test.py 1.84 KB
import os
import cv2
import load_util
import media_util
import numpy as np
from sklearn.metrics import confusion_matrix
import fighting_filter, emotion_filter, argue_filter, audio_filter, class_filter
import video_filter, pose_filter, flow_filter

    
    
def accuracy_cal(config):

    label_file_path = config['VIDEO']['LABEL_PATH']
    frame_list_dir = config['VIDEO']['FRAME_LIST_DIR']
    final_file_name = config['AUDIO']['RESULT_FILE']

    final_file_path = os.path.join(frame_list_dir, final_file_name)
    final_file_lines = open(final_file_path).readlines()
    label_file_lines = open(label_file_path).readlines()


    final_pairs = {line.strip().split(' ')[0]: line.strip().split(' ')[1] for line in final_file_lines}

    lines_num = len(label_file_lines) - 1
    hit = 0
    for i, label_line in enumerate(label_file_lines):
        if i == 0:
            continue
        file, label = label_line.strip().split(' ')
        final_pre = final_pairs[file]
        final_pre_class = np.argmax(np.array(final_pre.split(','))) + 1
        print(final_pre_class, label)
        if final_pre_class == int(label):
            hit += 1
            
    return hit/lines_num


def main():
    config_path = r'config.yaml'
    config = load_util.load_config(config_path)

    media_util.extract_wav(config)
    media_util.extract_frame(config)
    media_util.extract_frame_pose(config)
    media_util.extract_is10(config)
    media_util.extract_random_face_feature(config)
    media_util.extract_mirror(config)

    fighting_2_filter.start_filter(config)
    emotion_filter.start_filter(config)

    audio_filter.start_filter(config)

    class_filter.start_filter(config)
    video_filter.start_filter(config)
    pose_filter.start_filter(config)

    flow_filter.start_filter(config)

    acc = accuracy_cal(config)
    print(acc)


if __name__ == '__main__':
    main()