metrics.py
1.81 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import tensorflow as tf
from keras import metrics
class CustomMetric(metrics.Metric):
def __init__(self, thresholds=0.5, name="custom_metric", **kwargs):
super(CustomMetric, self).__init__(name=name, **kwargs)
self.thresholds = thresholds
self.true_positives = self.add_weight(name="ctp", initializer="zeros")
self.count = self.add_weight(name="count", initializer="zeros", dtype='int32')
@staticmethod
def y_true_with_others(y_true):
y_true_idx = tf.argmax(y_true, axis=1) + 1
y_true_is_other = tf.cast(tf.math.reduce_sum(y_true, axis=1), "int64")
y_true = tf.math.multiply(y_true_idx, y_true_is_other)
return y_true
def y_pred_with_others(self, y_pred):
y_pred_idx = tf.argmax(y_pred, axis=1) + 1
y_pred_is_other = tf.cast(tf.math.greater_equal(tf.math.reduce_max(y_pred, axis=1), self.thresholds), 'int64')
y_pred = tf.math.multiply(y_pred_idx, y_pred_is_other)
return y_pred
def update_state(self, y_true, y_pred, sample_weight=None):
y_true = self.y_true_with_others(y_true)
y_pred = self.y_pred_with_others(y_pred)
# print(y_true)
# print(y_pred)
values = tf.cast(y_true, "int32") == tf.cast(y_pred, "int32")
values = tf.cast(values, "float32")
if sample_weight is not None:
sample_weight = tf.cast(sample_weight, "float32")
values = tf.multiply(values, sample_weight)
self.true_positives.assign_add(tf.reduce_sum(values))
self.count.assign_add(tf.shape(y_true)[0])
def result(self):
return self.true_positives / tf.cast(self.count, 'float32')
def reset_state(self):
# The state of the metric will be reset at the start of each epoch.
self.true_positives.assign(0.0)
self.count.assign(0)