wb.py 29.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
import re
import random
import locale
import numpy as np
from pandas._libs import tslib
from pandas._libs.tslibs.nattype import NaTType
from pandas.core.indexes.datetimes import DatetimeIndex
from openpyxl import Workbook
from openpyxl.styles import Border, Side, PatternFill, numbers
from openpyxl.utils import get_column_letter
from apps.doc import consts


class BSWorkbook(Workbook):

    def __init__(self, interest_keyword, salary_keyword, loan_keyword, wechat_keyword, *args, **kwargs):
        super().__init__(*args, **kwargs)
        locale.setlocale(locale.LC_NUMERIC, 'en_US.UTF-8')
        self.meta_sheet_title = '关键信息提取和展示'
        self.blank_row = (None,)
        self.code_header = ('页数', '电子回单验证码')
        self.date_header = ('打印时间', '起始日期', '终止日期', '流水区间结果')
        self.keyword_header = ('关键词', '记账日期', '金额')
        self.interest_keyword = interest_keyword
        self.salary_keyword = salary_keyword
        self.loan_keyword = loan_keyword
        self.wechat_keyword = wechat_keyword
        self.proof_res = ('对', '错')
        self.loan_fill = PatternFill("solid", fgColor="00FFCC00")
        self.amount_fill = PatternFill("solid", fgColor="00FFFF00")
        # self.bd = Side(style='thin', color="000000")
        # self.border = Border(left=self.bd, top=self.bd, right=self.bd, bottom=self.bd)
        self.MAX_MEAN = 31

    @staticmethod
    def get_header_col(header_value, classify):
        if header_value is None:
            return
        if classify == consts.WECHART_CLASSIFY:
            header_dict = consts.WECHART_HEADERS_MAPPING
        else:
            header_dict = consts.HEADERS_MAPPING
        header_col = header_dict.get(header_value)
        if header_col is None:
            for pattern in consts.PATTERN_LIST:
                if re.search(pattern, header_value):
                    header_col = header_dict.get(pattern)
                    break
        return header_col

    def header_collect(self, ws, sheet_header_info, header_info, max_column_list, classify):
        # sheet_header_info = {
        #     'sheet_name': {
        #         'summary_col': 1,
        #         'date_col': 1,
        #         'amount_col': 1,
        #         'over_col': 1,
        #         'income_col': 1,
        #         'outlay_col': 1,
        #         'borrow_col': 1,
        #         'min_row': 2,
        #         'find_count': 3,
        #         'find_col': {1},
        #         'header': ('日期', '金额')
        #     }
        # }

        # header_info = {
        #     'summary_col': {
        #         5: 2,
        #         3: 1,
        #     },
        #     'date_col': {},
        #     'amount_col': {},
        #     'over_col': {},
        #     'income_col': {},
        #     'outlay_col': {},
        #     'borrow_col': {},
        # }

        # 第一行关键词
        find_count = 0
        for first_row in ws.iter_rows(max_row=1, min_row=1, values_only=True):
            sheet_header_info.setdefault(ws.title, {}).setdefault(consts.HEADER_KEY, first_row)
            for idx, header_value in enumerate(first_row):
                header_col = self.get_header_col(header_value, classify)
                if header_col is not None:
                    find_count += 1
                    sheet_header_info.setdefault(ws.title, {}).setdefault(header_col, idx)
                    find_col_set = sheet_header_info.setdefault(ws.title, {}).setdefault(consts.FIND_COL_KEY, set())
                    find_col_set.add(idx)
                    col_count = header_info.setdefault(header_col, {}).get(idx)
                    header_info.setdefault(header_col, {})[idx] = 1 if col_count is None else col_count+1

        sheet_header_info.setdefault(ws.title, {}).setdefault(consts.FIND_COUNT_KEY, find_count)
        min_row = 1 if find_count == 0 else 2
        sheet_header_info.setdefault(ws.title, {}).setdefault(consts.MIN_ROW_KEY, min_row)
        max_column_list.append(ws.max_column)

    @staticmethod
    def header_statistics(sheet_header_info, header_info, classify):
        # statistics_header_info = {
        #     SUMMARY_KEY: 2,
        #     DATE_KEY: 3,
        #     AMOUNT_KEY: 4,
        #     OVER_KEY: 5,
        #     IMCOME_KEY: 6,
        #     OUTLAY_KEY: 7,
        #     BORROW_KEY: 8,
        #     'header': ('日期', '金额')
        # }
        statistics_header_info = {}
        sheet_order_list = sorted(sheet_header_info, reverse=True,
                                  key=lambda x: sheet_header_info[x][consts.FIND_COUNT_KEY])
        best_sheet_info = sheet_header_info.get(sheet_order_list[0])
        max_find_count = best_sheet_info.get(consts.FIND_COUNT_KEY, 0)
        if max_find_count == 0:
            for key, value in consts.CLASSIFY_MAP.items():
                col = consts.CLASSIFY_LIST[classify][1][value]
                statistics_header_info[key] = col - 1 if isinstance(col, int) else None
            statistics_header_info[consts.HEADER_KEY] = consts.CLASSIFY_HEADER_LIST[classify]
        else:
            find_col_set = best_sheet_info.get(consts.FIND_COL_KEY, set())
            # SUMMARY_KEY DATE_KEY OVER_KEY BORROW_KEY
            for key in consts.KEY_LIST:
                col = best_sheet_info.get(key)
                if col is None:
                    col_dict = header_info.get(key, {})
                    for idx in sorted(col_dict, key=lambda x: col_dict[x], reverse=True):
                        if idx in find_col_set:
                            continue
                        col = idx
                        find_col_set.add(col)
                        break
                    else:
                        fixed_col = consts.CLASSIFY_LIST[classify][1][consts.CLASSIFY_MAP[key]]
                        if fixed_col not in find_col_set and isinstance(fixed_col, int):
                            col = fixed_col - 1
                            find_col_set.add(col)
                statistics_header_info[key] = col
            statistics_header_info[consts.HEADER_KEY] = best_sheet_info.get(consts.HEADER_KEY)
        return statistics_header_info, max_find_count

    @staticmethod
    def get_data_col_min_row(sheet, sheet_header_info, header_info, classify):
        date_col = sheet_header_info.get(sheet, {}).get(consts.DATE_KEY)
        if date_col is None:
            date_col_dict = header_info.get(consts.DATE_KEY, {})
            find_col_set = sheet_header_info.get(sheet, {}).get(consts.FIND_COL_KEY, set())
            for idx in sorted(date_col_dict, key=lambda x: date_col_dict[x], reverse=True):
                if idx in find_col_set:
                    continue
                date_col = idx
                break
            else:
                fixed_col = consts.CLASSIFY_LIST[classify][1][consts.CLASSIFY_MAP[consts.DATE_KEY]]
                if fixed_col not in find_col_set and isinstance(fixed_col, int):
                    date_col = fixed_col - 1
        min_row = sheet_header_info.get(sheet, {}).get(consts.MIN_ROW_KEY, 2)
        return date_col, min_row

    @staticmethod
    def get_confidence(max_find_count):
        if max_find_count == 0:
            return round(random.uniform(75, 80), 2)
        elif max_find_count == 1:
            return round(random.uniform(80, 85), 2)
        elif max_find_count == 2:
            return round(random.uniform(85, 90), 2)
        elif max_find_count == 3:
            return round(random.uniform(90, 95), 2)
        else:
            return round(random.uniform(95, 100), 2)

    @staticmethod
    def month_split(dti, date_list, date_statistics):
        month_list = []
        idx_list = []
        month_pre = None
        for idx, month_str in enumerate(dti.strftime('%Y-%m')):
            if isinstance(month_str, float):
                continue
            if month_str != month_pre:
                month_list.append(month_str)
                if month_pre is None:
                    if date_statistics:
                        date_list.append(dti[idx].date())
                    idx = 0
                idx_list.append(idx)
                month_pre = month_str
        if date_statistics:
            for idx in range(len(dti) - 1, -1, -1):
                if isinstance(dti[idx], NaTType):
                    continue
                date_list.append(dti[idx].date())
                break
        return month_list, idx_list

    @staticmethod
    def get_reverse_trend(day_idx, idx_list):
        reverse_trend = 0
        pre_day = None
        for idx, day in enumerate(day_idx):
            if np.isnan(day):
                continue
            if idx in idx_list or pre_day is None:
                pre_day = day
                continue
            if day < pre_day:
                reverse_trend += 1
                pre_day = day
            elif day > pre_day:
                reverse_trend -= 1
                pre_day = day
        if reverse_trend > 0:
            reverse_trend = 1
        elif reverse_trend < 0:
            reverse_trend = -1
        return reverse_trend

    def sheet_split(self, ws, date_col, min_row, month_mapping, reverse_trend_list, date_list, date_statistics):
        if date_col is None:
            # month_info process
            month_info = month_mapping.setdefault('xxxx-xx', [])
            month_info.append((ws.title, min_row, ws.max_row, 0))
            return
        date_col = date_col + 1
        for date_tuple_src in ws.iter_cols(min_col=date_col, max_col=date_col, min_row=min_row, values_only=True):
            date_tuple = [date[:10] if isinstance(date, str) else date for date in date_tuple_src]
            dt_array, tz_parsed = tslib.array_to_datetime(
                np.array(date_tuple, copy=False, dtype=np.object_),
                errors="coerce",
                utc=False,
                dayfirst=False,
                yearfirst=False,
                require_iso8601=True,
            )
            dti = DatetimeIndex(dt_array, tz=None, name=None)

            month_list, idx_list = self.month_split(dti, date_list, date_statistics)

            if len(month_list) == 0:
                # month_info process
                month_info = month_mapping.setdefault('xxxx-xx', [])
                month_info.append((ws.title, min_row, ws.max_row, 0))
            else:
                # reverse_trend_list process
                reverse_trend = self.get_reverse_trend(dti.day, idx_list)
                reverse_trend_list.append(reverse_trend)
                # month_info process
                day_idx = dti.day
                idx_list_max_idx = len(idx_list) - 1
                for i, item in enumerate(month_list):
                    if i == idx_list_max_idx:
                        day_mean = np.mean(day_idx[idx_list[i]:].dropna())
                        month_mapping.setdefault(item, []).append(
                            (ws.title, idx_list[i] + min_row, ws.max_row, day_mean))
                    else:
                        day_mean = np.mean(day_idx[idx_list[i]: idx_list[i + 1]].dropna())
                        month_mapping.setdefault(item, []).append(
                            (ws.title, idx_list[i] + min_row, idx_list[i + 1] + min_row - 1, day_mean))

    def build_metadata_rows(self, confidence, code, print_time, start_date, end_date):
        if start_date is None or end_date is None:
            timedelta = None
        else:
            timedelta = (end_date - start_date).days
        metadata_rows = [
            ('流水识别置信度', confidence),
            self.blank_row,
            self.code_header,
        ]
        metadata_rows.extend(code)
        metadata_rows.extend(
            [self.blank_row,
             self.date_header,
             (print_time, start_date, end_date, timedelta),
             self.blank_row,
             self.keyword_header]
        )
        return metadata_rows

    def build_meta_sheet(self, card, confidence, code, print_time, start_date, end_date):
        metadata_rows = self.build_metadata_rows(confidence, code, print_time, start_date, end_date)
        ms = self.create_sheet('{0}({1})'.format(self.meta_sheet_title, card[-6:]))
        for row in metadata_rows:
            ms.append(row)
        return ms

    @staticmethod
    def amount_format(amount_str):
        if not isinstance(amount_str, str) or amount_str == '':
            return amount_str
        # 1.替换
        res_str = amount_str.translate(consts.TRANS)
        # 2.首字符处理
        first_char = res_str[0]
        if first_char in consts.ERROR_CHARS:
            first_char = '-'
        # 3.删除多余的-
        res_str = first_char + res_str[1:].replace('-', '')
        # 4.逗号与句号处理
        if len(res_str) >= 4:
            period_idx = len(res_str) - 3
            if res_str[period_idx] == '.' and res_str[period_idx - 1] in {',', '.'}:   # 364,.92 364..92
                res_str = '{0}{1}'.format(res_str[:period_idx - 1], res_str[period_idx:])
            elif res_str[period_idx] in {',', ':', ':'}:
                if res_str[period_idx - 1] in {',', '.', ':', ':'}:  # 364.,92  364,,92
                    pre_idx = period_idx - 1
                else:  # 364,92
                    pre_idx = period_idx
                res_str = '{0}.{1}'.format(res_str[:pre_idx], res_str[period_idx + 1:])
            res_str = res_str[:period_idx].replace('.', '') + res_str[period_idx:]
        return res_str

    @staticmethod
    def rm_cn_char(row_value, pre_col, next_col):
        if len(row_value) <= next_col:
            return row_value
        row_value = list(row_value)
        if isinstance(row_value[pre_col], str):
            cn_chars = re.findall(consts.CN_RE, row_value[pre_col])
            cn_str = ''.join(cn_chars)
            row_value[pre_col] = re.sub(consts.CN_RE, '', row_value[pre_col])
            if row_value[next_col] is None:
                row_value[next_col] = cn_str
            elif isinstance(row_value[next_col], str):
                row_value[next_col] = '{0}\n{1}'.format(cn_str, row_value[next_col])
        return row_value

    @staticmethod
    def rm_second_row(row_value, amount_cell_idx, over_cell_idx):
        row_value = list(row_value)
        if isinstance(over_cell_idx, int) and isinstance(amount_cell_idx, int):
            max_idx = max(over_cell_idx, amount_cell_idx)
        elif isinstance(over_cell_idx, int):
            max_idx = over_cell_idx
        elif isinstance(amount_cell_idx, int):
            max_idx = amount_cell_idx
        else:
            max_idx = 0
        if 1 < max_idx < len(row_value):
            append_list = []
            for i in range(2, max_idx+1):
                if isinstance(row_value[i], str):
                    split_list = row_value[i].split('\n')
                    row_value[i] = split_list[0]
                    append_list.extend(split_list[1:])
            if isinstance(row_value[1], str):
                append_list.insert(0, row_value[1])
            row_value[1] = '\n'.join(append_list)
        return row_value

    def build_month_sheet(self, ms, card, month_mapping, is_reverse, statistics_header_info, max_column, classify):
        summary_cell_idx = statistics_header_info.get(consts.SUMMARY_KEY)
        date_cell_idx = statistics_header_info.get(consts.DATE_KEY)
        amount_cell_idx = statistics_header_info.get(consts.AMOUNT_KEY)  # None or src or append
        over_cell_idx = statistics_header_info.get(consts.OVER_KEY)
        income_cell_idx = statistics_header_info.get(consts.IMCOME_KEY)
        outlay_cell_idx = statistics_header_info.get(consts.OUTLAY_KEY)
        borrow_cell_idx = statistics_header_info.get(consts.BORROW_KEY)
        header = list(statistics_header_info.get(consts.HEADER_KEY))
        src_header_len = len(header)
        if max_column > src_header_len:
            for i in range(max_column - src_header_len):
                header.append(None)

        add_col = ['核对结果']
        if amount_cell_idx is None:
            if income_cell_idx is not None or outlay_cell_idx is not None:
                add_col = ['金额', '核对结果']
                amount_cell_idx = len(header)
        header.extend(add_col)
        result_idx = len(header) - 1

        tmp_ws = self.create_sheet('tmp_ws')
        if classify in consts.ALI_WECHART_CLASSIFY:
            high_light_keyword = self.wechat_keyword
        else:
            high_light_keyword = self.loan_keyword
        for month in sorted(month_mapping.keys()):
            # 3.1.拷贝数据
            parts = month_mapping.get(month)
            new_ws = self.create_sheet('{0}({1})'.format(month, card[-6:]))
            new_ws.append(header)
            for part in parts:
                ws = self.get_sheet_by_name(part[0])
                for row_value in ws.iter_rows(min_row=part[1], max_row=part[2], values_only=True):
                    if any(row_value):
                        if classify == consts.WECHART_CLASSIFY:
                            row_value = self.rm_cn_char(row_value, *consts.WECHART_ERROR_COL)
                        elif classify == consts.MS_CLASSIFY:
                            row_value = self.rm_cn_char(row_value, *consts.MS_ERROR_COL)
                        elif classify == consts.NYYH_CLASSIFY:
                            row_value = self.rm_second_row(row_value, amount_cell_idx, over_cell_idx)
                        new_ws.append(row_value)
            # 3.2.提取信息、高亮
            amount_mapping = {}
            amount_fill_row = set()

            for rows in new_ws.iter_rows(min_row=2):
                length = len(rows)
                summary_cell = None if summary_cell_idx is None or summary_cell_idx >= length else rows[summary_cell_idx]
                date_cell = None if date_cell_idx is None or date_cell_idx >= length else rows[date_cell_idx]
                amount_cell = None if amount_cell_idx is None or amount_cell_idx >= length else rows[amount_cell_idx]
                over_cell = None if over_cell_idx is None or over_cell_idx >= length else rows[over_cell_idx]
                income_cell = None if income_cell_idx is None or income_cell_idx >= length else rows[income_cell_idx]
                outlay_cell = None if outlay_cell_idx is None or outlay_cell_idx >= length else rows[outlay_cell_idx]
                borrow_cell = None if borrow_cell_idx is None or borrow_cell_idx >= length else rows[borrow_cell_idx]

                summary_cell_value = None if summary_cell is None else summary_cell.value
                date_cell_value = None if date_cell is None else date_cell.value
                amount_cell_value = None if amount_cell is None else amount_cell.value
                over_cell_value = None if over_cell is None else over_cell.value
                income_cell_value = None if income_cell is None else income_cell.value
                outlay_cell_value = None if outlay_cell is None else outlay_cell.value
                borrow_cell_value = None if borrow_cell is None else borrow_cell.value

                # row = summary_cell.row
                if summary_cell is not None:
                    # 关键词1提取
                    if summary_cell_value in self.interest_keyword:
                        ms.append((summary_cell_value, date_cell_value, amount_cell_value))
                    # 关键词2提取至临时表
                    elif summary_cell_value in self.salary_keyword:
                        tmp_ws.append((summary_cell_value, date_cell_value, amount_cell_value))
                    # 贷款关键词高亮
                    elif summary_cell_value in high_light_keyword:
                        summary_cell.fill = self.amount_fill
                        if amount_cell is not None:
                            amount_cell.fill = self.amount_fill

                # 3.3.余额转数值
                over_success = False
                if over_cell is not None:
                    try:
                        over_cell.value = locale.atof(self.amount_format(over_cell_value))
                    except Exception as e:
                        pass
                    else:
                        over_success = True
                        over_cell.number_format = numbers.FORMAT_NUMBER_00

                # 3.4.金额转数值
                amount_success = False
                if amount_cell is not None:
                    try:
                        try:
                            amount_cell.value = locale.atof(self.amount_format(amount_cell_value))
                        except Exception as e:
                            try:
                                amount_cell.value = locale.atof(self.amount_format(income_cell_value))
                                if amount_cell.value == 0:
                                    raise
                                elif amount_cell.value < 0:
                                    amount_cell.value = -amount_cell.value
                            except Exception as e:
                                amount_cell.value = locale.atof(self.amount_format(outlay_cell_value))
                                if amount_cell.value > 0:
                                    amount_cell.value = -amount_cell.value
                    except Exception as e:
                        pass
                    else:
                        amount_success = True
                        if borrow_cell_value in consts.BORROW_OUTLAY_SET:
                            amount_cell.value = -amount_cell.value
                        amount_cell.number_format = numbers.FORMAT_NUMBER_00
                        if date_cell is not None:
                            same_amount_mapping = amount_mapping.get(date_cell.value, {})
                            fill_rows = same_amount_mapping.get(-amount_cell.value)
                            if fill_rows:
                                amount_fill_row.add(amount_cell.row)
                                amount_fill_row.update(fill_rows)
                            amount_mapping.setdefault(date_cell.value, {}).setdefault(
                                amount_cell.value, []).append(amount_cell.row)

                # 3.5.核对结果
                if amount_success and over_success and amount_cell.row > 2:
                    amount_col_letter = get_column_letter(amount_cell_idx + 1)
                    over_col_letter = get_column_letter(over_cell_idx + 1)
                    if is_reverse:
                        rows[result_idx].value = '=IF({2}{0}=ROUND(SUM({2}{1},{3}{0}),4), "{4}", "{5}")'.format(
                            amount_cell.row - 1, amount_cell.row, over_col_letter, amount_col_letter, *self.proof_res)
                    else:
                        rows[result_idx].value = '=IF({2}{0}=ROUND(SUM({2}{1},{3}{0}),4), "{4}", "{5}")'.format(
                            amount_cell.row, amount_cell.row - 1, over_col_letter, amount_col_letter, *self.proof_res)

            # 3.6.同一天相同进出账高亮
            del amount_mapping
            for row in amount_fill_row:
                new_ws[row][amount_cell_idx].fill = self.amount_fill
                if summary_cell_idx is not None:
                    new_ws[row][summary_cell_idx].fill = self.amount_fill

        # 关键词2信息提取
        ms.append(self.blank_row)
        ms.append(self.keyword_header)
        for row in tmp_ws.iter_rows(values_only=True):
            ms.append(row)
        self.remove(tmp_ws)

    def bs_rebuild(self, bs_summary):
        # bs_summary = {
        #     '卡号': {
        #         'classify': 0,
        #         'confidence': 0.9,
        #         'role': '柳雪',
        #         'code': [('page', 'code')],
        #         'print_time': 'datetime',
        #         'start_date': 'datetime',
        #         'end_date': 'datetime',
        #         'sheet': ['sheet_name']
        #     }
        # }
        for card, summary in bs_summary.items():
            # 1.原表表头收集、按照月份分割
            # 1.1 总结首行信息
            classify = summary.get('classify', 0)
            sheet_header_info = {}
            header_info = {}
            max_column_list = []
            sheets_list = summary.get('sheet', [])
            for sheet in sheets_list:
                ws = self.get_sheet_by_name(sheet)
                self.header_collect(ws, sheet_header_info, header_info, max_column_list, classify)
            statistics_header_info, max_find_count = self.header_statistics(sheet_header_info, header_info, classify)
            max_column = max(max_column_list)

            # 1.2.按月份分割 min_row 正文第一行 date_col 日期行
            start_date = summary.get('start_date')
            end_date = summary.get('end_date')
            date_statistics = True if start_date is None or end_date is None else False  # 用于判断是否需要收集各表中日期
            date_list = []  # 用于收集各表中日期
            month_mapping = {}  # 用于创建月份表
            reverse_trend_list = []  # 用于判断倒序与正序
            for sheet in sheets_list:
                ws = self.get_sheet_by_name(sheet)
                date_col, min_row = self.get_data_col_min_row(sheet, sheet_header_info, header_info, classify)
                self.sheet_split(ws, date_col, min_row, month_mapping, reverse_trend_list, date_list, date_statistics)

            if date_statistics is True and len(date_list) > 1:
                start_date = min(date_list) if start_date is None else start_date
                end_date = max(date_list) if end_date is None else end_date

            # 2.元信息提取表
            confidence = self.get_confidence(max_find_count)
            ms = self.build_meta_sheet(card,
                                       confidence,
                                       summary.get('code'),
                                       summary.get('print_time'),
                                       start_date,
                                       end_date)

            # 3.创建月份表、提取/高亮关键行
            # 倒序处理
            is_reverse = True if sum(reverse_trend_list) > 0 else False
            for month_list in month_mapping.values():
                month_list.sort(key=lambda x: x[-1], reverse=is_reverse)

            self.build_month_sheet(ms, card, month_mapping, is_reverse, statistics_header_info, max_column, classify)

            # 4.删除原表
            for sheet in sheets_list:
                self.remove(self.get_sheet_by_name(sheet))

    def license_rebuild(self, license_summary, document_scheme, count_list):
        for classify, (_, name, field_order, side_diff, scheme_diff, field_str) in consts.LICENSE_ORDER:
            license_list = license_summary.get(classify)
            if not license_list:
                continue
            count = 0
            ws = self.create_sheet(name)
            if scheme_diff and document_scheme == consts.DOC_SCHEME_LIST[1]:
                classify = consts.MVC_CLASSIFY_SE
            for license_dict in license_list:
                if classify == consts.IC_CLASSIFY and license_dict.get('类别') == '1':
                    license_summary.setdefault(consts.RP_CLASSIFY, []).append(license_dict)
                    continue
                if side_diff:
                    key, field_order_yes, field_order_no = consts.FIELD_ORDER_MAP.get(classify)
                    field_order = field_order_yes if key in license_dict else field_order_no
                for search_field, write_field in field_order:
                    field_value = license_dict.get(search_field, '')
                    if isinstance(field_value, list):
                        ws.append((write_field, *field_value))
                    else:
                        ws.append((write_field, field_value))
                ws.append((None, ))
                count += 1
            count_list.append((field_str, count))

    def simple_license_rebuild(self, license_summary, document_scheme):
        for classify, (_, name, field_order, side_diff, scheme_diff, _) in consts.LICENSE_ORDER:
            license_list = license_summary.get(classify)
            if not license_list:
                continue
            ws = self.create_sheet(name)
            if scheme_diff and document_scheme == consts.DOC_SCHEME_LIST[1]:
                classify = consts.MVC_CLASSIFY_SE
            for license_dict in license_list:
                if classify == consts.IC_CLASSIFY and license_dict.get('类别') == '1':
                    license_summary.setdefault(consts.RP_CLASSIFY, []).append(license_dict)
                    continue
                if side_diff:
                    key, field_order_yes, field_order_no = consts.FIELD_ORDER_MAP.get(classify)
                    field_order = field_order_yes if key in license_dict else field_order_no
                for search_field, write_field in field_order:
                    field_value = license_dict.get(search_field, '')
                    if isinstance(field_value, list):
                        ws.append((write_field, *field_value))
                    else:
                        ws.append((write_field, field_value))
                ws.append((None, ))

    def res_sheet(self, res_list):
        if res_list:
            res_list.sort(key=lambda x: (x[0], x[1], x[2]))
            ws = self.create_sheet(consts.RES_SHEET_NAME)
            ws.append(consts.RES_SHEET_HEADER)
            for res_tuple in res_list:
                ws.append(res_tuple)

    def remove_base_sheet(self):
        if len(self.sheetnames) > 1:
            self.remove(self.get_sheet_by_name('Sheet'))

    def rebuild(self, bs_summary, license_summary, res_list, document_scheme):
        count_list = [(consts.MODEL_FIELD_BS, len(self.sheetnames) - 1)]
        self.bs_rebuild(bs_summary)
        self.license_rebuild(license_summary, document_scheme, count_list)
        self.res_sheet(res_list)
        self.remove_base_sheet()
        return count_list