seq_labeling.py 10.8 KB
import math
from functools import partial
from collections import OrderedDict

import torch
import torch.nn as nn
from utils.registery import MODEL_REGISTRY
from utils import sequence_mask


def masked_softmax(X, valid_lens):
    """Perform softmax operation by masking elements on the last axis.
    Defined in :numref:`sec_attention-scoring-functions`"""
    # `X`: 3D tensor, `valid_lens`: 1D or 2D tensor
    if valid_lens is None:
        return nn.functional.softmax(X, dim=-1)
    else:
        # [batch_size, num_heads, seq_len, seq_len]
        shape = X.shape
        if valid_lens.dim() == 1:
            valid_lens = torch.repeat_interleave(valid_lens, shape[2])
        else:
            valid_lens = valid_lens.reshape(-1)
        # On the last axis, replace masked elements with a very large negative
        # value, whose exponentiation outputs 0
        X = sequence_mask(X.reshape(-1, shape[-1]), valid_lens, value=-1e6)
        return nn.functional.softmax(X.reshape(shape), dim=-1)


class PositionalEncoding(nn.Module):
    """Positional encoding.
    Defined in :numref:`sec_self-attention-and-positional-encoding`"""
    def __init__(self, embed_dim, drop_ratio, max_len=1000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(drop_ratio)
        # Create a long enough `P`
        self.P = torch.zeros((1, max_len, embed_dim))
        X = torch.arange(max_len, dtype=torch.float32).reshape(
            -1, 1) / torch.pow(10000, torch.arange(
            0, embed_dim, 2, dtype=torch.float32) / embed_dim)
        self.P[:, :, 0::2] = torch.sin(X)
        self.P[:, :, 1::2] = torch.cos(X)

    def forward(self, X):
        X = X + self.P[:, :X.shape[1], :].to(X.device)
        return self.dropout(X)


def _init_vit_weights(m):
    """
    ViT weight initialization
    :param m: module
    """
    if isinstance(m, nn.Linear):
        nn.init.trunc_normal_(m.weight, std=.01)
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.Conv2d):
        nn.init.kaiming_normal_(m.weight, mode="fan_out")
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, nn.LayerNorm):
        nn.init.zeros_(m.bias)
        nn.init.ones_(m.weight)


def drop_path(x, drop_prob: float = 0., training: bool = False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """
    Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class Attention(nn.Module):
    def __init__(self,
                 dim,   # 输入token的dim
                 num_heads=8,
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop_ratio=0.,
                 proj_drop_ratio=0.):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop_ratio)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop_ratio)

    def forward(self, x, valid_lens):
        # [batch_size, seq_len, total_embed_dim]
        B, N, C = x.shape

        # qkv(): -> [batch_size, seq_len, 3 * total_embed_dim]
        # reshape: -> [batch_size, seq_len, 3, num_heads, embed_dim_per_head]
        # permute: -> [3, batch_size, num_heads, seq_len, embed_dim_per_head]
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        # [batch_size, num_heads, seq_len, embed_dim_per_head]
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        # transpose: -> [batch_size, num_heads, embed_dim_per_head, seq_len]
        # @: multiply -> [batch_size, num_heads, seq_len, seq_len]
        attn = (q @ k.transpose(-2, -1)) * self.scale

        if valid_lens is not None:
            # On axis 0, copy the first item (scalar or vector) for
            # `num_heads` times, then copy the next item, and so on
            valid_lens = torch.repeat_interleave(
                valid_lens, repeats=self.num_heads, dim=0)
        # attn = attn.softmax(dim=-1)
        attn = masked_softmax(attn, valid_lens)


        attn = self.attn_drop(attn)

        # @: multiply -> [batch_size, num_heads, seq_len, embed_dim_per_head]
        # transpose: -> [batch_size, seq_len, num_heads, embed_dim_per_head]
        # reshape: -> [batch_size, seq_len, total_embed_dim]
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Mlp(nn.Module):
    """
    MLP as used in Vision Transformer, MLP-Mixer and related networks
    """
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Block(nn.Module):
    def __init__(self,
                 dim,
                 num_heads,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop_ratio=0.,
                 attn_drop_ratio=0.,
                 drop_path_ratio=0.,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm):
        super(Block, self).__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
                              attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)

    def forward(self, x, valid_lens):
        # [batch_size, seq_len, total_embed_dim]
        x = x + self.drop_path(self.attn(self.norm1(x), valid_lens))
        # [batch_size, seq_len, total_embed_dim]
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


@MODEL_REGISTRY.register()
class SLTransformer(nn.Module):
    def __init__(self, 
                 seq_lens=200,
                 num_classes=1000, 
                 embed_dim=768, 
                 depth=12, 
                 num_heads=12, 
                 mlp_ratio=4.0, 
                 qkv_bias=True,
                 qk_scale=None, 
                 drop_ratio=0.,
                 attn_drop_ratio=0., 
                 drop_path_ratio=0., 
                 norm_layer=None,
                 act_layer=None,
                 ):
        """
        Args:
            num_classes (int): number of classes for classification head
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            qk_scale (float): override default qk scale of head_dim ** -0.5 if set
            drop_ratio (float): dropout rate
            attn_drop_ratio (float): attention dropout rate
            drop_path_ratio (float): stochastic depth rate
            norm_layer: (nn.Module): normalization layer
        """
        super(SLTransformer, self).__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        # self.pos_embed = PositionalEncoding(self.embed_dim, drop_ratio, max_len=seq_lens)
        self.pos_embed = nn.Parameter(torch.zeros(1, seq_lens, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_ratio)

        dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)]  # stochastic depth decay rule
        self.blocks = nn.Sequential(*[
            Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                  drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],
                  norm_layer=norm_layer, act_layer=act_layer)
            for i in range(depth)
        ])
        self.norm = norm_layer(embed_dim)

        # Classifier head(s)
        self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()

        # Weight init
        nn.init.trunc_normal_(self.pos_embed, std=0.02)
        self.apply(_init_vit_weights)

    def forward(self, x, valid_lens):
        # x: [B, seq_len, embed_dim]
        # valid_lens: [B, ]

        # TODO sin/cos位置编码?
        # 因为位置编码值在-1和1之间,
        # 因此嵌入值乘以嵌入维度的平方根进行缩放,
        # 然后再与位置编码相加。
        # x = self.pos_embed(x * math.sqrt(self.embed_dim))

        # 参数的位置编码
        x = self.pos_drop(x + self.pos_embed)

        # [batch_size, seq_len, total_embed_dim]
        for block in self.blocks:
            x = block(x, valid_lens)
        # x = self.blocks(x, valid_lens)
        x = self.norm(x)

        # [batch_size, seq_len, num_classes]
        x = self.head(x)
        return x