add new async
Showing
2 changed files
with
96 additions
and
35 deletions
... | @@ -29,30 +29,6 @@ tf_serving_settings = { | ... | @@ -29,30 +29,6 @@ tf_serving_settings = { |
29 | app.config.update(tf_serving_settings) | 29 | app.config.update(tf_serving_settings) |
30 | 30 | ||
31 | 31 | ||
32 | # 同步写法01 | ||
33 | # @app.post("/sync_classification") | ||
34 | # async def sync_handler(request): | ||
35 | # image = request.files.get("image") | ||
36 | # img_array = np.frombuffer(image.body, np.uint8) | ||
37 | # image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
38 | # input_images = classifier.preprocess_input(image) | ||
39 | # | ||
40 | # options = [('grpc.max_send_message_length', 1000 * 1024 * 1024), | ||
41 | # ('grpc.max_receive_message_length', 1000 * 1024 * 1024)] | ||
42 | # with grpc.insecure_channel('localhost:8500', options=options) as channel: | ||
43 | # stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) | ||
44 | # # See prediction_service.proto for gRPC request/response details. | ||
45 | # request = predict_pb2.PredictRequest() | ||
46 | # request.model_spec.name = classifier.model_name | ||
47 | # request.model_spec.signature_name = classifier.signature_name | ||
48 | # | ||
49 | # request.inputs['input_1'].CopyFrom(tf.make_tensor_proto(input_images)) | ||
50 | # result = stub.Predict(request, timeout=100.0) # 100 secs timeout | ||
51 | # outputs = tf.make_ndarray(result.outputs['output']) | ||
52 | # | ||
53 | # res = classifier.reprocess_output(outputs) | ||
54 | # return json(res) | ||
55 | |||
56 | # 同步写法02 | 32 | # 同步写法02 |
57 | # @app.post("/sync_classification") | 33 | # @app.post("/sync_classification") |
58 | # async def sync_handler(request): | 34 | # async def sync_handler(request): |
... | @@ -67,12 +43,15 @@ app.config.update(tf_serving_settings) | ... | @@ -67,12 +43,15 @@ app.config.update(tf_serving_settings) |
67 | # request.model_spec.signature_name = classifier.signature_name | 43 | # request.model_spec.signature_name = classifier.signature_name |
68 | # stub = getattr(app, classifier.server_name) | 44 | # stub = getattr(app, classifier.server_name) |
69 | # | 45 | # |
70 | # request.inputs['input_1'].CopyFrom(tf.make_tensor_proto(input_images)) | 46 | # res_list = [] |
71 | # result = stub.Predict(request, timeout=100.0) # 100 secs timeout | 47 | # for _ in range(5): |
72 | # outputs = tf.make_ndarray(result.outputs['output']) | 48 | # request.inputs['input_1'].CopyFrom(tf.make_tensor_proto(input_images)) |
49 | # result = stub.Predict(request, timeout=100.0) # 100 secs timeout | ||
50 | # outputs = tf.make_ndarray(result.outputs['output']) | ||
73 | # | 51 | # |
74 | # res = classifier.reprocess_output(outputs) | 52 | # res = classifier.reprocess_output(outputs) |
75 | # return json(res) | 53 | # res_list.append(res) |
54 | # return json(res_list) | ||
76 | # | 55 | # |
77 | # @app.listener("before_server_start") | 56 | # @app.listener("before_server_start") |
78 | # async def set_grpc_channel(app, loop): | 57 | # async def set_grpc_channel(app, loop): |
... | @@ -83,7 +62,7 @@ app.config.update(tf_serving_settings) | ... | @@ -83,7 +62,7 @@ app.config.update(tf_serving_settings) |
83 | # stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) | 62 | # stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) |
84 | # setattr(app, server_name, stub) | 63 | # setattr(app, server_name, stub) |
85 | 64 | ||
86 | # 异步写法 | 65 | # 异步写法02 |
87 | @app.post("/async_classification") | 66 | @app.post("/async_classification") |
88 | async def async_handler(request): | 67 | async def async_handler(request): |
89 | image = request.files.get("image") | 68 | image = request.files.get("image") |
... | @@ -97,12 +76,15 @@ async def async_handler(request): | ... | @@ -97,12 +76,15 @@ async def async_handler(request): |
97 | request.model_spec.signature_name = classifier.signature_name | 76 | request.model_spec.signature_name = classifier.signature_name |
98 | stub = getattr(app, classifier.server_name) | 77 | stub = getattr(app, classifier.server_name) |
99 | 78 | ||
100 | request.inputs['input_1'].CopyFrom(tf.make_tensor_proto(input_images)) | 79 | res_list = [] |
101 | result = await stub.Predict(request, timeout=100.0) # 100 secs timeout | 80 | for _ in range(5): |
102 | outputs = tf.make_ndarray(result.outputs['output']) | 81 | request.inputs['input_1'].CopyFrom(tf.make_tensor_proto(input_images)) |
82 | result = await stub.Predict(request, timeout=100.0) # 100 secs timeout | ||
83 | outputs = tf.make_ndarray(result.outputs['output']) | ||
103 | 84 | ||
104 | res = classifier.reprocess_output(outputs) | 85 | res = classifier.reprocess_output(outputs) |
105 | return json(res) | 86 | res_list.append(res) |
87 | return json(res_list) | ||
106 | 88 | ||
107 | 89 | ||
108 | @app.listener("before_server_start") | 90 | @app.listener("before_server_start") | ... | ... |
async_test/server3.py
0 → 100644
1 | import os | ||
2 | import cv2 | ||
3 | import grpc | ||
4 | import numpy as np | ||
5 | import tensorflow as tf | ||
6 | from tensorflow_serving.apis import prediction_service_pb2_grpc, predict_pb2 | ||
7 | |||
8 | from sanic import Sanic | ||
9 | from sanic.response import json | ||
10 | |||
11 | from classification import classifier | ||
12 | os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | ||
13 | |||
14 | app = Sanic("async_test") | ||
15 | |||
16 | # TODO 从配置文件读取 | ||
17 | tf_serving_settings = { | ||
18 | 'options': [('grpc.max_send_message_length', 1000 * 1024 * 1024), | ||
19 | ('grpc.max_receive_message_length', 1000 * 1024 * 1024)], | ||
20 | 'host_port': 'localhost:8500', | ||
21 | } | ||
22 | app.config.update(tf_serving_settings) | ||
23 | |||
24 | |||
25 | # 同步写法01 | ||
26 | @app.post("/sync_classification") | ||
27 | async def sync_handler(request): | ||
28 | image = request.files.get("image") | ||
29 | img_array = np.frombuffer(image.body, np.uint8) | ||
30 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
31 | input_images = classifier.preprocess_input(image) | ||
32 | |||
33 | res_list = [] | ||
34 | for _ in range(5): | ||
35 | # for _ in range(1): | ||
36 | with grpc.insecure_channel(app.config['host_port'], options=app.config['options']) as channel: | ||
37 | stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) | ||
38 | # See prediction_service.proto for gRPC request/response details. | ||
39 | request = predict_pb2.PredictRequest() | ||
40 | request.model_spec.name = classifier.model_name | ||
41 | request.model_spec.signature_name = classifier.signature_name | ||
42 | |||
43 | request.inputs['input_1'].CopyFrom(tf.make_tensor_proto(input_images)) | ||
44 | result = stub.Predict(request, timeout=100.0) # 100 secs timeout | ||
45 | outputs = tf.make_ndarray(result.outputs['output']) | ||
46 | |||
47 | res = classifier.reprocess_output(outputs) | ||
48 | res_list.append(res) | ||
49 | return json(res_list) | ||
50 | |||
51 | # 异步写法01 | ||
52 | @app.post("/async_classification") | ||
53 | async def async_handler(request): | ||
54 | image = request.files.get("image") | ||
55 | img_array = np.frombuffer(image.body, np.uint8) | ||
56 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
57 | input_images = classifier.preprocess_input(image) | ||
58 | |||
59 | res_list = [] | ||
60 | for _ in range(5): | ||
61 | # for _ in range(1): | ||
62 | channel = grpc.aio.insecure_channel(app.config['host_port'], options=app.config['options']) | ||
63 | stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) | ||
64 | # See prediction_service.proto for gRPC request/response details. | ||
65 | request = predict_pb2.PredictRequest() | ||
66 | request.model_spec.name = classifier.model_name | ||
67 | request.model_spec.signature_name = classifier.signature_name | ||
68 | |||
69 | request.inputs['input_1'].CopyFrom(tf.make_tensor_proto(input_images)) | ||
70 | result = await stub.Predict(request, timeout=100.0) # 100 secs timeout | ||
71 | outputs = tf.make_ndarray(result.outputs['output']) | ||
72 | |||
73 | res = classifier.reprocess_output(outputs) | ||
74 | res_list.append(res) | ||
75 | return json(res_list) | ||
76 | |||
77 | |||
78 | if __name__ == '__main__': | ||
79 | app.run(host='0.0.0.0', port=6699, workers=10) |
-
Please register or sign in to post a comment