vit_solver.py
4.98 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import copy
import os
import torch
from data import build_dataloader
from loss import build_loss
from model import build_model
from optimizer import build_lr_scheduler, build_optimizer
from utils import SOLVER_REGISTRY, get_logger_and_log_dir
@SOLVER_REGISTRY.register()
class VITSolver(object):
def __init__(self, cfg):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.cfg = copy.deepcopy(cfg)
self.train_loader, self.val_loader = build_dataloader(cfg)
self.train_loader_size, self.val_loader_size = len(self.train_loader), len(self.val_loader)
self.train_dataset_size, self.val_dataset_size = len(self.train_loader.dataset), len(self.val_loader.dataset)
# BatchNorm ?
self.model = build_model(cfg).to(self.device)
self.loss_fn = build_loss(cfg)
self.optimizer = build_optimizer(cfg)(self.model.parameters(), **cfg['solver']['optimizer']['args'])
self.hyper_params = cfg['solver']['args']
self.no_other = self.hyper_params['no_other']
self.base_on = self.hyper_params['base_on']
try:
self.epoch = self.hyper_params['epoch']
except Exception:
raise 'should contain epoch in {solver.args}'
self.logger, self.log_dir = get_logger_and_log_dir(**cfg['solver']['logger'])
def evaluate(self, y_pred, y_true, thresholds=0.5):
if self.no_other:
return (y_pred.argmax(1) == y_true.argmax(1)).type(torch.float).sum().item()
else:
y_pred_idx = torch.argmax(y_pred, dim=1) + 1
y_pred_is_other = (torch.amax(y_pred, dim=1) > 0.5).int()
y_pred_rebuild = torch.multiply(y_pred_idx, y_pred_is_other)
y_true_idx = torch.argmax(y_true, dim=1) + 1
y_true_is_other = torch.sum(y_true, dim=1)
y_true_rebuild = torch.multiply(y_true_idx, y_true_is_other)
return torch.sum((y_pred_rebuild == y_true_rebuild).int()).item()
def train_loop(self):
self.model.train()
train_loss = torch.zeros(1).to(self.device)
correct = torch.zeros(1).to(self.device)
for batch, (X, y) in enumerate(self.train_loader):
X, y = X.to(self.device), y.to(self.device)
if self.no_other:
pred = torch.nn.Softmax(dim=1)(self.model(X))
else:
# pred = torch.nn.Sigmoid()(self.model(X))
pred = self.model(X)
# loss = self.loss_fn(pred, y, reduction="mean")
loss = self.loss_fn(pred, y)
train_loss += loss.item()
if batch % 100 == 0:
loss_value, current = loss.item(), batch
self.logger.info(f'train iteration: {current}/{self.train_loader_size}, train loss: {loss_value :.4f}')
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if self.no_other:
correct += self.evaluate(pred, y)
else:
correct += self.evaluate(torch.nn.Sigmoid()(pred), y)
correct /= self.train_dataset_size
train_loss /= self.train_loader_size
self.logger.info(f'train accuracy: {correct.item() :.4f}, train mean loss: {train_loss.item() :.4f}')
@torch.no_grad()
def val_loop(self, t):
self.model.eval()
val_loss = torch.zeros(1).to(self.device)
correct = torch.zeros(1).to(self.device)
for X, y in self.val_loader:
X, y = X.to(self.device), y.to(self.device)
if self.no_other:
pred = torch.nn.Softmax(dim=1)(self.model(X))
else:
# pred = torch.nn.Sigmoid()(self.model(X))
pred = self.model(X)
loss = self.loss_fn(pred, y)
val_loss += loss.item()
if self.no_other:
correct += self.evaluate(pred, y)
else:
correct += self.evaluate(torch.nn.Sigmoid()(pred), y)
correct /= self.val_dataset_size
val_loss /= self.val_loader_size
self.logger.info(f"val accuracy: {correct.item() :.4f}, val mean loss: {val_loss.item() :.4f}")
def save_checkpoint(self, epoch_id):
self.model.eval()
torch.save(self.model.state_dict(), os.path.join(self.log_dir, f'ckpt_epoch_{epoch_id}.pt'))
def run(self):
if isinstance(self.base_on, str) and os.path.exists(self.base_on):
self.model.load_state_dict(torch.load(self.base_on))
self.logger.info(f'==> Load Model from {self.base_on}')
self.logger.info('==> Start Training')
print(self.model)
lr_scheduler = build_lr_scheduler(self.cfg)(self.optimizer, **self.cfg['solver']['lr_scheduler']['args'])
for t in range(self.epoch):
self.logger.info(f'==> epoch {t + 1}')
self.train_loop()
self.val_loop(t + 1)
self.save_checkpoint(t + 1)
lr_scheduler.step()
self.logger.info('==> End Training')