vit_solver.py
3.94 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
import copy
import torch
from model import build_model
from data import build_dataloader
from optimizer import build_optimizer, build_lr_scheduler
from loss import build_loss
from utils import SOLVER_REGISTRY, get_logger_and_log_dir
@SOLVER_REGISTRY.register()
class VITSolver(object):
def __init__(self, cfg):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.cfg = copy.deepcopy(cfg)
self.train_loader, self.val_loader = build_dataloader(cfg)
self.train_loader_size, self.val_loader_size = len(self.train_loader), len(self.val_loader)
self.train_dataset_size, self.val_dataset_size = len(self.train_loader.dataset), len(self.val_loader.dataset)
# BatchNorm ?
self.model = build_model(cfg).to(self.device)
self.loss_fn = build_loss(cfg)
self.optimizer = build_optimizer(cfg)(self.model.parameters(), **cfg['solver']['optimizer']['args'])
self.hyper_params = cfg['solver']['args']
try:
self.epoch = self.hyper_params['epoch']
except Exception:
raise 'should contain epoch in {solver.args}'
self.logger, self.log_dir = get_logger_and_log_dir(**cfg['solver']['logger'])
@staticmethod
def evaluate(y_pred, y_true, thresholds=0.5):
y_pred_idx = torch.argmax(y_pred, dim=1) + 1
y_pred_is_other = (torch.amax(y_pred, dim=1) > 0.5).int()
y_pred_rebuild = torch.multiply(y_pred_idx, y_pred_is_other)
y_true_idx = torch.argmax(y_true, dim=1) + 1
y_true_is_other = torch.sum(y_true, dim=1)
y_true_rebuild = torch.multiply(y_true_idx, y_true_is_other)
return torch.sum((y_pred_rebuild == y_true_rebuild).int()).item()
def train_loop(self):
self.model.train()
train_loss = torch.zeros(1).to(self.device)
correct = torch.zeros(1).to(self.device)
for batch, (X, y) in enumerate(self.train_loader):
X, y = X.to(self.device), y.to(self.device)
pred = self.model(X)
correct += self.evaluate(pred, y)
# loss = self.loss_fn(pred, y, reduction="mean")
loss = self.loss_fn(pred, y)
train_loss += loss.item()
if batch % 100 == 0:
loss_value, current = loss.item(), batch
self.logger.info(f'train iteration: {current}/{self.train_loader_size}, train loss: {loss_value :.4f}')
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
correct /= self.train_dataset_size
train_loss /= self.train_loader_size
self.logger.info(f'train accuracy: {correct.item() :.4f}, train mean loss: {train_loss.item() :.4f}')
@torch.no_grad()
def val_loop(self, t):
self.model.eval()
val_loss = torch.zeros(1).to(self.device)
correct = torch.zeros(1).to(self.device)
for X, y in self.val_loader:
X, y = X.to(self.device), y.to(self.device)
pred = self.model(X)
correct += self.evaluate(pred, y)
loss = self.loss_fn(pred, y)
val_loss += loss.item()
correct /= self.val_dataset_size
val_loss /= self.val_loader_size
self.logger.info(f"val accuracy: {correct.item() :.4f}, val mean loss: {val_loss.item() :.4f}")
def save_checkpoint(self, epoch_id):
self.model.eval()
torch.save(self.model.state_dict(), os.path.join(self.log_dir, f'ckpt_epoch_{epoch_id}.pt'))
def run(self):
self.logger.info('==> Start Training')
print(self.model)
# lr_scheduler = build_lr_scheduler(self.cfg)(self.optimizer, **self.cfg['solver']['lr_scheduler']['args'])
for t in range(self.epoch):
self.logger.info(f'==> epoch {t + 1}')
self.train_loop()
self.val_loop(t + 1)
self.save_checkpoint(t + 1)
# lr_scheduler.step()
self.logger.info('==> End Training')