dense_test_mixins.py
8.42 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) OpenMMLab. All rights reserved.
import sys
from inspect import signature
import torch
from mmcv.ops import batched_nms
from mmdet.core import bbox_mapping_back, merge_aug_proposals
if sys.version_info >= (3, 7):
from mmdet.utils.contextmanagers import completed
class BBoxTestMixin(object):
"""Mixin class for testing det bboxes via DenseHead."""
def simple_test_bboxes(self, feats, img_metas, rescale=False):
"""Test det bboxes without test-time augmentation, can be applied in
DenseHead except for ``RPNHead`` and its variants, e.g., ``GARPNHead``,
etc.
Args:
feats (tuple[torch.Tensor]): Multi-level features from the
upstream network, each is a 4D-tensor.
img_metas (list[dict]): List of image information.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
The first item is ``bboxes`` with shape (n, 5),
where 5 represent (tl_x, tl_y, br_x, br_y, score).
The shape of the second tensor in the tuple is ``labels``
with shape (n,)
"""
outs = self.forward(feats)
results_list = self.get_bboxes(
*outs, img_metas=img_metas, rescale=rescale)
return results_list
def aug_test_bboxes(self, feats, img_metas, rescale=False):
"""Test det bboxes with test time augmentation, can be applied in
DenseHead except for ``RPNHead`` and its variants, e.g., ``GARPNHead``,
etc.
Args:
feats (list[Tensor]): the outer list indicates test-time
augmentations and inner Tensor should have a shape NxCxHxW,
which contains features for all images in the batch.
img_metas (list[list[dict]]): the outer list indicates test-time
augs (multiscale, flip, etc.) and the inner list indicates
images in a batch. each dict has image information.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
The first item is ``bboxes`` with shape (n, 5),
where 5 represent (tl_x, tl_y, br_x, br_y, score).
The shape of the second tensor in the tuple is ``labels``
with shape (n,). The length of list should always be 1.
"""
# check with_nms argument
gb_sig = signature(self.get_bboxes)
gb_args = [p.name for p in gb_sig.parameters.values()]
gbs_sig = signature(self._get_bboxes_single)
gbs_args = [p.name for p in gbs_sig.parameters.values()]
assert ('with_nms' in gb_args) and ('with_nms' in gbs_args), \
f'{self.__class__.__name__}' \
' does not support test-time augmentation'
aug_bboxes = []
aug_scores = []
aug_labels = []
for x, img_meta in zip(feats, img_metas):
# only one image in the batch
outs = self.forward(x)
bbox_outputs = self.get_bboxes(
*outs,
img_metas=img_meta,
cfg=self.test_cfg,
rescale=False,
with_nms=False)[0]
aug_bboxes.append(bbox_outputs[0])
aug_scores.append(bbox_outputs[1])
if len(bbox_outputs) >= 3:
aug_labels.append(bbox_outputs[2])
# after merging, bboxes will be rescaled to the original image size
merged_bboxes, merged_scores = self.merge_aug_bboxes(
aug_bboxes, aug_scores, img_metas)
merged_labels = torch.cat(aug_labels, dim=0) if aug_labels else None
if merged_bboxes.numel() == 0:
det_bboxes = torch.cat([merged_bboxes, merged_scores[:, None]], -1)
return [
(det_bboxes, merged_labels),
]
det_bboxes, keep_idxs = batched_nms(merged_bboxes, merged_scores,
merged_labels, self.test_cfg.nms)
det_bboxes = det_bboxes[:self.test_cfg.max_per_img]
det_labels = merged_labels[keep_idxs][:self.test_cfg.max_per_img]
if rescale:
_det_bboxes = det_bboxes
else:
_det_bboxes = det_bboxes.clone()
_det_bboxes[:, :4] *= det_bboxes.new_tensor(
img_metas[0][0]['scale_factor'])
return [
(_det_bboxes, det_labels),
]
def simple_test_rpn(self, x, img_metas):
"""Test without augmentation, only for ``RPNHead`` and its variants,
e.g., ``GARPNHead``, etc.
Args:
x (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
img_metas (list[dict]): Meta info of each image.
Returns:
list[Tensor]: Proposals of each image, each item has shape (n, 5),
where 5 represent (tl_x, tl_y, br_x, br_y, score).
"""
rpn_outs = self(x)
proposal_list = self.get_bboxes(*rpn_outs, img_metas=img_metas)
return proposal_list
def aug_test_rpn(self, feats, img_metas):
"""Test with augmentation for only for ``RPNHead`` and its variants,
e.g., ``GARPNHead``, etc.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
img_metas (list[dict]): Meta info of each image.
Returns:
list[Tensor]: Proposals of each image, each item has shape (n, 5),
where 5 represent (tl_x, tl_y, br_x, br_y, score).
"""
samples_per_gpu = len(img_metas[0])
aug_proposals = [[] for _ in range(samples_per_gpu)]
for x, img_meta in zip(feats, img_metas):
proposal_list = self.simple_test_rpn(x, img_meta)
for i, proposals in enumerate(proposal_list):
aug_proposals[i].append(proposals)
# reorganize the order of 'img_metas' to match the dimensions
# of 'aug_proposals'
aug_img_metas = []
for i in range(samples_per_gpu):
aug_img_meta = []
for j in range(len(img_metas)):
aug_img_meta.append(img_metas[j][i])
aug_img_metas.append(aug_img_meta)
# after merging, proposals will be rescaled to the original image size
merged_proposals = [
merge_aug_proposals(proposals, aug_img_meta, self.test_cfg)
for proposals, aug_img_meta in zip(aug_proposals, aug_img_metas)
]
return merged_proposals
if sys.version_info >= (3, 7):
async def async_simple_test_rpn(self, x, img_metas):
sleep_interval = self.test_cfg.pop('async_sleep_interval', 0.025)
async with completed(
__name__, 'rpn_head_forward',
sleep_interval=sleep_interval):
rpn_outs = self(x)
proposal_list = self.get_bboxes(*rpn_outs, img_metas=img_metas)
return proposal_list
def merge_aug_bboxes(self, aug_bboxes, aug_scores, img_metas):
"""Merge augmented detection bboxes and scores.
Args:
aug_bboxes (list[Tensor]): shape (n, 4*#class)
aug_scores (list[Tensor] or None): shape (n, #class)
img_shapes (list[Tensor]): shape (3, ).
Returns:
tuple[Tensor]: ``bboxes`` with shape (n,4), where
4 represent (tl_x, tl_y, br_x, br_y)
and ``scores`` with shape (n,).
"""
recovered_bboxes = []
for bboxes, img_info in zip(aug_bboxes, img_metas):
img_shape = img_info[0]['img_shape']
scale_factor = img_info[0]['scale_factor']
flip = img_info[0]['flip']
flip_direction = img_info[0]['flip_direction']
bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip,
flip_direction)
recovered_bboxes.append(bboxes)
bboxes = torch.cat(recovered_bboxes, dim=0)
if aug_scores is None:
return bboxes
else:
scores = torch.cat(aug_scores, dim=0)
return bboxes, scores