sl_solver.py
14.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import copy
import os
import cv2
import json
import torch
from PIL import Image, ImageDraw, ImageFont
from data import build_dataloader
from loss import build_loss
from model import build_model
from optimizer import build_lr_scheduler, build_optimizer
from utils import SOLVER_REGISTRY, get_logger_and_log_dir
from utils import sequence_mask
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
@SOLVER_REGISTRY.register()
class SLSolver(object):
def __init__(self, cfg):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.cfg = copy.deepcopy(cfg)
self.train_loader, self.val_loader = build_dataloader(cfg)
self.train_loader_size, self.val_loader_size = len(self.train_loader), len(self.val_loader)
self.train_dataset_size, self.val_dataset_size = len(self.train_loader.dataset), len(self.val_loader.dataset)
# BatchNorm ?
self.model = build_model(cfg).to(self.device)
self.loss_fn = build_loss(cfg)
self.optimizer = build_optimizer(cfg)(self.model.parameters(), **cfg['solver']['optimizer']['args'])
self.hyper_params = cfg['solver']['args']
self.base_on = self.hyper_params['base_on']
self.model_path = self.hyper_params['model_path']
self.val_image_path = self.hyper_params['val_image_path']
self.val_label_path = self.hyper_params['val_label_path']
self.val_go_path = self.hyper_params['val_go_path']
self.val_map_path = self.hyper_params['val_map_path']
self.draw_font_path = self.hyper_params['draw_font_path']
self.thresholds = self.hyper_params['thresholds']
try:
self.epoch = self.hyper_params['epoch']
except Exception:
raise 'should contain epoch in {solver.args}'
self.logger, self.log_dir = get_logger_and_log_dir(**cfg['solver']['logger'])
def accuracy(self, y_pred, y_true, valid_lens, eval=False):
# [batch_size, seq_len, num_classes]
y_pred_sigmoid = torch.nn.Sigmoid()(y_pred)
# [batch_size, seq_len]
y_pred_idx = torch.argmax(y_pred_sigmoid, dim=-1) + 1
# [batch_size, seq_len]
y_pred_is_other = (torch.amax(y_pred_sigmoid, dim=-1) > self.thresholds).int()
y_pred_rebuild = torch.multiply(y_pred_idx, y_pred_is_other)
y_true_idx = torch.argmax(y_true, dim=-1) + 1
y_true_is_other = torch.sum(y_true, dim=-1).int()
y_true_rebuild = torch.multiply(y_true_idx, y_true_is_other)
if eval:
return y_pred_rebuild, y_true_rebuild
masked_y_true_rebuild = sequence_mask(y_true_rebuild, valid_lens, value=-1)
return torch.sum((y_pred_rebuild == masked_y_true_rebuild).int()).item()
def train_loop(self):
self.model.train()
seq_lens_sum = torch.zeros(1).to(self.device)
train_loss = torch.zeros(1).to(self.device)
correct = torch.zeros(1).to(self.device)
for batch, (X, y, valid_lens) in enumerate(self.train_loader):
X, y, valid_lens = X.to(self.device), y.to(self.device), valid_lens.to(self.device)
pred = self.model(X, valid_lens)
# [batch_size, seq_len, num_classes]
loss = self.loss_fn(pred, y, valid_lens)
train_loss += loss.sum()
if batch % 100 == 0:
loss_value, current = loss.sum().item(), batch
self.logger.info(f'train iteration: {current}/{self.train_loader_size}, train loss: {loss_value :.4f}')
self.optimizer.zero_grad()
loss.sum().backward()
self.optimizer.step()
seq_lens_sum += valid_lens.sum()
correct += self.accuracy(pred, y, valid_lens)
# correct /= self.train_dataset_size
correct /= seq_lens_sum
train_loss /= self.train_loader_size
self.logger.info(f'train accuracy: {correct.item() :.4f}, train mean loss: {train_loss.item() :.4f}')
@torch.no_grad()
def val_loop(self, t):
self.model.eval()
seq_lens_sum = torch.zeros(1).to(self.device)
val_loss = torch.zeros(1).to(self.device)
correct = torch.zeros(1).to(self.device)
for X, y, valid_lens in self.val_loader:
X, y, valid_lens = X.to(self.device), y.to(self.device), valid_lens.to(self.device)
# pred = torch.nn.Sigmoid()(self.model(X))
pred = self.model(X, valid_lens)
# [batch_size, seq_len, num_classes]
loss = self.loss_fn(pred, y, valid_lens)
val_loss += loss.sum()
seq_lens_sum += valid_lens.sum()
correct += self.accuracy(pred, y, valid_lens)
# correct /= self.val_dataset_size
correct /= seq_lens_sum
val_loss /= self.val_loader_size
self.logger.info(f"val accuracy: {correct.item() :.4f}, val mean loss: {val_loss.item() :.4f}")
def save_checkpoint(self, epoch_id):
self.model.eval()
torch.save(self.model.state_dict(), os.path.join(self.log_dir, f'ckpt_epoch_{epoch_id}.pt'))
def run(self):
if isinstance(self.base_on, str) and os.path.exists(self.base_on):
self.model.load_state_dict(torch.load(self.base_on))
self.logger.info(f'==> Load Model from {self.base_on}')
self.logger.info('==> Start Training')
print(self.model)
lr_scheduler = build_lr_scheduler(self.cfg)(self.optimizer, **self.cfg['solver']['lr_scheduler']['args'])
for t in range(self.epoch):
self.logger.info(f'==> epoch {t + 1}')
self.train_loop()
self.val_loop(t + 1)
self.save_checkpoint(t + 1)
lr_scheduler.step()
self.logger.info('==> End Training')
# def run(self):
# from torch.nn import functional
# y = functional.one_hot(torch.randint(0, 10, (8, 100)), 10)
# valid_lens = torch.randint(50, 100, (8, ))
# print(valid_lens)
# pred = functional.one_hot(torch.randint(0, 10, (8, 100)), 10)
# print(self.accuracy(pred, y, valid_lens))
def evaluate(self):
if isinstance(self.model_path, str) and os.path.exists(self.model_path):
self.model.load_state_dict(torch.load(self.model_path))
self.logger.info(f'==> Load Model from {self.model_path}')
else:
return
self.model.eval()
label_true_list = []
label_pred_list = []
for X, y, valid_lens in self.val_loader:
X, y_true, valid_lens = X.to(self.device), y.to(self.device), valid_lens.to(self.device)
# pred = torch.nn.Sigmoid()(self.model(X))
y_pred = self.model(X, valid_lens)
y_pred_rebuild, y_true_rebuild = self.accuracy(y_pred, y_true, valid_lens, eval=True)
for idx, seq_result in enumerate(y_true_rebuild.cpu().numpy().tolist()):
label_true_list.extend(seq_result[: valid_lens.cpu().numpy()[idx]])
for idx, seq_result in enumerate(y_pred_rebuild.cpu().numpy().tolist()):
label_pred_list.extend(seq_result[: valid_lens.cpu().numpy()[idx]])
acc = accuracy_score(label_true_list, label_pred_list)
cm = confusion_matrix(label_true_list, label_pred_list)
report = classification_report(label_true_list, label_pred_list)
print(acc)
print(cm)
print(report)
def draw_val(self):
if not os.path.isdir(self.val_image_path):
print('Warn: val_image_path not exists: {0}'.format(self.val_image_path))
return
if not os.path.isdir(self.val_label_path):
print('Warn: val_label_path not exists: {0}'.format(self.val_label_path))
return
if not os.path.isdir(self.val_go_path):
print('Warn: val_go_path not exists: {0}'.format(self.val_go_path))
return
if not os.path.isfile(self.val_map_path):
print('Warn: val_map_path not exists: {0}'.format(self.val_map_path))
return
if isinstance(self.model_path, str) and os.path.exists(self.model_path):
self.model.load_state_dict(torch.load(self.model_path))
self.logger.info(f'==> Load Model from {self.model_path}')
else:
return
self.model.eval()
map_key_input = 'x_y_valid_lens'
map_key_text = 'find_top_text'
map_key_value = 'find_value'
test_group_id = [1, 2, 5, 9, 20, 15, 16, 22, 24, 28]
group_cn_list = ['其他', '开票日期', '发票代码', '机打号码', '车辆类型', '电话', '发动机号码', '车架号', '帐号', '开户银行', '小写']
skip_list_valid = [
# 'CH-B102897920-2.jpg',
# 'CH-B102551284-0.jpg',
# 'CH-B102879376-2.jpg',
# 'CH-B101509488-page-16.jpg',
# 'CH-B102708352-2.jpg',
]
dataset_base_dir = os.path.dirname(self.val_map_path)
val_dataset_dir = os.path.join(dataset_base_dir, 'valid')
save_dir = os.path.join(dataset_base_dir, 'draw_val')
if not os.path.isdir(save_dir):
os.makedirs(save_dir, exist_ok=True)
with open(self.val_map_path, 'r') as fp:
val_map = json.load(fp)
data_dict = {key_cn: [0, 0] for key_cn in group_cn_list[1:]}
failed_dict = dict()
for img_name in sorted(os.listdir(self.val_image_path)):
if img_name in skip_list_valid:
continue
print('Info: start {0}'.format(img_name))
image_path = os.path.join(self.val_image_path, img_name)
img = cv2.imread(image_path)
im_h, im_w, _ = img.shape
img_pil = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img_pil)
if im_h < im_w:
size = int(im_h * 0.010)
else:
size = int(im_w * 0.010)
if size < 10:
size = 10
font = ImageFont.truetype(self.draw_font_path, size, encoding='utf-8')
green_color = (0, 255, 0)
red_color = (255, 0, 0)
blue_color = (0, 0, 255)
base_image_name, _ = os.path.splitext(img_name)
go_res_json_path = os.path.join(self.val_go_path, '{0}.json'.format(base_image_name))
with open(go_res_json_path, 'r') as fp:
go_res_list = json.load(fp)
with open(os.path.join(val_dataset_dir, val_map[img_name][map_key_input]), 'r') as fp:
input_list, label_list, valid_lens_scalar = json.load(fp)
X = torch.tensor(input_list).unsqueeze(0).to(self.device)
y_true = torch.tensor(label_list).unsqueeze(0).float().to(self.device)
valid_lens = torch.tensor([valid_lens_scalar, ]).to(self.device)
del input_list
del label_list
y_pred = self.model(X, valid_lens)
y_pred_rebuild, y_true_rebuild = self.accuracy(y_pred, y_true, valid_lens, eval=True)
pred = y_pred_rebuild.cpu().numpy().tolist()[0]
label = y_true_rebuild.cpu().numpy().tolist()[0]
correct = 0
bbox_draw_dict = dict()
bbox_text_dict = dict()
for i in range(valid_lens_scalar):
if pred[i] != 0:
bbox_text_dict.setdefault(pred[i]-1, list()).append(i)
# if pred[i] == label[i]:
# correct += 1
# if pred[i] != 0:
# # 绿色
# bbox_draw_dict[i] = (group_cn_list[pred[i]], )
# else:
# # 红色:左上角label,右上角pred
# bbox_draw_dict[i] = (group_cn_list[label[i]], group_cn_list[pred[i]])
# correct_rate = correct / valid_lens_scalar
# 画图
# for idx, text_tuple in bbox_draw_dict.items():
# (x0, y0, x1, y1, x2, y2, x3, y3), _ = go_res_list[idx]
# line_color = green_color if len(text_tuple) == 1 else red_color
# draw.polygon([(x0, y0), (x1, y1), (x2, y2), (x3, y3)], outline=line_color)
# draw.text((int(x0), int(y0)), text_tuple[0], green_color, font=font)
# if len(text_tuple) == 2:
# draw.text((int(x1), int(y1)), text_tuple[1], red_color, font=font)
# draw.text((0, 0), str(correct_rate), blue_color, font=font)
# last_y = size
# for k, v in val_map[img_name][map_key_value].items():
# draw.text((0, last_y), '{0}: {1}'.format(k, v), blue_color, font=font)
# last_y += size
# img_pil.save(os.path.join(save_dir, img_name))
# 统计准确率
label_json_path = os.path.join(self.val_label_path, '{0}.json'.format(base_image_name))
with open(label_json_path, 'r') as fp:
label_res = json.load(fp)
group_text_list = []
for group_id in test_group_id:
for item in label_res.get("shapes", []):
if item.get("group_id") == group_id:
group_text_list.append(item['label'])
break
else:
group_text_list.append(None)
for idx, text in enumerate(group_text_list):
key_cn = group_cn_list[idx+1]
pred_idx_list = bbox_text_dict.get(idx)
if isinstance(pred_idx_list, list):
pred_text_list = [go_res_list[idx][-1] for idx in pred_idx_list]
pred_text = ' '.join(pred_text_list)
else:
pred_text = None
data_dict[key_cn][-1] += 1
if pred_text == text:
data_dict[key_cn][0] += 1
else:
failed_dict.setdefault(key_cn, list()).append((text, pred_text))
# break
for key_cn, (correct_count, all_count) in data_dict.items():
print('{0}: {1}'.format(key_cn, round(correct_count/all_count, 2)))
print('===========================')
for key_cn, failed_list in failed_dict.items():
print(key_cn)
for text, pred_text in failed_list:
print('label: {0} pred: {1}'.format(text, pred_text))
print('----------------------------------')