mlp.py
1.31 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from abc import ABCMeta
import torch.nn as nn
from utils.registery import MODEL_REGISTRY
@MODEL_REGISTRY.register()
class MLPModel(nn.Module):
def __init__(self, activation):
super().__init__()
self.activation_fn = activation
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(29*8, 512),
nn.ReLU(),
nn.Linear(512, 256),
nn.ReLU(),
nn.Linear(256, 5),
nn.Sigmoid(),
# nn.ReLU(),
)
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, (nn.LayerNorm, nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits