d865f629 by 周伟奇

add VIT

1 parent c424aba7
.DS_Store
logs/
__pycache__
*.log
dataset/
......
seed: 3407
dataset:
name: 'CoordinatesData'
args:
data_root: '/Users/zhouweiqi/Downloads/gcfp/data/dataset'
train_anno_file: '/Users/zhouweiqi/Downloads/gcfp/data/dataset/train.csv'
val_anno_file: '/Users/zhouweiqi/Downloads/gcfp/data/dataset/valid.csv'
dataloader:
batch_size: 32
num_workers: 4
pin_memory: true
shuffle: true
model:
name: 'VisionTransformer'
args:
img_size: 224
patch_size: 16
in_c: 3
num_classes: 5
embed_dim: 8
depth: 12
num_heads: 12
mlp_ratio: 4.0
qkv_bias: true
qk_scale: none
representation_size: none
distilled: false
drop_ratio: 0.
attn_drop_ratio: 0.
drop_path_ratio: 0.
norm_layer: none
act_layer: none
solver:
name: 'VITSolver'
args:
epoch: 100
optimizer:
name: 'Adam'
args:
lr: !!float 1e-4
weight_decay: !!float 5e-5
lr_scheduler:
name: 'StepLR'
args:
step_size: 15
gamma: 0.1
loss:
name: 'SigmoidFocalLoss'
# name: 'CrossEntropyLoss'
args:
reduction: "mean"
logger:
log_root: '/Users/zhouweiqi/Downloads/test/logs'
suffix: 'vit'
\ No newline at end of file
from functools import partial
from collections import OrderedDict
import torch
import torch.nn as nn
from utils.registery import MODEL_REGISTRY
def _init_vit_weights(m):
"""
ViT weight initialization
:param m: module
"""
if isinstance(m, nn.Linear):
nn.init.trunc_normal_(m.weight, std=.01)
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out")
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.LayerNorm):
nn.init.zeros_(m.bias)
nn.init.ones_(m.weight)
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Attention(nn.Module):
def __init__(self,
dim, # 输入token的dim
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop_ratio=0.,
proj_drop_ratio=0.):
super(Attention, self).__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop_ratio)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop_ratio)
def forward(self, x):
# [batch_size, num_patches + 1, total_embed_dim]
B, N, C = x.shape
# qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
# reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
# permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
# [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
# transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
# @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
# @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
# transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
# reshape: -> [batch_size, num_patches + 1, total_embed_dim]
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Mlp(nn.Module):
"""
MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Block(nn.Module):
def __init__(self,
dim,
num_heads,
mlp_ratio=4.,
qkv_bias=False,
qk_scale=None,
drop_ratio=0.,
attn_drop_ratio=0.,
drop_path_ratio=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm):
super(Block, self).__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
"""
2D Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):
super().__init__()
img_size = (img_size, img_size)
patch_size = (patch_size, patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
B, C, H, W = x.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
# flatten: [B, C, H, W] -> [B, C, HW]
# transpose: [B, C, HW] -> [B, HW, C]
x = self.proj(x).flatten(2).transpose(1, 2)
x = self.norm(x)
return x
@MODEL_REGISTRY.register()
class VisionTransformer(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True,
qk_scale=None, representation_size=None, distilled=False, drop_ratio=0.,
attn_drop_ratio=0., drop_path_ratio=0., embed_layer=PatchEmbed, norm_layer=None,
act_layer=None):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_c (int): number of input channels
num_classes (int): number of classes for classification head
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
distilled (bool): model includes a distillation token and head as in DeiT models
drop_ratio (float): dropout rate
attn_drop_ratio (float): attention dropout rate
drop_path_ratio (float): stochastic depth rate
embed_layer (nn.Module): patch embedding layer
norm_layer: (nn.Module): normalization layer
"""
super(VisionTransformer, self).__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_tokens = 2 if distilled else 1
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
self.pos_drop = nn.Dropout(p=drop_ratio)
dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)] # stochastic depth decay rule
self.blocks = nn.Sequential(*[
Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],
norm_layer=norm_layer, act_layer=act_layer)
for i in range(depth)
])
self.norm = norm_layer(embed_dim)
# Representation layer
if representation_size and not distilled:
self.has_logits = True
self.num_features = representation_size
self.pre_logits = nn.Sequential(OrderedDict([
("fc", nn.Linear(embed_dim, representation_size)),
("act", nn.Tanh())
]))
else:
self.has_logits = False
self.pre_logits = nn.Identity()
# Classifier head(s)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.head_dist = None
if distilled:
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
# Weight init
nn.init.trunc_normal_(self.pos_embed, std=0.02)
if self.dist_token is not None:
nn.init.trunc_normal_(self.dist_token, std=0.02)
nn.init.trunc_normal_(self.cls_token, std=0.02)
self.apply(_init_vit_weights)
def forward_features(self, x):
# [B, C, H, W] -> [B, num_patches, embed_dim]
# x = self.patch_embed(x) # [B, 196, 768]
# [1, 1, 768] -> [B, 1, 768]
# [B, 28+1, 8]
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
if self.dist_token is None:
x = torch.cat((cls_token, x), dim=1) # [B, 197, 768]
else:
x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
x = self.pos_drop(x + self.pos_embed)
x = self.blocks(x)
x = self.norm(x)
if self.dist_token is None:
return self.pre_logits(x[:, 0])
else:
return x[:, 0], x[:, 1]
def forward(self, x):
x = self.forward_features(x)
if self.head_dist is not None:
x, x_dist = self.head(x[0]), self.head_dist(x[1])
if self.training and not torch.jit.is_scripting():
# during inference, return the average of both classifier predictions
return x, x_dist
else:
return (x + x_dist) / 2
else:
x = self.head(x)
return x
import os
import copy
import torch
from model import build_model
from data import build_dataloader
from optimizer import build_optimizer, build_lr_scheduler
from loss import build_loss
from utils import SOLVER_REGISTRY, get_logger_and_log_dir
@SOLVER_REGISTRY.register()
class VITSolver(object):
def __init__(self, cfg):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.cfg = copy.deepcopy(cfg)
self.train_loader, self.val_loader = build_dataloader(cfg)
self.train_loader_size, self.val_loader_size = len(self.train_loader), len(self.val_loader)
self.train_dataset_size, self.val_dataset_size = len(self.train_loader.dataset), len(self.val_loader.dataset)
# BatchNorm ?
self.model = build_model(cfg).to(self.device)
self.loss_fn = build_loss(cfg)
self.optimizer = build_optimizer(cfg)(self.model.parameters(), **cfg['solver']['optimizer']['args'])
self.hyper_params = cfg['solver']['args']
try:
self.epoch = self.hyper_params['epoch']
except Exception:
raise 'should contain epoch in {solver.args}'
self.logger, self.log_dir = get_logger_and_log_dir(**cfg['solver']['logger'])
@staticmethod
def evaluate(y_pred, y_true, thresholds=0.5):
y_pred_idx = torch.argmax(y_pred, dim=1) + 1
y_pred_is_other = (torch.amax(y_pred, dim=1) > 0.5).int()
y_pred_rebuild = torch.multiply(y_pred_idx, y_pred_is_other)
y_true_idx = torch.argmax(y_true, dim=1) + 1
y_true_is_other = torch.sum(y_true, dim=1)
y_true_rebuild = torch.multiply(y_true_idx, y_true_is_other)
return torch.sum((y_pred_rebuild == y_true_rebuild).int()).item()
def train_loop(self):
self.model.train()
train_loss = torch.zeros(1).to(self.device)
correct = torch.zeros(1).to(self.device)
for batch, (X, y) in enumerate(self.train_loader):
X, y = X.to(self.device), y.to(self.device)
pred = self.model(X)
correct += self.evaluate(pred, y)
# loss = self.loss_fn(pred, y, reduction="mean")
loss = self.loss_fn(pred, y)
train_loss += loss.item()
if batch % 100 == 0:
loss_value, current = loss.item(), batch
self.logger.info(f'train iteration: {current}/{self.train_loader_size}, train loss: {loss_value :.4f}')
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
correct /= self.train_dataset_size
train_loss /= self.train_loader_size
self.logger.info(f'train accuracy: {correct.item() :.4f}, train mean loss: {train_loss.item() :.4f}')
@torch.no_grad()
def val_loop(self, t):
self.model.eval()
val_loss = torch.zeros(1).to(self.device)
correct = torch.zeros(1).to(self.device)
for X, y in self.val_loader:
X, y = X.to(self.device), y.to(self.device)
pred = self.model(X)
correct += self.evaluate(pred, y)
loss = self.loss_fn(pred, y)
val_loss += loss.item()
correct /= self.val_dataset_size
val_loss /= self.val_loader_size
self.logger.info(f"val accuracy: {correct.item() :.4f}, val mean loss: {val_loss.item() :.4f}")
def save_checkpoint(self, epoch_id):
self.model.eval()
torch.save(self.model.state_dict(), os.path.join(self.log_dir, f'ckpt_epoch_{epoch_id}.pt'))
def run(self):
self.logger.info('==> Start Training')
print(self.model)
# lr_scheduler = build_lr_scheduler(self.cfg)(self.optimizer, **self.cfg['solver']['lr_scheduler']['args'])
for t in range(self.epoch):
self.logger.info(f'==> epoch {t + 1}')
self.train_loop()
self.val_loop(t + 1)
self.save_checkpoint(t + 1)
# lr_scheduler.step()
self.logger.info('==> End Training')
Styling with Markdown is supported
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!