                where 5 represent (tl_x, tl_y, br_x, br_y, score).
        """
        samples_per_gpu = len(img_metas[0])
        aug_proposals = [[] for _ in range(samples_per_gpu)]
        for x, img_meta in zip(feats, img_metas):
            proposal_list = self.simple_test_rpn(x, img_meta)
            for i, proposals in enumerate(proposal_list):
                aug_proposals[i].append(proposals)
        # reorganize the order of 'img_metas' to match the dimensions
        # of 'aug_proposals'
        aug_img_metas = []
        for i in range(samples_per_gpu):
            aug_img_meta = []
            for j in range(len(img_metas)):
                aug_img_meta.append(img_metas[j][i])
            aug_img_metas.append(aug_img_meta)
        # after merging, proposals will be rescaled to the original image size
        merged_proposals = [
            merge_aug_proposals(proposals, aug_img_meta, self.test_cfg)
            for proposals, aug_img_meta in zip(aug_proposals, aug_img_metas)
        ]
        return merged_proposals

    if sys.version_info >= (3, 7):

        async def async_simple_test_rpn(self, x, img_metas):
            sleep_interval = self.test_cfg.pop('async_sleep_interval', 0.025)
            async with completed(
                    __name__, 'rpn_head_forward',
                    sleep_interval=sleep_interval):
                rpn_outs = self(x)

            proposal_list = self.get_bboxes(*rpn_outs, img_metas=img_metas)
            return proposal_list

    def merge_aug_bboxes(self, aug_bboxes, aug_scores, img_metas):
        """Merge augmented detection bboxes and scores.

        Args:
            aug_bboxes (list[Tensor]): shape (n, 4*#class)
            aug_scores (list[Tensor] or None): shape (n, #class)
            img_shapes (list[Tensor]): shape (3, ).

        Returns:
            tuple[Tensor]: ``bboxes`` with shape (n,4), where
            4 represent (tl_x, tl_y, br_x, br_y)
            and ``scores`` with shape (n,).
        """
        recovered_bboxes = []
        for bboxes, img_info in zip(aug_bboxes, img_metas):
            img_shape = img_info[0]['img_shape']
            scale_factor = img_info[0]['scale_factor']
            flip = img_info[0]['flip']
            flip_direction = img_info[0]['flip_direction']
            bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip,
                                       flip_direction)
            recovered_bboxes.append(bboxes)
        bboxes = torch.cat(recovered_bboxes, dim=0)
        if aug_scores is None:
            return bboxes
        else:
            scores = torch.cat(aug_scores, dim=0)
            return bboxes, scores