create_dataset2.py 17.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
import copy
import json
import os
import random
import uuid

import cv2
import re
import pandas as pd
import numpy as np
import jieba
from shapely.geometry import Polygon, MultiPoint
from tools import get_file_paths, load_json
from word2vec import jwq_word2vec, simple_word2vec, jieba_and_tencent_word2vec

def bbox_iou(go_bbox, label_bbox, mode='iou'):
    # 所有点的最小凸的表示形式,四边形对象,会自动计算四个点,最后顺序为:左上 左下  右下 右上 左上
    go_poly = Polygon(go_bbox).convex_hull
    label_poly = Polygon(label_bbox).convex_hull
    if not go_poly.is_valid or not label_poly.is_valid:
        print('formatting errors for boxes!!!! ')
        return 0
    if go_poly.area == 0 or label_poly.area == 0 :
        return 0

    inter = Polygon(go_poly).intersection(Polygon(label_poly)).area
    go_area = Polygon(go_poly).area

    return inter / go_area
    
    # if mode == 'iou':
    #     union = go_poly.area + label_poly.area - inter
    # elif mode =='tiou':
    #     union_poly = np.concatenate((go_bbox, label_bbox))   #合并两个box坐标,变为8*2
    #     union = MultiPoint(union_poly).convex_hull.area
    #     # coors = MultiPoint(union_poly).convex_hull.wkt
    # elif mode == 'giou':
    #     union_poly = np.concatenate((go_bbox, label_bbox))
    #     union = MultiPoint(union_poly).envelope.area
    #     # coors = MultiPoint(union_poly).envelope.wkt
    # elif mode == 'r_giou':
    #     union_poly = np.concatenate((go_bbox, label_bbox))
    #     union = MultiPoint(union_poly).minimum_rotated_rectangle.area
    #     # coors = MultiPoint(union_poly).minimum_rotated_rectangle.wkt
    # else:
    #     raise Exception('incorrect mode!')

    # if union == 0:
    #     return 0
    # else:
    #     return inter / union

def clean_go_res(go_res_dir):
    go_res_json_paths = get_file_paths(go_res_dir, ['.json', ])
    for go_res_json_path in go_res_json_paths:
        print('Info: start {0}'.format(go_res_json_path))
    
        remove_idx_set = set()
        src_go_res_list = load_json(go_res_json_path)
        for idx, (_, text) in enumerate(src_go_res_list):
            if text.strip() == '':
                remove_idx_set.add(idx)
                print(text)
        
        if len(remove_idx_set) > 0:
            for del_idx in remove_idx_set:
                del src_go_res_list[del_idx]
        
        go_res_list = sorted(src_go_res_list, key=lambda x: (x[0][1], x[0][0]), reverse=False)

        with open(go_res_json_path, 'w') as fp:
            json.dump(go_res_list, fp)
            print('Rerewirte {0}'.format(go_res_json_path))

def char_length_statistics(go_res_dir):
    max_char_length = None
    target_file_name = None
    go_res_json_paths = get_file_paths(go_res_dir, ['.json', ])
    for go_res_json_path in go_res_json_paths:
        print('Info: start {0}'.format(go_res_json_path))
        src_go_res_list = load_json(go_res_json_path)
        for _, text in src_go_res_list:
            if max_char_length is None or len(text.strip()) > max_char_length:
                max_char_length = len(text.strip())
                target_file_name = go_res_json_path
    return max_char_length, target_file_name

def char_length_statistics_jieba(go_res_dir):
    max_char_length = None
    target_file_name = None
    max_char_length = None
    statistics_dict = {}
    go_res_json_paths = get_file_paths(go_res_dir, ['.json', ])
    for go_res_json_path in go_res_json_paths:
        print('Info: start {0}'.format(go_res_json_path))
        src_go_res_list = load_json(go_res_json_path)
        for _, text in src_go_res_list:
            jieba_char_list = list(filter(lambda x:re.match(r'[\u4e00-\u9fa5]', x), jieba.lcut(text.strip())))
            length = len(jieba_char_list) 
            if length in statistics_dict:
                statistics_dict[length] += 1
            else:
                statistics_dict[length] = 1
            if max_char_length is None or length > max_char_length:
                target_file_name = go_res_json_path
                target_jieba_char_list = jieba_char_list 
                max_char_length = length
    return max_char_length, target_file_name, target_jieba_char_list, statistics_dict 

def bbox_statistics(go_res_dir):
    max_seq_count = None
    seq_sum = 0
    file_count = 0

    go_res_json_paths = get_file_paths(go_res_dir, ['.json', ])
    for go_res_json_path in go_res_json_paths:
        print('Info: start {0}'.format(go_res_json_path)) 

        go_res_list = load_json(go_res_json_path)
        seq_sum += len(go_res_list)
        file_count += 1
        if max_seq_count is None or len(go_res_list) > max_seq_count:
            max_seq_count = len(go_res_list)
            max_seq_file_name = go_res_json_path

    seq_lens_mean = seq_sum // file_count 
    return max_seq_count, seq_lens_mean, max_seq_file_name

def text_statistics(go_res_dir):
    """
    Args:
        go_res_dir: str 通用OCR的JSON文件夹
    Returns: list 出现次数最多的文本及其次数
    """
    json_count = 0
    text_dict = {}
    go_res_json_paths = get_file_paths(go_res_dir, ['.json', ])
    for go_res_json_path in go_res_json_paths:
        print('Info: start {0}'.format(go_res_json_path))
        json_count += 1
        go_res = load_json(go_res_json_path)
        for _, text in go_res.values():
            if text in text_dict:
                text_dict[text] += 1
            else:
                text_dict[text] = 1
    top_text_list = []
    # 按照次数排序
    for text, count in sorted(text_dict.items(), key=lambda x: x[1], reverse=True):
        if text == '':
            continue
        # 丢弃:次数少于总数的2/3
        if count <= json_count // 3:
            break
        top_text_list.append((text, count))
    return top_text_list

def build_anno_file(dataset_dir, anno_file_path):
    img_list = os.listdir(dataset_dir)
    random.shuffle(img_list)
    df = pd.DataFrame(columns=['name'])
    df['name'] = img_list
    df.to_csv(anno_file_path)

def build_dataset(img_dir, go_res_dir, label_dir, top_text_list, skip_list, save_dir, is_create_map=False):
    """
    Args:
        img_dir: str 图片目录
        go_res_dir: str 通用OCR的JSON保存目录
        label_dir: str 标注的JSON保存目录
        top_text_list: list 出现次数最多的文本及其次数
        skip_list: list 跳过的图片列表
        save_dir: str 数据集保存目录
    """
    if os.path.exists(save_dir):
        return
    else:
        os.makedirs(save_dir, exist_ok=True)

    # 开票日期 发票代码 机打号码 车辆类型 电话 
    # 发动机号码 车架号 帐号 开户银行 小写
    group_cn_list = ['开票日期', '发票代码', '机打号码', '车辆类型', '电话', '发动机号码', '车架号', '帐号', '开户银行', '小写']
    test_group_id = [1, 2, 5, 9, 20, 15, 16, 22, 24, 28]

    create_map = {}
    for img_name in sorted(os.listdir(img_dir)):
        if img_name in skip_list:
            print('Info: skip {0}'.format(img_name))
            continue

        print('Info: start {0}'.format(img_name))
        image_path = os.path.join(img_dir, img_name)
        img = cv2.imread(image_path)
        h, w, _ = img.shape
        base_image_name, _ = os.path.splitext(img_name)
        go_res_json_path = os.path.join(go_res_dir, '{0}.json'.format(base_image_name))
        go_res_list = load_json(go_res_json_path)

        valid_lens = len(go_res_list)

        top_text_idx_set = set()
        for top_text, _ in top_text_list:
            for go_idx, (_, text) in enumerate(go_res_list):
                if text == top_text:
                    top_text_idx_set.add(go_idx)
                    break

        label_json_path = os.path.join(label_dir, '{0}.json'.format(base_image_name))
        label_res = load_json(label_json_path)

        group_list = []
        for group_id in test_group_id:
            for item in label_res.get("shapes", []):
                if item.get("group_id") == group_id:
                    label_bbox = list()
                    for point in item['points']:
                        label_bbox.extend(point)
                    group_list.append(label_bbox)
                    break
            else:
                group_list.append(None)
        
        label_idx_dict = dict()
        for label_idx, label_bbox in enumerate(group_list):
            if isinstance(label_bbox, list):
                for go_idx, (go_bbox, _) in enumerate(go_res_list):
                    if go_idx in top_text_idx_set or go_idx in label_idx_dict:
                        continue
                    go_bbox_rebuild = [
                        [go_bbox[0], go_bbox[1]],
                        [go_bbox[2], go_bbox[3]],
                        [go_bbox[4], go_bbox[5]],
                        [go_bbox[6], go_bbox[7]],
                    ]
                    label_bbox_rebuild = [
                        [label_bbox[0], label_bbox[1]],
                        [label_bbox[2], label_bbox[1]],
                        [label_bbox[2], label_bbox[3]],
                        [label_bbox[0], label_bbox[3]],
                    ]
                    iou = bbox_iou(go_bbox_rebuild, label_bbox_rebuild)
                    if iou >= 0.2:
                        label_idx_dict[go_idx] = label_idx 
        
        X = list()
        y_true = list()

        X_no_text = list()

        # dim = 1 + 5 + 8

        # text_vec_max_lens = 15 * 50
        # dim = 1 + 5 + 8 + text_vec_max_lens 

        max_jieba_char = 4
        text_vec_max_lens = max_jieba_char * 100
        dim = 1 + 5 + 8 + text_vec_max_lens 

        num_classes = 10
        for i in range(160):
            if i >= valid_lens:
                X.append([0. for _ in range(dim)])
                y_true.append([0 for _ in range(num_classes)])

                X_no_text.append([0. for _ in range(dim)])

            elif i in top_text_idx_set:
                (x0, y0, x1, y1, x2, y2, x3, y3), text = go_res_list[i]
                feature_vec = [1.]
                feature_vec.extend(simple_word2vec(text))
                feature_vec.extend([(x0/w), (y0/h), (x1/w), (y1/h), (x2/w), (y2/h), (x3/w), (y3/h)])
                # feature_vec.extend(jwq_word2vec(text, text_vec_max_lens))
                feature_vec.extend(jieba_and_tencent_word2vec(text, max_jieba_char))
                X.append(feature_vec)

                y_true.append([0 for _ in range(num_classes)])

                feature_vec_no_text = [1.]
                feature_vec_no_text.extend([0. for _ in range(5)])
                feature_vec_no_text.extend([(x0/w), (y0/h), (x1/w), (y1/h), (x2/w), (y2/h), (x3/w), (y3/h)])
                # feature_vec.extend(jwq_word2vec(text, text_vec_max_lens))
                feature_vec_no_text.extend([0. for _ in range(text_vec_max_lens)])
                X_no_text.append(feature_vec_no_text)                

            elif i in label_idx_dict:
                (x0, y0, x1, y1, x2, y2, x3, y3), text = go_res_list[i]
                feature_vec = [0.]
                feature_vec.extend(simple_word2vec(text))
                feature_vec.extend([(x0/w), (y0/h), (x1/w), (y1/h), (x2/w), (y2/h), (x3/w), (y3/h)])
                # feature_vec.extend(jwq_word2vec(text, text_vec_max_lens))
                feature_vec.extend(jieba_and_tencent_word2vec(text, max_jieba_char))
                X.append(feature_vec)

                base_label_list = [0 for _ in range(num_classes)]
                base_label_list[label_idx_dict[i]] = 1
                y_true.append(base_label_list)

                feature_vec_no_text = [0.]
                feature_vec_no_text.extend([0. for _ in range(5)])
                feature_vec_no_text.extend([(x0/w), (y0/h), (x1/w), (y1/h), (x2/w), (y2/h), (x3/w), (y3/h)])
                # feature_vec.extend(jwq_word2vec(text, text_vec_max_lens))
                feature_vec_no_text.extend([0. for _ in range(text_vec_max_lens)])
                X_no_text.append(feature_vec_no_text) 

            else:
                (x0, y0, x1, y1, x2, y2, x3, y3), text = go_res_list[i]
                feature_vec = [0.]
                feature_vec.extend(simple_word2vec(text))
                feature_vec.extend([(x0/w), (y0/h), (x1/w), (y1/h), (x2/w), (y2/h), (x3/w), (y3/h)])
                # feature_vec.extend(jwq_word2vec(text, text_vec_max_lens))
                feature_vec.extend(jieba_and_tencent_word2vec(text, max_jieba_char))
                X.append(feature_vec)

                y_true.append([0 for _ in range(num_classes)])

                feature_vec_no_text = [0.]
                feature_vec_no_text.extend([0. for _ in range(5)])
                feature_vec_no_text.extend([(x0/w), (y0/h), (x1/w), (y1/h), (x2/w), (y2/h), (x3/w), (y3/h)])
                # feature_vec.extend(jwq_word2vec(text, text_vec_max_lens))
                feature_vec_no_text.extend([0. for _ in range(text_vec_max_lens)])
                X_no_text.append(feature_vec_no_text) 

        all_data = [X, y_true, valid_lens]
        all_data_no_text = [X_no_text, y_true, valid_lens]

        save_json_name = '{0}.json'.format(uuid.uuid3(uuid.NAMESPACE_DNS, img_name))
        with open(os.path.join(save_dir, save_json_name), 'w') as fp:
            json.dump(all_data, fp)

        save_json_name_2 = '{0}.json'.format(uuid.uuid3(uuid.NAMESPACE_DNS, '{0}_no_text'.format(img_name)))
        with open(os.path.join(save_dir, save_json_name_2), 'w') as fp:
            json.dump(all_data_no_text, fp)

        if is_create_map:
            create_map[img_name] = {
                'x_y_valid_lens': save_json_name, 
                'find_top_text': [go_res_list[i][-1] for i in top_text_idx_set],
                'find_value': {go_res_list[k][-1]: group_cn_list[v] for k, v in label_idx_dict.items()}
            }

        # break
    
    # print(create_map)
    # print(is_create_map)
    if create_map:
        # print(create_map)
        with open(os.path.join(os.path.dirname(save_dir), 'create_map.json'), 'w') as fp:
            json.dump(create_map, fp) 

        # print('top text find:')
        # for i in top_text_idx_set:
        #     _, text = go_res_list[i]
        #     print(text)

        # print('-------------')
        # print('label value find:')
        # for k, v in label_idx_dict.items():
        #     _, text = go_res_list[k]
        #     print('{0}: {1}'.format(group_cn_list[v], text)) 

        # break


if __name__ == '__main__':
    base_dir = '/Users/zhouweiqi/Downloads/gcfp/data'
    go_dir = os.path.join(base_dir, 'go_res')
    dataset_save_dir = os.path.join(base_dir, 'dataset160x414x10-no-text')
    label_dir = os.path.join(base_dir, 'labeled')

    train_go_path = os.path.join(go_dir, 'train')
    train_image_path = os.path.join(label_dir, 'train', 'image')
    train_label_path = os.path.join(label_dir, 'train', 'label')
    train_dataset_dir = os.path.join(dataset_save_dir, 'train')
    train_anno_file_path = os.path.join(dataset_save_dir, 'train.csv')

    valid_go_path = os.path.join(go_dir, 'valid')
    valid_image_path = os.path.join(label_dir, 'valid', 'image')
    valid_label_path = os.path.join(label_dir, 'valid', 'label')
    valid_dataset_dir = os.path.join(dataset_save_dir, 'valid')
    valid_anno_file_path = os.path.join(dataset_save_dir, 'valid.csv')

    # max_seq_lens, seq_lens_mean, max_seq_file_name = bbox_statistics(go_dir)
    # print(max_seq_lens) # 152
    # print(max_seq_file_name) # train/CH-B101805176_page_2_img_0.json
    # print(seq_lens_mean) # 92

    # max_char_lens, target_file_name = char_length_statistics(go_dir)
    # print(max_char_lens) # 72
    # print(target_file_name) # train/CH-B103053828-4.json

    # max_char_length, target_file_name, target_jieba_char_list, statistics_dict = char_length_statistics_jieba(go_dir)
    # print(max_char_length) # 24
    # print(target_file_name) # train/CH-B102551568-6.json
    # print(target_jieba_char_list)
    # print(statistics_dict) # {2: 12077, 1: 12751, 0: 13073, 3: 4423, 4: 1212, 5: 969, 6: 744, 7: 524, 8: 199, 10: 45, 12: 9, 18: 44, 9: 109, 11: 19, 13: 4, 16: 4, 21: 2, 19: 2, 15: 8, 17: 7, 14: 3, 20: 1, 24: 1}

    # top_text_list = text_statistics(go_dir)
    # for t in top_text_list:
    #     print(t)

    filter_from_top_text_list = [
        ('机器编号', 496),
        ('购买方名称', 496),
        ('合格证号', 495),
        ('进口证明书号', 495),
        ('机打代码', 494),
        ('车辆类型', 492),
        ('完税凭证号码', 492),
        ('机打号码', 491),
        ('发动机号码', 491),
        ('主管税务', 491),
        ('价税合计', 489),
        ('机关及代码', 489),
        ('销货单位名称', 486),
        ('厂牌型号', 485),
        ('产地', 485),
        ('商检单号', 483),
        ('电话', 476),
        ('开户银行', 472),
        ('车辆识别代号/车架号码', 463),
        ('身份证号码', 454),
        ('吨位', 452),
        ('备注:一车一票', 439),
        ('地', 432),
        ('账号', 431),
        ('统一社会信用代码/', 424),
        ('限乘人数', 404),
        ('税额', 465),
        ('址', 392)
    ]

    skip_list_train = [
        'CH-B101910792-page-12.jpg',
        'CH-B101655312-page-13.jpg',
        'CH-B102278656.jpg',
        'CH-B101846620_page_1_img_0.jpg',
        'CH-B103062528-0.jpg',
        'CH-B102613120-3.jpg',
        'CH-B102997980-3.jpg',
        'CH-B102680060-3.jpg',
        # # 'CH-B102995500-2.jpg',  # 没value
    ]

    skip_list_valid = [
        # 'CH-B102897920-2.jpg',
        # 'CH-B102551284-0.jpg',
        # 'CH-B102879376-2.jpg',
        # 'CH-B101509488-page-16.jpg',
        # 'CH-B102708352-2.jpg',
    ]

    build_dataset(train_image_path, train_go_path, train_label_path, filter_from_top_text_list, skip_list_train, train_dataset_dir)
    build_anno_file(train_dataset_dir, train_anno_file_path)

    build_dataset(valid_image_path, valid_go_path, valid_label_path, filter_from_top_text_list, skip_list_valid, valid_dataset_dir, True)
    build_anno_file(valid_dataset_dir, valid_anno_file_path)

    # print(simple_word2vec(' fd2jk接口 额24;叁‘,。测ADF壹试!¥? '))
    # print(jwq_word2vec('发', 15*50))