facerecognize.cpp 21.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
#include "facerecognize.h"
#include<iostream>
//人脸检测部分
// 生成anchors
vector<vector<float>> FaceRecognize::priorBox(vector<float> image_size){
    vector<int> tmp1={16,32};
    vector<int> tmp2={64,128};
    vector<int> tmp3={256,512};
    vector<vector<int>> min_sizes_;
    min_sizes_.push_back(tmp1);
    min_sizes_.push_back(tmp2);
    min_sizes_.push_back(tmp3);
    vector<int> steps={8,16,32};
    vector<vector<int>> feature_maps;
    vector<vector<float>> anchors;
    for(int &step:steps){
        vector<int> tmp(2,0);
        tmp[0]=ceil(image_size[0]/step);
        tmp[1]=ceil(image_size[1]/step);
        feature_maps.push_back(tmp);
    }
    for(int k=0;k<feature_maps.size();k++){
        vector<int> min_sizes=min_sizes_[k];
        
        for(int i=0;i<feature_maps[k][0];i++){
            for(int j=0;j<feature_maps[k][1];j++){
                for(int &min_size:min_sizes){
                    float s_kx=float(min_size)/float(image_size[1]);
                    float s_ky=float(min_size)/float(image_size[0]);
                    float dense_cx=float((float(j)+float(0.5))*steps[k])/float(image_size[1]);
                    float dense_cy=float((float(i)+float(0.5))*steps[k])/float(image_size[1]);
                    vector<float> tmp_anchor={dense_cx,dense_cy,s_kx,s_ky};
                    anchors.push_back(tmp_anchor);
                }
            }
        }
    }
    return anchors;
}

// 解析bounding box 包含置信度
vector<Bbox> FaceRecognize::decode(Mat loc,Mat score,Mat pre,vector<vector<float>> priors,vector<float> variances){
    vector<Bbox> boxes;
    for(int i=0;i<priors.size();++i){
        float b1=priors[i][0]+loc.at<float>(i,0)*variances[0]*priors[i][2];
        float b2=priors[i][1]+loc.at<float>(i,1)*variances[0]*priors[i][3];
        float b3=priors[i][2]*exp(loc.at<float>(i,2)*variances[1]);
        float b4=priors[i][3]*exp(loc.at<float>(i,3)*variances[1]);
        b1=b1-b3/float(2);
        b2=b2-b4/float(2);
        b3=b3+b1;
        b4=b4+b2;
        float l1=priors[i][0]+pre.at<float>(i,0)*variances[0]*priors[i][2];
        float l2=priors[i][1]+pre.at<float>(i,1)*variances[0]*priors[i][3];
        float l3=priors[i][0]+pre.at<float>(i,2)*variances[0]*priors[i][2];
        float l4=priors[i][1]+pre.at<float>(i,3)*variances[0]*priors[i][3];
        float l5=priors[i][0]+pre.at<float>(i,4)*variances[0]*priors[i][2];
        float l6=priors[i][1]+pre.at<float>(i,5)*variances[0]*priors[i][3];
        float l7=priors[i][0]+pre.at<float>(i,6)*variances[0]*priors[i][2];
        float l8=priors[i][1]+pre.at<float>(i,7)*variances[0]*priors[i][3];
        float l9=priors[i][0]+pre.at<float>(i,8)*variances[0]*priors[i][2];
        float l10=priors[i][1]+pre.at<float>(i,9)*variances[0]*priors[i][3];
        Bbox tmp_box={.xmin=b1*input_size[0]/resize_scale,.ymin=b2*input_size[1]/resize_scale,.xmax=b3*input_size[0]/resize_scale,.ymax=b4*input_size[1]/resize_scale,
        .score=score.at<float>(i,0),.x1=(l1*input_size[0])/resize_scale,.y1=l2*input_size[1]/resize_scale,.x2=l3*input_size[0]/resize_scale,.y2=l4*input_size[1]/resize_scale,
        .x3=l5*input_size[0]/resize_scale,.y3=l6*input_size[1]/resize_scale,.x4=l7*input_size[0]/resize_scale,.y4=l8*input_size[1]/resize_scale,.x5=l9*input_size[0]/resize_scale,.y5=l10*input_size[1]/resize_scale};
        boxes.push_back(tmp_box);
    }
    return boxes;
}

//NMS
void FaceRecognize::nms_cpu(std::vector<Bbox> &bboxes, float threshold){
    if (bboxes.empty()){
        return ;
    }
    // 1.之前需要按照score排序
    std::sort(bboxes.begin(), bboxes.end(), [&](Bbox b1, Bbox b2){return b1.score>b2.score;});
    // 2.先求出所有bbox自己的大小
    std::vector<float> area(bboxes.size());
    for (int i=0; i<bboxes.size(); ++i){
        area[i] = (bboxes[i].xmax - bboxes[i].xmin + 1) * (bboxes[i].ymax - bboxes[i].ymin + 1);
    }
    // 3.循环
    for (int i=0; i<bboxes.size(); ++i){
        for (int j=i+1; j<bboxes.size(); ){
            float left = std::max(bboxes[i].xmin, bboxes[j].xmin);
            float right = std::min(bboxes[i].xmax, bboxes[j].xmax);
            float top = std::max(bboxes[i].ymin, bboxes[j].ymin);
            float bottom = std::min(bboxes[i].ymax, bboxes[j].ymax);
            float width = std::max(right - left + 1, 0.f);
            float height = std::max(bottom - top + 1, 0.f);
            float u_area = height * width;
            float iou = (u_area) / (area[i] + area[j] - u_area);
            if (iou>=threshold){
                bboxes.erase(bboxes.begin()+j);
                area.erase(area.begin()+j);
            }else{
                ++j;
            }
        }
    }
}
// Mat转vector
vector<vector<float>> FaceRecognize::mat2vector(Mat mat){
    vector<vector<float>> vec;
    for(int i=0;i<mat.rows;++i){
        vector<float> m;
        for(int j=0;j<mat.cols;++j){
            m.push_back(mat.at<float>(i,j));
        }
        vec.push_back(m);
    }
    return vec;
}
// 根据阈值筛选
vector<Bbox> FaceRecognize::select_score(vector<Bbox> bboxes,float threshold,float w_r,float h_r){
    vector<Bbox> results;
    for(Bbox &box:bboxes){
        if (float(box.score)>=threshold){
            box.xmin=box.xmin/w_r;
            box.ymin=box.ymin/h_r;
            box.xmax=box.xmax/w_r;
            box.ymax=box.ymax/h_r;
            box.x1=box.x1/w_r;
            box.y1=box.y1/h_r;
            box.x2=box.x2/w_r;
            box.y2=box.y2/h_r;
            box.x3=box.x3/w_r;
            box.y3=box.y3/h_r;
            box.x4=box.x4/w_r;
            box.y4=box.y4/h_r;
            box.x5=box.x5/w_r;
            box.y5=box.y5/h_r;
            results.push_back(box);
        }
    }
    return results;
}

// 数据后处理
vector<Bbox> FaceRecognize::bbox_process(vector<Bbox> bboxes,float frame_w,float frame_h){
    vector<Bbox> result_bboxes;
    for(Bbox &bbox:bboxes){
        Bbox new_bbox;
        float face_w=bbox.xmax-bbox.xmin;
        float face_h=bbox.ymax-bbox.ymin;
        new_bbox.xmin=bbox.xmin-face_w*0.15;
        new_bbox.xmax=bbox.xmax+face_w*0.15;
        new_bbox.ymin=bbox.ymin;
        new_bbox.ymax=bbox.ymax+face_h*0.15;
        new_bbox.xmin=new_bbox.xmin>0?new_bbox.xmin:0;
        new_bbox.ymin=new_bbox.ymin>0?new_bbox.ymin:0;
        new_bbox.xmax=new_bbox.xmax>frame_w?frame_w:new_bbox.xmax;
        new_bbox.ymax=new_bbox.ymax>frame_h?frame_h:new_bbox.ymax;
        new_bbox.score=bbox.score;
        new_bbox.x1=bbox.x1>0?bbox.x1:0;
        new_bbox.y1=bbox.y1>0?bbox.y1:0;
        new_bbox.x2=bbox.x2>0?bbox.x2:0;
        new_bbox.y2=bbox.y2>0?bbox.y2:0;
        new_bbox.x3=bbox.x3>0?bbox.x3:0;
        new_bbox.y3=bbox.y3>0?bbox.y3:0;
        new_bbox.x4=bbox.x4>0?bbox.x4:0;
        new_bbox.y4=bbox.y4>0?bbox.y4:0;
        new_bbox.x5=bbox.x5>0?bbox.x5:0;
        new_bbox.y5=bbox.y5>0?bbox.y5:0;
        result_bboxes.push_back(new_bbox);
    
    }
    return result_bboxes;
}
// 推理
vector<Bbox> FaceRecognize::detect(string image_path){
    cv::Mat image = cv::imread(image_path);  // 读取图片
    float w_r=float(640)/float(image.cols);
    float h_r=float(640)/float(image.rows);
    cv::Mat blob = cv::dnn::blobFromImage(image,resize_scale,Size(input_size[0],input_size[1]),Scalar(mean_data[0],mean_data[1],mean_data[2]));  // 由图片加载数据 这里还可以进行缩放、归一化等预处理
    det_net.setInput(blob);  // 设置模型输入
    std::vector<cv::Mat> det_netOutputImg;
    det_net.forward(det_netOutputImg,det_net.getUnconnectedOutLayersNames()); // 推理出结果
    cv::Mat scores = det_netOutputImg[2].reshape(1,16800);
    cv::Mat boxes = det_netOutputImg[0].reshape(1,16800);
    cv::Mat landms = det_netOutputImg[1].reshape(1,16800);
    
    vector<vector<float>> anchors=priorBox(input_size);
    vector<Bbox> result_boxes=decode(boxes,scores,landms,anchors,variances);
    vector<Bbox> results=select_score(result_boxes,confidence_threshold,w_r,h_r);
    
    nms_cpu(results,nms_threshold);
    if(is_bbox_process){
        vector<Bbox> res_bboxes=bbox_process(results,input_size[0],input_size[1]);
        return res_bboxes;
    }else{
        return results;
    }
}

vector<Bbox> FaceRecognize::detect_image(Mat image){
    float w_r=float(640)/float(image.cols);
    float h_r=float(640)/float(image.rows);
    cv::Mat blob = cv::dnn::blobFromImage(image,resize_scale,Size(input_size[0],input_size[1]),Scalar(mean_data[0],mean_data[1],mean_data[2]));  // 由图片加载数据 这里还可以进行缩放、归一化等预处理
    det_net.setInput(blob);  // 设置模型输入
    std::vector<cv::Mat> det_netOutputImg;
    det_net.forward(det_netOutputImg,det_net.getUnconnectedOutLayersNames()); // 推理出结果
    cv::Mat scores = det_netOutputImg[2].reshape(1,16800);
    cv::Mat boxes = det_netOutputImg[0].reshape(1,16800);
    cv::Mat landms = det_netOutputImg[1].reshape(1,16800);

    
    vector<vector<float>> anchors=priorBox(input_size);
    vector<Bbox> result_boxes=decode(boxes,scores,landms,anchors,variances);
    vector<Bbox> results=select_score(result_boxes,confidence_threshold,w_r,h_r);
    
    // vector<Bbox> result_bboxes=vec2Bbox(boxes,w_r,h_r);

    nms_cpu(results,nms_threshold);
    if(is_bbox_process){
        vector<Bbox> res_bboxes=bbox_process(results,image.cols,image.rows);
        return res_bboxes;

    }else{
        return results;
    }
}


//人脸关键点部分
vector<vector<float>> FaceRecognize::detect_landmarks(string image_path){
    cv::Mat image=cv::imread(image_path);
    float w_r=image.cols/112;
    float h_r=image.rows/112;

    cv::Mat blob = cv::dnn::blobFromImage(image,1.0,Size(112,112));  // 由图片加载数据 这里还可以进行缩放、归一化等预处理
    landm_net.setInput(blob);  // 设置模型输入
    std::vector<cv::Mat> landm_netOutputImg;
    landm_net.forward(landm_netOutputImg,landm_net.getUnconnectedOutLayersNames()); // 推理出结果
    cv::Mat predict_landmarks = landm_netOutputImg[0].reshape(1,106);
    vector<vector<float>> result_landmarks;
    for(int i=0;i<predict_landmarks.rows;++i){
        vector<float> tmp_landm={predict_landmarks.at<float>(i,0)*w_r,predict_landmarks.at<float>(i,1)*h_r};
        result_landmarks.push_back(tmp_landm);
    }
    return result_landmarks;
}

vector<vector<float>> FaceRecognize::detect_image_landmarks(cv::Mat image){
    float w_r=image.cols/float(112);
    float h_r=image.rows/float(112);
    cv::Mat blob = cv::dnn::blobFromImage(image,1.0,Size(112,112));  // 由图片加载数据 这里还可以进行缩放、归一化等预处理
    landm_net.setInput(blob);  // 设置模型输入
    std::vector<cv::Mat> landm_netOutputImg;
    landm_net.forward(landm_netOutputImg,landm_net.getUnconnectedOutLayersNames()); // 推理出结果
    cv::Mat predict_landmarks = landm_netOutputImg[0].reshape(1,106);
    vector<vector<float>> result_landmarks;
    for(int i=0;i<predict_landmarks.rows;++i){
        vector<float> tmp_landm={predict_landmarks.at<float>(i,0)*w_r,predict_landmarks.at<float>(i,1)*h_r};
        result_landmarks.push_back(tmp_landm);
    }
    return result_landmarks;
}



//人脸识别部分

cv::Mat FaceRecognize::meanAxis0(const cv::Mat &src)
    {
        int num = src.rows;
        int dim = src.cols;
 
        // x1 y1
        // x2 y2
 
        cv::Mat output(1,dim,CV_32F);
        for(int i = 0 ; i <  dim; i ++)
        {
            float sum = 0 ;
            for(int j = 0 ; j < num ; j++)
            {
                sum+=src.at<float>(j,i);
            }
            output.at<float>(0,i) = sum/num;
        }
 
        return output;
    }
 
cv::Mat FaceRecognize::elementwiseMinus(const cv::Mat &A,const cv::Mat &B)
    {
        cv::Mat output(A.rows,A.cols,A.type());
 
        assert(B.cols == A.cols);
        if(B.cols == A.cols)
        {
            for(int i = 0 ; i <  A.rows; i ++)
            {
                for(int j = 0 ; j < B.cols; j++)
                {
                    output.at<float>(i,j) = A.at<float>(i,j) - B.at<float>(0,j);
                }
            }
        }
        return output;
    }
 
cv::Mat FaceRecognize::varAxis0(const cv::Mat &src)
    {
        cv:Mat temp_ = elementwiseMinus(src,meanAxis0(src));
        cv::multiply(temp_ ,temp_ ,temp_ );
        return meanAxis0(temp_);
 
    }
 
int FaceRecognize::MatrixRank(cv::Mat M)
    {
        Mat w, u, vt;
        SVD::compute(M, w, u, vt);
        Mat1b nonZeroSingularValues = w > 0.0001;
        int rank = countNonZero(nonZeroSingularValues);
        return rank;
 
    }
 
cv::Mat FaceRecognize::similarTransform(cv::Mat src,cv::Mat dst) {
        int num = src.rows;
        int dim = src.cols;
        cv::Mat src_mean = meanAxis0(src);
        cv::Mat dst_mean = meanAxis0(dst);
        cv::Mat src_demean = elementwiseMinus(src, src_mean);
        cv::Mat dst_demean = elementwiseMinus(dst, dst_mean);
        cv::Mat A = (dst_demean.t() * src_demean) / static_cast<float>(num);
        cv::Mat d(dim, 1, CV_32F);
        d.setTo(1.0f);
        if (cv::determinant(A) < 0) {
            d.at<float>(dim - 1, 0) = -1;
 
        }
        Mat T = cv::Mat::eye(dim + 1, dim + 1, CV_32F);
        cv::Mat U, S, V;
        SVD::compute(A, S,U, V);
 
        // the SVD function in opencv differ from scipy .
 
 
        int rank = MatrixRank(A);
        if (rank == 0) {
            assert(rank == 0);
 
        } else if (rank == dim - 1) {
            if (cv::determinant(U) * cv::determinant(V) > 0) {
                T.rowRange(0, dim).colRange(0, dim) = U * V;
            } else {
                int s = d.at<float>(dim - 1, 0) = -1;
                d.at<float>(dim - 1, 0) = -1;
 
                T.rowRange(0, dim).colRange(0, dim) = U * V;
                cv::Mat diag_ = cv::Mat::diag(d);
                cv::Mat twp = diag_*V; //np.dot(np.diag(d), V.T)
                Mat B = Mat::zeros(3, 3, CV_8UC1);
                Mat C = B.diag(0);
                T.rowRange(0, dim).colRange(0, dim) = U* twp;
                d.at<float>(dim - 1, 0) = s;
            }
        }
        else{
            cv::Mat diag_ = cv::Mat::diag(d);
            cv::Mat twp = diag_*V.t(); //np.dot(np.diag(d), V.T)
            cv::Mat res = U* twp; // U
            T.rowRange(0, dim).colRange(0, dim) = -U.t()* twp;
        }
        cv::Mat var_ = varAxis0(src_demean);
        float val = cv::sum(var_).val[0];
        cv::Mat res;
        cv::multiply(d,S,res);
        float scale =  1.0/val*cv::sum(res).val[0];
        T.rowRange(0, dim).colRange(0, dim) = - T.rowRange(0, dim).colRange(0, dim).t();
        cv::Mat  temp1 = T.rowRange(0, dim).colRange(0, dim); // T[:dim, :dim]
        cv::Mat  temp2 = src_mean.t(); //src_mean.T
        cv::Mat  temp3 = temp1*temp2; // np.dot(T[:dim, :dim], src_mean.T)
        cv::Mat temp4 = scale*temp3;
        T.rowRange(0, dim).colRange(dim, dim+1)=  -(temp4 - dst_mean.t()) ;
        T.rowRange(0, dim).colRange(0, dim) *= scale;
        return T;
    }

Mat FaceRecognize::preprocess_face(Mat image,vector<vector<float>> land){
    Mat out;
    cv::resize(image,out,Size(112,112));
    float default1[5][2] = {  
            {38.2946f, 51.6963f},
            {73.5318f, 51.6963f},
            {56.0252f, 71.7366f},
            {41.5493f, 92.3655f},
            {70.7299f, 92.3655f}
        };

    float lands[5][2]={
        {float(land[0][0]*112.0)/float(image.cols),float(land[0][1]*112.0)/float(image.rows)},
        {float(land[1][0]*112.0)/float(image.cols),float(land[1][1]*112.0)/float(image.rows)},
        {float(land[2][0]*112.0)/float(image.cols),float(land[2][1]*112.0)/float(image.rows)},
        {float(land[3][0]*112.0)/float(image.cols),float(land[3][1]*112.0)/float(image.rows)},
        {float(land[4][0]*112.0)/float(image.cols),float(land[4][1]*112.0)/float(image.rows)}
    };
    cv::Mat src(5,2,CV_32FC1,default1);
    memcpy(src.data, default1, 2 * 5 * sizeof(float));
    cv::Mat dst(5,2,CV_32FC1,lands);
    memcpy(dst.data, lands, 2 * 5 * sizeof(float));
    cv::Mat M = similarTransform(dst, src);
    float M_[2][3]={
        {M.at<float>(0,0),M.at<float>(0,1),M.at<float>(0,2)},
        {M.at<float>(1,0),M.at<float>(1,1),M.at<float>(1,2)},
    };
    
    cv::Mat M__(2,3,CV_32FC1,M_);
    cv::Mat align_image;
    cv::warpAffine(out,align_image,M__,Size(112, 112));
    return align_image;
}

double FaceRecognize::getMold(const vector<double>& vec)
{
	int n = vec.size();
	double sum = 0.0;
	for (int i = 0; i < n; ++i)
		sum += vec[i] * vec[i];
	return sqrt(sum);
}

double FaceRecognize::cos_distance(const vector<double>& base, const vector<double>& target)
{
	int n = base.size();
	assert(n == target.size());
	double tmp = 0.0;
	for (int i = 0; i < n; ++i)
		tmp += base[i] * target[i];
	double simility =  tmp / (getMold(base)*getMold(target));
	return simility;
}

double FaceRecognize::get_samilar(Mat image1,Mat image2){
    cv::Mat blob1 = cv::dnn::blobFromImage(image1,1.0/127.5,Size(112,112),Scalar(127.5,127.5,127.5),true);  // 由图片加载数据 这里还可以进行缩放、归一化等预处理
    rec_net.setInput(blob1);  // 设置模型输入
    std::vector<cv::Mat> rec_netOutputImg1;
    rec_net.forward(rec_netOutputImg1,rec_net.getUnconnectedOutLayersNames()); // 推理出结果
    cv::Mat blob2 = cv::dnn::blobFromImage(image2,1.0/127.5,Size(112,112),Scalar(127.5,127.5,127.5),true);  // 由图片加载数据 这里还可以进行缩放、归一化等预处理
    rec_net.setInput(blob2);  // 设置模型输入
    std::vector<cv::Mat> rec_netOutputImg2;
    rec_net.forward(rec_netOutputImg2,rec_net.getUnconnectedOutLayersNames()); // 推理出结果
    cv::Mat feature1=rec_netOutputImg1[0].reshape(1,512);
    cv::Mat feature2=rec_netOutputImg2[0].reshape(1,512);
    vector<double> v1,v2;
    for(int i=0;i<feature1.rows;i++){
        v1.push_back((double)feature1.at<float>(i,0));
        v2.push_back((double)feature2.at<float>(i,0));
    }
    double cos_score=cos_distance(v1,v2);
    return cos_score;
}


//整体pipeline
bool FaceRecognize::face_recognize(string image1_path,string image2_path){
    bool result=false;
    cv::Mat image1=cv::imread(image1_path);
    cv::Mat image2=cv::imread(image2_path);
    vector<Bbox> box1=detect_image(image1);
    vector<Bbox> box2=detect_image(image2);

    int max_box1=0,max_box2=0;
    double max_area1=0,max_area2=0;    
    for(int i=0;i<box1.size();++i){
        double tmp_area1=(box1[i].ymax-box1[i].ymin)*(box1[i].xmax-box1[i].xmin);
        if(tmp_area1>max_area1){
            max_box1=i;
            max_area1=tmp_area1;
        }
    }
    Rect rect1=Rect(box1[max_box1].xmin,box1[max_box1].ymin,box1[max_box1].xmax-box1[max_box1].xmin,box1[max_box1].ymax-box1[max_box1].ymin);
    Mat face_area1=image1(rect1);
    vector<vector<float>> landms1=detect_image_landmarks(face_area1);
    vector<vector<float>> land1={
        {float(landms1[104][0]),float(landms1[104][1])},
        {float(landms1[105][0]),float(landms1[105][1])},
        {float(landms1[46][0]),float(landms1[46][1])},
        {float(landms1[84][0]),float(landms1[84][1])},
        {float(landms1[90][0]),float(landms1[90][1])}
    };
    Mat align_resize_image1=preprocess_face(face_area1,land1);
    for(int j=0;j<box2.size();++j){
        Rect rect2=Rect(box2[max_box2].xmin,box2[max_box2].ymin,box2[max_box2].xmax-box2[max_box2].xmin,box2[max_box2].ymax-box2[max_box2].ymin);
        Mat face_area2=image2(rect2);
        vector<vector<float>> landms2=detect_image_landmarks(face_area2);
        vector<vector<float>> land2={
            {float(landms2[104][0]),float(landms2[104][1])},
            {float(landms2[105][0]),float(landms2[105][1])},
            {float(landms2[46][0]),float(landms2[46][1])},
            {float(landms2[84][0]),float(landms2[84][1])},
            {float(landms2[90][0]),float(landms2[90][1])}
        };
        Mat align_resize_image2=preprocess_face(face_area2,land2);
        double samilar_score=get_samilar(align_resize_image1,align_resize_image2);
        if(samilar_score>face_recongnize_thr){
            result=true;
        }
    }
    return result;
}

bool FaceRecognize::face_recognize_image(Mat image1,Mat image2){
    bool result=false;
    vector<Bbox> box1=detect_image(image1);
    vector<Bbox> box2=detect_image(image2);

    int max_box1=0,max_box2=0;
    double max_area1=0,max_area2=0;    
    for(int i=0;i<box1.size();++i){
        double tmp_area1=(box1[i].ymax-box1[i].ymin)*(box1[i].xmax-box1[i].xmin);
        if(tmp_area1>max_area1){
            max_box1=i;
            max_area1=tmp_area1;
        }
    }
    Rect rect1=Rect(box1[max_box1].xmin,box1[max_box1].ymin,box1[max_box1].xmax-box1[max_box1].xmin,box1[max_box1].ymax-box1[max_box1].ymin);
    Mat face_area1=image1(rect1);
    vector<vector<float>> landms1=detect_image_landmarks(face_area1);
    vector<vector<float>> land1={
        {float(landms1[104][0]),float(landms1[104][1])},
        {float(landms1[105][0]),float(landms1[105][1])},
        {float(landms1[46][0]),float(landms1[46][1])},
        {float(landms1[84][0]),float(landms1[84][1])},
        {float(landms1[90][0]),float(landms1[90][1])}
    };
    Mat align_resize_image1=preprocess_face(face_area1,land1);
    for(int j=0;j<box2.size();++j){
        Rect rect2=Rect(box2[max_box2].xmin,box2[max_box2].ymin,box2[max_box2].xmax-box2[max_box2].xmin,box2[max_box2].ymax-box2[max_box2].ymin);
        Mat face_area2=image2(rect2);
        vector<vector<float>> landms2=detect_image_landmarks(face_area2);
        vector<vector<float>> land2={
            {float(landms2[104][0]),float(landms2[104][1])},
            {float(landms2[105][0]),float(landms2[105][1])},
            {float(landms2[46][0]),float(landms2[46][1])},
            {float(landms2[84][0]),float(landms2[84][1])},
            {float(landms2[90][0]),float(landms2[90][1])}
        };
        Mat align_resize_image2=preprocess_face(face_area2,land2);
        double samilar_score=get_samilar(align_resize_image1,align_resize_image2);
        if(samilar_score>face_recongnize_thr){
            result=true;
        }
    }
    return result;
}