tf.py 26.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
TensorFlow, Keras and TFLite versions of YOLOv5
Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127

Usage:
    $ python models/tf.py --weights yolov5s.pt

Export:
    $ python export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
"""

import argparse
import sys
from copy import deepcopy
from pathlib import Path

FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
# ROOT = ROOT.relative_to(Path.cwd())  # relative

import numpy as np
import tensorflow as tf
import torch
import torch.nn as nn
from tensorflow import keras

from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
                           DWConvTranspose2d, Focus, autopad)
from models.experimental import MixConv2d, attempt_load
from models.yolo import Detect, Segment
from utils.activations import SiLU
from utils.general import LOGGER, make_divisible, print_args


class TFBN(keras.layers.Layer):
    # TensorFlow BatchNormalization wrapper
    def __init__(self, w=None):
        super().__init__()
        self.bn = keras.layers.BatchNormalization(
            beta_initializer=keras.initializers.Constant(w.bias.numpy()),
            gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
            moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
            moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
            epsilon=w.eps)

    def call(self, inputs):
        return self.bn(inputs)


class TFPad(keras.layers.Layer):
    # Pad inputs in spatial dimensions 1 and 2
    def __init__(self, pad):
        super().__init__()
        if isinstance(pad, int):
            self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
        else:  # tuple/list
            self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])

    def call(self, inputs):
        return tf.pad(inputs, self.pad, mode='constant', constant_values=0)


class TFConv(keras.layers.Layer):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
        # ch_in, ch_out, weights, kernel, stride, padding, groups
        super().__init__()
        assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
        # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
        # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
        conv = keras.layers.Conv2D(
            filters=c2,
            kernel_size=k,
            strides=s,
            padding='SAME' if s == 1 else 'VALID',
            use_bias=not hasattr(w, 'bn'),
            kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
            bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
        self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
        self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
        self.act = activations(w.act) if act else tf.identity

    def call(self, inputs):
        return self.act(self.bn(self.conv(inputs)))


class TFDWConv(keras.layers.Layer):
    # Depthwise convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
        # ch_in, ch_out, weights, kernel, stride, padding, groups
        super().__init__()
        assert c2 % c1 == 0, f'TFDWConv() output={c2} must be a multiple of input={c1} channels'
        conv = keras.layers.DepthwiseConv2D(
            kernel_size=k,
            depth_multiplier=c2 // c1,
            strides=s,
            padding='SAME' if s == 1 else 'VALID',
            use_bias=not hasattr(w, 'bn'),
            depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
            bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
        self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
        self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
        self.act = activations(w.act) if act else tf.identity

    def call(self, inputs):
        return self.act(self.bn(self.conv(inputs)))


class TFDWConvTranspose2d(keras.layers.Layer):
    # Depthwise ConvTranspose2d
    def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
        # ch_in, ch_out, weights, kernel, stride, padding, groups
        super().__init__()
        assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels'
        assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1'
        weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
        self.c1 = c1
        self.conv = [
            keras.layers.Conv2DTranspose(filters=1,
                                         kernel_size=k,
                                         strides=s,
                                         padding='VALID',
                                         output_padding=p2,
                                         use_bias=True,
                                         kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]),
                                         bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)]

    def call(self, inputs):
        return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]


class TFFocus(keras.layers.Layer):
    # Focus wh information into c-space
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
        # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)

    def call(self, inputs):  # x(b,w,h,c) -> y(b,w/2,h/2,4c)
        # inputs = inputs / 255  # normalize 0-255 to 0-1
        inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
        return self.conv(tf.concat(inputs, 3))


class TFBottleneck(keras.layers.Layer):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
        self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
        self.add = shortcut and c1 == c2

    def call(self, inputs):
        return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))


class TFCrossConv(keras.layers.Layer):
    # Cross Convolution
    def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
        self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
        self.add = shortcut and c1 == c2

    def call(self, inputs):
        return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))


class TFConv2d(keras.layers.Layer):
    # Substitution for PyTorch nn.Conv2D
    def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
        super().__init__()
        assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
        self.conv = keras.layers.Conv2D(filters=c2,
                                        kernel_size=k,
                                        strides=s,
                                        padding='VALID',
                                        use_bias=bias,
                                        kernel_initializer=keras.initializers.Constant(
                                            w.weight.permute(2, 3, 1, 0).numpy()),
                                        bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None)

    def call(self, inputs):
        return self.conv(inputs)


class TFBottleneckCSP(keras.layers.Layer):
    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
        # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
        self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
        self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
        self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
        self.bn = TFBN(w.bn)
        self.act = lambda x: keras.activations.swish(x)
        self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])

    def call(self, inputs):
        y1 = self.cv3(self.m(self.cv1(inputs)))
        y2 = self.cv2(inputs)
        return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))


class TFC3(keras.layers.Layer):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
        # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
        self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
        self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
        self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])

    def call(self, inputs):
        return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))


class TFC3x(keras.layers.Layer):
    # 3 module with cross-convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
        # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
        self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
        self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
        self.m = keras.Sequential([
            TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)])

    def call(self, inputs):
        return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))


class TFSPP(keras.layers.Layer):
    # Spatial pyramid pooling layer used in YOLOv3-SPP
    def __init__(self, c1, c2, k=(5, 9, 13), w=None):
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
        self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
        self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]

    def call(self, inputs):
        x = self.cv1(inputs)
        return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))


class TFSPPF(keras.layers.Layer):
    # Spatial pyramid pooling-Fast layer
    def __init__(self, c1, c2, k=5, w=None):
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
        self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
        self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')

    def call(self, inputs):
        x = self.cv1(inputs)
        y1 = self.m(x)
        y2 = self.m(y1)
        return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))


class TFDetect(keras.layers.Layer):
    # TF YOLOv5 Detect layer
    def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None):  # detection layer
        super().__init__()
        self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [tf.zeros(1)] * self.nl  # init grid
        self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
        self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
        self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
        self.training = False  # set to False after building model
        self.imgsz = imgsz
        for i in range(self.nl):
            ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
            self.grid[i] = self._make_grid(nx, ny)

    def call(self, inputs):
        z = []  # inference output
        x = []
        for i in range(self.nl):
            x.append(self.m[i](inputs[i]))
            # x(bs,20,20,255) to x(bs,3,20,20,85)
            ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
            x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])

            if not self.training:  # inference
                y = x[i]
                grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
                anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
                xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i]  # xy
                wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid
                # Normalize xywh to 0-1 to reduce calibration error
                xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
                wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
                y = tf.concat([xy, wh, tf.sigmoid(y[..., 4:5 + self.nc]), y[..., 5 + self.nc:]], -1)
                z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))

        return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),)

    @staticmethod
    def _make_grid(nx=20, ny=20):
        # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
        # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
        xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
        return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)


class TFSegment(TFDetect):
    # YOLOv5 Segment head for segmentation models
    def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None):
        super().__init__(nc, anchors, ch, imgsz, w)
        self.nm = nm  # number of masks
        self.npr = npr  # number of protos
        self.no = 5 + nc + self.nm  # number of outputs per anchor
        self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]  # output conv
        self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto)  # protos
        self.detect = TFDetect.call

    def call(self, x):
        p = self.proto(x[0])
        p = tf.transpose(p, [0, 3, 1, 2])  # from shape(1,160,160,32) to shape(1,32,160,160)
        x = self.detect(self, x)
        return (x, p) if self.training else (x[0], p)


class TFProto(keras.layers.Layer):

    def __init__(self, c1, c_=256, c2=32, w=None):
        super().__init__()
        self.cv1 = TFConv(c1, c_, k=3, w=w.cv1)
        self.upsample = TFUpsample(None, scale_factor=2, mode='nearest')
        self.cv2 = TFConv(c_, c_, k=3, w=w.cv2)
        self.cv3 = TFConv(c_, c2, w=w.cv3)

    def call(self, inputs):
        return self.cv3(self.cv2(self.upsample(self.cv1(inputs))))


class TFUpsample(keras.layers.Layer):
    # TF version of torch.nn.Upsample()
    def __init__(self, size, scale_factor, mode, w=None):  # warning: all arguments needed including 'w'
        super().__init__()
        assert scale_factor == 2, "scale_factor must be 2"
        self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
        # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
        # with default arguments: align_corners=False, half_pixel_centers=False
        # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
        #                                                            size=(x.shape[1] * 2, x.shape[2] * 2))

    def call(self, inputs):
        return self.upsample(inputs)


class TFConcat(keras.layers.Layer):
    # TF version of torch.concat()
    def __init__(self, dimension=1, w=None):
        super().__init__()
        assert dimension == 1, "convert only NCHW to NHWC concat"
        self.d = 3

    def call(self, inputs):
        return tf.concat(inputs, self.d)


def parse_model(d, ch, model, imgsz):  # model_dict, input_channels(3)
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m_str = m
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            try:
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
            except NameError:
                pass

        n = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in [
                nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv,
                BottleneckCSP, C3, C3x]:
            c1, c2 = ch[f], args[0]
            c2 = make_divisible(c2 * gw, 8) if c2 != no else c2

            args = [c1, c2, *args[1:]]
            if m in [BottleneckCSP, C3, C3x]:
                args.insert(2, n)
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
        elif m in [Detect, Segment]:
            args.append([ch[x + 1] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
            if m is Segment:
                args[3] = make_divisible(args[3] * gw, 8)
            args.append(imgsz)
        else:
            c2 = ch[f]

        tf_m = eval('TF' + m_str.replace('nn.', ''))
        m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
            else tf_m(*args, w=model.model[i])  # module

        torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in torch_m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        ch.append(c2)
    return keras.Sequential(layers), sorted(save)


class TFModel:
    # TF YOLOv5 model
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)):  # model, channels, classes
        super().__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg) as f:
                self.yaml = yaml.load(f, Loader=yaml.FullLoader)  # model dict

        # Define model
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)

    def predict(self,
                inputs,
                tf_nms=False,
                agnostic_nms=False,
                topk_per_class=100,
                topk_all=100,
                iou_thres=0.45,
                conf_thres=0.25):
        y = []  # outputs
        x = inputs
        for m in self.model.layers:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers

            x = m(x)  # run
            y.append(x if m.i in self.savelist else None)  # save output

        # Add TensorFlow NMS
        if tf_nms:
            boxes = self._xywh2xyxy(x[0][..., :4])
            probs = x[0][:, :, 4:5]
            classes = x[0][:, :, 5:]
            scores = probs * classes
            if agnostic_nms:
                nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
            else:
                boxes = tf.expand_dims(boxes, 2)
                nms = tf.image.combined_non_max_suppression(boxes,
                                                            scores,
                                                            topk_per_class,
                                                            topk_all,
                                                            iou_thres,
                                                            conf_thres,
                                                            clip_boxes=False)
            return (nms,)
        return x  # output [1,6300,85] = [xywh, conf, class0, class1, ...]
        # x = x[0]  # [x(1,6300,85), ...] to x(6300,85)
        # xywh = x[..., :4]  # x(6300,4) boxes
        # conf = x[..., 4:5]  # x(6300,1) confidences
        # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1))  # x(6300,1)  classes
        # return tf.concat([conf, cls, xywh], 1)

    @staticmethod
    def _xywh2xyxy(xywh):
        # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
        x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
        return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)


class AgnosticNMS(keras.layers.Layer):
    # TF Agnostic NMS
    def call(self, input, topk_all, iou_thres, conf_thres):
        # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
        return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
                         input,
                         fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
                         name='agnostic_nms')

    @staticmethod
    def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25):  # agnostic NMS
        boxes, classes, scores = x
        class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
        scores_inp = tf.reduce_max(scores, -1)
        selected_inds = tf.image.non_max_suppression(boxes,
                                                     scores_inp,
                                                     max_output_size=topk_all,
                                                     iou_threshold=iou_thres,
                                                     score_threshold=conf_thres)
        selected_boxes = tf.gather(boxes, selected_inds)
        padded_boxes = tf.pad(selected_boxes,
                              paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
                              mode="CONSTANT",
                              constant_values=0.0)
        selected_scores = tf.gather(scores_inp, selected_inds)
        padded_scores = tf.pad(selected_scores,
                               paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
                               mode="CONSTANT",
                               constant_values=-1.0)
        selected_classes = tf.gather(class_inds, selected_inds)
        padded_classes = tf.pad(selected_classes,
                                paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
                                mode="CONSTANT",
                                constant_values=-1.0)
        valid_detections = tf.shape(selected_inds)[0]
        return padded_boxes, padded_scores, padded_classes, valid_detections


def activations(act=nn.SiLU):
    # Returns TF activation from input PyTorch activation
    if isinstance(act, nn.LeakyReLU):
        return lambda x: keras.activations.relu(x, alpha=0.1)
    elif isinstance(act, nn.Hardswish):
        return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
    elif isinstance(act, (nn.SiLU, SiLU)):
        return lambda x: keras.activations.swish(x)
    else:
        raise Exception(f'no matching TensorFlow activation found for PyTorch activation {act}')


def representative_dataset_gen(dataset, ncalib=100):
    # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
    for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
        im = np.transpose(img, [1, 2, 0])
        im = np.expand_dims(im, axis=0).astype(np.float32)
        im /= 255
        yield [im]
        if n >= ncalib:
            break


def run(
        weights=ROOT / 'yolov5s.pt',  # weights path
        imgsz=(640, 640),  # inference size h,w
        batch_size=1,  # batch size
        dynamic=False,  # dynamic batch size
):
    # PyTorch model
    im = torch.zeros((batch_size, 3, *imgsz))  # BCHW image
    model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False)
    _ = model(im)  # inference
    model.info()

    # TensorFlow model
    im = tf.zeros((batch_size, *imgsz, 3))  # BHWC image
    tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
    _ = tf_model.predict(im)  # inference

    # Keras model
    im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
    keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
    keras_model.summary()

    LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
    parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(vars(opt))
    return opt


def main(opt):
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)