vit_solver.py
6.62 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import copy
import os
import torch
from data import build_dataloader
from loss import build_loss
from model import build_model
from optimizer import build_lr_scheduler, build_optimizer
from utils import SOLVER_REGISTRY, get_logger_and_log_dir
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
@SOLVER_REGISTRY.register()
class VITSolver(object):
def __init__(self, cfg):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.cfg = copy.deepcopy(cfg)
self.train_loader, self.val_loader = build_dataloader(cfg)
self.train_loader_size, self.val_loader_size = len(self.train_loader), len(self.val_loader)
self.train_dataset_size, self.val_dataset_size = len(self.train_loader.dataset), len(self.val_loader.dataset)
# BatchNorm ?
self.model = build_model(cfg).to(self.device)
self.loss_fn = build_loss(cfg)
self.optimizer = build_optimizer(cfg)(self.model.parameters(), **cfg['solver']['optimizer']['args'])
self.hyper_params = cfg['solver']['args']
self.no_other = self.hyper_params['no_other']
self.base_on = self.hyper_params['base_on']
self.model_path = self.hyper_params['model_path']
try:
self.epoch = self.hyper_params['epoch']
except Exception:
raise 'should contain epoch in {solver.args}'
self.logger, self.log_dir = get_logger_and_log_dir(**cfg['solver']['logger'])
def accuracy(self, y_pred, y_true, thresholds=0.5):
if self.no_other:
return (y_pred.argmax(1) == y_true.argmax(1)).type(torch.float).sum().item()
else:
y_pred_idx = torch.argmax(y_pred, dim=1) + 1
y_pred_is_other = (torch.amax(y_pred, dim=1) > 0.5).int()
y_pred_rebuild = torch.multiply(y_pred_idx, y_pred_is_other)
y_true_idx = torch.argmax(y_true, dim=1) + 1
y_true_is_other = torch.sum(y_true, dim=1)
y_true_rebuild = torch.multiply(y_true_idx, y_true_is_other)
return torch.sum((y_pred_rebuild == y_true_rebuild).int()).item()
def train_loop(self):
self.model.train()
train_loss = torch.zeros(1).to(self.device)
correct = torch.zeros(1).to(self.device)
for batch, (X, y) in enumerate(self.train_loader):
X, y = X.to(self.device), y.to(self.device)
if self.no_other:
pred = torch.nn.Softmax(dim=1)(self.model(X))
else:
# pred = torch.nn.Sigmoid()(self.model(X))
pred = self.model(X)
# loss = self.loss_fn(pred, y, reduction="mean")
loss = self.loss_fn(pred, y)
train_loss += loss.item()
if batch % 100 == 0:
loss_value, current = loss.item(), batch
self.logger.info(f'train iteration: {current}/{self.train_loader_size}, train loss: {loss_value :.4f}')
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
if self.no_other:
correct += self.accuracy(pred, y)
else:
correct += self.accuracy(torch.nn.Sigmoid()(pred), y)
correct /= self.train_dataset_size
train_loss /= self.train_loader_size
self.logger.info(f'train accuracy: {correct.item() :.4f}, train mean loss: {train_loss.item() :.4f}')
@torch.no_grad()
def val_loop(self, t):
self.model.eval()
val_loss = torch.zeros(1).to(self.device)
correct = torch.zeros(1).to(self.device)
for X, y in self.val_loader:
X, y = X.to(self.device), y.to(self.device)
if self.no_other:
pred = torch.nn.Softmax(dim=1)(self.model(X))
else:
# pred = torch.nn.Sigmoid()(self.model(X))
pred = self.model(X)
loss = self.loss_fn(pred, y)
val_loss += loss.item()
if self.no_other:
correct += self.accuracy(pred, y)
else:
correct += self.accuracy(torch.nn.Sigmoid()(pred), y)
correct /= self.val_dataset_size
val_loss /= self.val_loader_size
self.logger.info(f"val accuracy: {correct.item() :.4f}, val mean loss: {val_loss.item() :.4f}")
def save_checkpoint(self, epoch_id):
self.model.eval()
torch.save(self.model.state_dict(), os.path.join(self.log_dir, f'ckpt_epoch_{epoch_id}.pt'))
def run(self):
if isinstance(self.base_on, str) and os.path.exists(self.base_on):
self.model.load_state_dict(torch.load(self.base_on))
self.logger.info(f'==> Load Model from {self.base_on}')
self.logger.info('==> Start Training')
print(self.model)
lr_scheduler = build_lr_scheduler(self.cfg)(self.optimizer, **self.cfg['solver']['lr_scheduler']['args'])
for t in range(self.epoch):
self.logger.info(f'==> epoch {t + 1}')
self.train_loop()
self.val_loop(t + 1)
self.save_checkpoint(t + 1)
lr_scheduler.step()
self.logger.info('==> End Training')
def evaluate(self):
if isinstance(self.model_path, str) and os.path.exists(self.model_path):
self.model.load_state_dict(torch.load(self.model_path))
self.logger.info(f'==> Load Model from {self.model_path}')
else:
return
self.model.eval()
label_true_list = []
label_pred_list = []
for X, y in self.val_loader:
X, y_true = X.to(self.device), y.to(self.device)
if self.no_other:
pred = torch.nn.Softmax(dim=1)(self.model(X))
else:
# pred = torch.nn.Sigmoid()(self.model(X))
pred = self.model(X)
y_pred = torch.nn.Sigmoid()(pred)
y_pred_idx = torch.argmax(y_pred, dim=1) + 1
y_pred_is_other = (torch.amax(y_pred, dim=1) > 0.5).int()
y_pred_rebuild = torch.multiply(y_pred_idx, y_pred_is_other)
y_true_idx = torch.argmax(y_true, dim=1) + 1
y_true_is_other = torch.sum(y_true, dim=1)
y_true_rebuild = torch.multiply(y_true_idx, y_true_is_other)
label_true_list.extend(y_true_rebuild.cpu().numpy().tolist())
label_pred_list.extend(y_pred_rebuild.cpu().numpy().tolist())
acc = accuracy_score(label_true_list, label_pred_list)
cm = confusion_matrix(label_true_list, label_pred_list)
report = classification_report(label_true_list, label_pred_list)
print(acc)
print(cm)
print(report)