pisa_loss.py
7.23 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Copyright (c) OpenMMLab. All rights reserved.
import mmcv
import torch
from mmdet.core import bbox_overlaps
@mmcv.jit(derivate=True, coderize=True)
def isr_p(cls_score,
bbox_pred,
bbox_targets,
rois,
sampling_results,
loss_cls,
bbox_coder,
k=2,
bias=0,
num_class=80):
"""Importance-based Sample Reweighting (ISR_P), positive part.
Args:
cls_score (Tensor): Predicted classification scores.
bbox_pred (Tensor): Predicted bbox deltas.
bbox_targets (tuple[Tensor]): A tuple of bbox targets, the are
labels, label_weights, bbox_targets, bbox_weights, respectively.
rois (Tensor): Anchors (single_stage) in shape (n, 4) or RoIs
(two_stage) in shape (n, 5).
sampling_results (obj): Sampling results.
loss_cls (func): Classification loss func of the head.
bbox_coder (obj): BBox coder of the head.
k (float): Power of the non-linear mapping.
bias (float): Shift of the non-linear mapping.
num_class (int): Number of classes, default: 80.
Return:
tuple([Tensor]): labels, imp_based_label_weights, bbox_targets,
bbox_target_weights
"""
labels, label_weights, bbox_targets, bbox_weights = bbox_targets
pos_label_inds = ((labels >= 0) &
(labels < num_class)).nonzero().reshape(-1)
pos_labels = labels[pos_label_inds]
# if no positive samples, return the original targets
num_pos = float(pos_label_inds.size(0))
if num_pos == 0:
return labels, label_weights, bbox_targets, bbox_weights
# merge pos_assigned_gt_inds of per image to a single tensor
gts = list()
last_max_gt = 0
for i in range(len(sampling_results)):
gt_i = sampling_results[i].pos_assigned_gt_inds
gts.append(gt_i + last_max_gt)
if len(gt_i) != 0:
last_max_gt = gt_i.max() + 1
gts = torch.cat(gts)
assert len(gts) == num_pos
cls_score = cls_score.detach()
bbox_pred = bbox_pred.detach()
# For single stage detectors, rois here indicate anchors, in shape (N, 4)
# For two stage detectors, rois are in shape (N, 5)
if rois.size(-1) == 5:
pos_rois = rois[pos_label_inds][:, 1:]
else:
pos_rois = rois[pos_label_inds]
if bbox_pred.size(-1) > 4:
bbox_pred = bbox_pred.view(bbox_pred.size(0), -1, 4)
pos_delta_pred = bbox_pred[pos_label_inds, pos_labels].view(-1, 4)
else:
pos_delta_pred = bbox_pred[pos_label_inds].view(-1, 4)
# compute iou of the predicted bbox and the corresponding GT
pos_delta_target = bbox_targets[pos_label_inds].view(-1, 4)
pos_bbox_pred = bbox_coder.decode(pos_rois, pos_delta_pred)
target_bbox_pred = bbox_coder.decode(pos_rois, pos_delta_target)
ious = bbox_overlaps(pos_bbox_pred, target_bbox_pred, is_aligned=True)
pos_imp_weights = label_weights[pos_label_inds]
# Two steps to compute IoU-HLR. Samples are first sorted by IoU locally,
# then sorted again within the same-rank group
max_l_num = pos_labels.bincount().max()
for label in pos_labels.unique():
l_inds = (pos_labels == label).nonzero().view(-1)
l_gts = gts[l_inds]
for t in l_gts.unique():
t_inds = l_inds[l_gts == t]
t_ious = ious[t_inds]
_, t_iou_rank_idx = t_ious.sort(descending=True)
_, t_iou_rank = t_iou_rank_idx.sort()
ious[t_inds] += max_l_num - t_iou_rank.float()
l_ious = ious[l_inds]
_, l_iou_rank_idx = l_ious.sort(descending=True)
_, l_iou_rank = l_iou_rank_idx.sort() # IoU-HLR
# linearly map HLR to label weights
pos_imp_weights[l_inds] *= (max_l_num - l_iou_rank.float()) / max_l_num
pos_imp_weights = (bias + pos_imp_weights * (1 - bias)).pow(k)
# normalize to make the new weighted loss value equal to the original loss
pos_loss_cls = loss_cls(
cls_score[pos_label_inds], pos_labels, reduction_override='none')
if pos_loss_cls.dim() > 1:
ori_pos_loss_cls = pos_loss_cls * label_weights[pos_label_inds][:,
None]
new_pos_loss_cls = pos_loss_cls * pos_imp_weights[:, None]
else:
ori_pos_loss_cls = pos_loss_cls * label_weights[pos_label_inds]
new_pos_loss_cls = pos_loss_cls * pos_imp_weights
pos_loss_cls_ratio = ori_pos_loss_cls.sum() / new_pos_loss_cls.sum()
pos_imp_weights = pos_imp_weights * pos_loss_cls_ratio
label_weights[pos_label_inds] = pos_imp_weights
bbox_targets = labels, label_weights, bbox_targets, bbox_weights
return bbox_targets
@mmcv.jit(derivate=True, coderize=True)
def carl_loss(cls_score,
labels,
bbox_pred,
bbox_targets,
loss_bbox,
k=1,
bias=0.2,
avg_factor=None,
sigmoid=False,
num_class=80):
"""Classification-Aware Regression Loss (CARL).
Args:
cls_score (Tensor): Predicted classification scores.
labels (Tensor): Targets of classification.
bbox_pred (Tensor): Predicted bbox deltas.
bbox_targets (Tensor): Target of bbox regression.
loss_bbox (func): Regression loss func of the head.
bbox_coder (obj): BBox coder of the head.
k (float): Power of the non-linear mapping.
bias (float): Shift of the non-linear mapping.
avg_factor (int): Average factor used in regression loss.
sigmoid (bool): Activation of the classification score.
num_class (int): Number of classes, default: 80.
Return:
dict: CARL loss dict.
"""
pos_label_inds = ((labels >= 0) &
(labels < num_class)).nonzero().reshape(-1)
if pos_label_inds.numel() == 0:
return dict(loss_carl=cls_score.sum()[None] * 0.)
pos_labels = labels[pos_label_inds]
# multiply pos_cls_score with the corresponding bbox weight
# and remain gradient
if sigmoid:
pos_cls_score = cls_score.sigmoid()[pos_label_inds, pos_labels]
else:
pos_cls_score = cls_score.softmax(-1)[pos_label_inds, pos_labels]
carl_loss_weights = (bias + (1 - bias) * pos_cls_score).pow(k)
# normalize carl_loss_weight to make its sum equal to num positive
num_pos = float(pos_cls_score.size(0))
weight_ratio = num_pos / carl_loss_weights.sum()
carl_loss_weights *= weight_ratio
if avg_factor is None:
avg_factor = bbox_targets.size(0)
# if is class agnostic, bbox pred is in shape (N, 4)
# otherwise, bbox pred is in shape (N, #classes, 4)
if bbox_pred.size(-1) > 4:
bbox_pred = bbox_pred.view(bbox_pred.size(0), -1, 4)
pos_bbox_preds = bbox_pred[pos_label_inds, pos_labels]
else:
pos_bbox_preds = bbox_pred[pos_label_inds]
ori_loss_reg = loss_bbox(
pos_bbox_preds,
bbox_targets[pos_label_inds],
reduction_override='none') / avg_factor
loss_carl = (ori_loss_reg * carl_loss_weights[:, None]).sum()
return dict(loss_carl=loss_carl[None])