162457e4 by 周伟奇

update model

1 parent a379fac9
...@@ -107,7 +107,7 @@ class F3Classification(BaseModel): ...@@ -107,7 +107,7 @@ class F3Classification(BaseModel):
107 image = applications.mobilenet_v2.preprocess_input(image) 107 image = applications.mobilenet_v2.preprocess_input(image)
108 return image, label 108 return image, label
109 109
110 def load_dataset(self, dataset_dir, name, batch_size=128, augmentation_methods=[]): 110 def load_dataset(self, dataset_dir, name, batch_size=128, augmentation_methods=[], drop_remainder=True):
111 image_and_label_list = self.get_image_label_list(dataset_dir) 111 image_and_label_list = self.get_image_label_list(dataset_dir)
112 tensor_slice_dataset = tf.data.Dataset.from_tensor_slices(image_and_label_list, name=name) 112 tensor_slice_dataset = tf.data.Dataset.from_tensor_slices(image_and_label_list, name=name)
113 dataset = tensor_slice_dataset.shuffle(len(image_and_label_list[0]), reshuffle_each_iteration=True) 113 dataset = tensor_slice_dataset.shuffle(len(image_and_label_list[0]), reshuffle_each_iteration=True)
...@@ -122,7 +122,7 @@ class F3Classification(BaseModel): ...@@ -122,7 +122,7 @@ class F3Classification(BaseModel):
122 self.preprocess_input, num_parallel_calls=tf.data.AUTOTUNE, deterministic=False) 122 self.preprocess_input, num_parallel_calls=tf.data.AUTOTUNE, deterministic=False)
123 parallel_batch_dataset = dataset.batch( 123 parallel_batch_dataset = dataset.batch(
124 batch_size=batch_size, 124 batch_size=batch_size,
125 drop_remainder=True, 125 drop_remainder=drop_remainder,
126 num_parallel_calls=tf.data.AUTOTUNE, 126 num_parallel_calls=tf.data.AUTOTUNE,
127 deterministic=False, 127 deterministic=False,
128 name=name, 128 name=name,
...@@ -144,7 +144,8 @@ class F3Classification(BaseModel): ...@@ -144,7 +144,8 @@ class F3Classification(BaseModel):
144 ) 144 )
145 x = base_model.output 145 x = base_model.output
146 x = layers.Dropout(0.5)(x) 146 x = layers.Dropout(0.5)(x)
147 x = layers.Dense(256, activation='sigmoid', name='dense')(x) 147 # x = layers.Dense(256, activation='sigmoid', name='dense')(x)
148 x = layers.Dense(256, activation='relu', name='dense')(x)
148 x = layers.Dropout(0.5)(x) 149 x = layers.Dropout(0.5)(x)
149 x = layers.Dense(self.class_count, activation='sigmoid', name='output')(x) 150 x = layers.Dense(self.class_count, activation='sigmoid', name='output')(x)
150 self.model = models.Model(inputs=base_model.input, outputs=x) 151 self.model = models.Model(inputs=base_model.input, outputs=x)
...@@ -243,7 +244,8 @@ class F3Classification(BaseModel): ...@@ -243,7 +244,8 @@ class F3Classification(BaseModel):
243 batch_size=batch_size, 244 batch_size=batch_size,
244 augmentation_methods=[ 245 augmentation_methods=[
245 'rgb_2_bgr' 246 'rgb_2_bgr'
246 ] 247 ],
248 drop_remainder=False,
247 ) 249 )
248 250
249 label_true_list = [] 251 label_true_list = []
......
Styling with Markdown is supported
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!