ckpt_convert.py
4.98 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) OpenMMLab. All rights reserved.
# This script consists of several convert functions which
# can modify the weights of model in original repo to be
# pre-trained weights.
from collections import OrderedDict
import torch
def pvt_convert(ckpt):
new_ckpt = OrderedDict()
# Process the concat between q linear weights and kv linear weights
use_abs_pos_embed = False
use_conv_ffn = False
for k in ckpt.keys():
if k.startswith('pos_embed'):
use_abs_pos_embed = True
if k.find('dwconv') >= 0:
use_conv_ffn = True
for k, v in ckpt.items():
if k.startswith('head'):
continue
if k.startswith('norm.'):
continue
if k.startswith('cls_token'):
continue
if k.startswith('pos_embed'):
stage_i = int(k.replace('pos_embed', ''))
new_k = k.replace(f'pos_embed{stage_i}',
f'layers.{stage_i - 1}.1.0.pos_embed')
if stage_i == 4 and v.size(1) == 50: # 1 (cls token) + 7 * 7
new_v = v[:, 1:, :] # remove cls token
else:
new_v = v
elif k.startswith('patch_embed'):
stage_i = int(k.split('.')[0].replace('patch_embed', ''))
new_k = k.replace(f'patch_embed{stage_i}',
f'layers.{stage_i - 1}.0')
new_v = v
if 'proj.' in new_k:
new_k = new_k.replace('proj.', 'projection.')
elif k.startswith('block'):
stage_i = int(k.split('.')[0].replace('block', ''))
layer_i = int(k.split('.')[1])
new_layer_i = layer_i + use_abs_pos_embed
new_k = k.replace(f'block{stage_i}.{layer_i}',
f'layers.{stage_i - 1}.1.{new_layer_i}')
new_v = v
if 'attn.q.' in new_k:
sub_item_k = k.replace('q.', 'kv.')
new_k = new_k.replace('q.', 'attn.in_proj_')
new_v = torch.cat([v, ckpt[sub_item_k]], dim=0)
elif 'attn.kv.' in new_k:
continue
elif 'attn.proj.' in new_k:
new_k = new_k.replace('proj.', 'attn.out_proj.')
elif 'attn.sr.' in new_k:
new_k = new_k.replace('sr.', 'sr.')
elif 'mlp.' in new_k:
string = f'{new_k}-'
new_k = new_k.replace('mlp.', 'ffn.layers.')
if 'fc1.weight' in new_k or 'fc2.weight' in new_k:
new_v = v.reshape((*v.shape, 1, 1))
new_k = new_k.replace('fc1.', '0.')
new_k = new_k.replace('dwconv.dwconv.', '1.')
if use_conv_ffn:
new_k = new_k.replace('fc2.', '4.')
else:
new_k = new_k.replace('fc2.', '3.')
string += f'{new_k} {v.shape}-{new_v.shape}'
elif k.startswith('norm'):
stage_i = int(k[4])
new_k = k.replace(f'norm{stage_i}', f'layers.{stage_i - 1}.2')
new_v = v
else:
new_k = k
new_v = v
new_ckpt[new_k] = new_v
return new_ckpt
def swin_converter(ckpt):
new_ckpt = OrderedDict()
def correct_unfold_reduction_order(x):
out_channel, in_channel = x.shape
x = x.reshape(out_channel, 4, in_channel // 4)
x = x[:, [0, 2, 1, 3], :].transpose(1,
2).reshape(out_channel, in_channel)
return x
def correct_unfold_norm_order(x):
in_channel = x.shape[0]
x = x.reshape(4, in_channel // 4)
x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel)
return x
for k, v in ckpt.items():
if k.startswith('head'):
continue
elif k.startswith('layers'):
new_v = v
if 'attn.' in k:
new_k = k.replace('attn.', 'attn.w_msa.')
elif 'mlp.' in k:
if 'mlp.fc1.' in k:
new_k = k.replace('mlp.fc1.', 'ffn.layers.0.0.')
elif 'mlp.fc2.' in k:
new_k = k.replace('mlp.fc2.', 'ffn.layers.1.')
else:
new_k = k.replace('mlp.', 'ffn.')
elif 'downsample' in k:
new_k = k
if 'reduction.' in k:
new_v = correct_unfold_reduction_order(v)
elif 'norm.' in k:
new_v = correct_unfold_norm_order(v)
else:
new_k = k
new_k = new_k.replace('layers', 'stages', 1)
elif k.startswith('patch_embed'):
new_v = v
if 'proj' in k:
new_k = k.replace('proj', 'projection')
else:
new_k = k
else:
new_v = v
new_k = k
new_ckpt['backbone.' + new_k] = new_v
return new_ckpt