yolo_head.py
26.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# Copyright (c) OpenMMLab. All rights reserved.
# Copyright (c) 2019 Western Digital Corporation or its affiliates.
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import (ConvModule, bias_init_with_prob, constant_init, is_norm,
normal_init)
from mmcv.runner import force_fp32
from mmdet.core import (build_assigner, build_bbox_coder,
build_prior_generator, build_sampler, images_to_levels,
multi_apply, multiclass_nms)
from ..builder import HEADS, build_loss
from .base_dense_head import BaseDenseHead
from .dense_test_mixins import BBoxTestMixin
@HEADS.register_module()
class YOLOV3Head(BaseDenseHead, BBoxTestMixin):
"""YOLOV3Head Paper link: https://arxiv.org/abs/1804.02767.
Args:
num_classes (int): The number of object classes (w/o background)
in_channels (List[int]): Number of input channels per scale.
out_channels (List[int]): The number of output channels per scale
before the final 1x1 layer. Default: (1024, 512, 256).
anchor_generator (dict): Config dict for anchor generator
bbox_coder (dict): Config of bounding box coder.
featmap_strides (List[int]): The stride of each scale.
Should be in descending order. Default: (32, 16, 8).
one_hot_smoother (float): Set a non-zero value to enable label-smooth
Default: 0.
conv_cfg (dict): Config dict for convolution layer. Default: None.
norm_cfg (dict): Dictionary to construct and config norm layer.
Default: dict(type='BN', requires_grad=True)
act_cfg (dict): Config dict for activation layer.
Default: dict(type='LeakyReLU', negative_slope=0.1).
loss_cls (dict): Config of classification loss.
loss_conf (dict): Config of confidence loss.
loss_xy (dict): Config of xy coordinate loss.
loss_wh (dict): Config of wh coordinate loss.
train_cfg (dict): Training config of YOLOV3 head. Default: None.
test_cfg (dict): Testing config of YOLOV3 head. Default: None.
init_cfg (dict or list[dict], optional): Initialization config dict.
"""
def __init__(self,
num_classes,
in_channels,
out_channels=(1024, 512, 256),
anchor_generator=dict(
type='YOLOAnchorGenerator',
base_sizes=[[(116, 90), (156, 198), (373, 326)],
[(30, 61), (62, 45), (59, 119)],
[(10, 13), (16, 30), (33, 23)]],
strides=[32, 16, 8]),
bbox_coder=dict(type='YOLOBBoxCoder'),
featmap_strides=[32, 16, 8],
one_hot_smoother=0.,
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
act_cfg=dict(type='LeakyReLU', negative_slope=0.1),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0),
loss_conf=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0),
loss_xy=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
loss_weight=1.0),
loss_wh=dict(type='MSELoss', loss_weight=1.0),
train_cfg=None,
test_cfg=None,
init_cfg=dict(
type='Normal', std=0.01,
override=dict(name='convs_pred'))):
super(YOLOV3Head, self).__init__(init_cfg)
# Check params
assert (len(in_channels) == len(out_channels) == len(featmap_strides))
self.num_classes = num_classes
self.in_channels = in_channels
self.out_channels = out_channels
self.featmap_strides = featmap_strides
self.train_cfg = train_cfg
self.test_cfg = test_cfg
if self.train_cfg:
self.assigner = build_assigner(self.train_cfg.assigner)
if hasattr(self.train_cfg, 'sampler'):
sampler_cfg = self.train_cfg.sampler
else:
sampler_cfg = dict(type='PseudoSampler')
self.sampler = build_sampler(sampler_cfg, context=self)
self.fp16_enabled = False
self.one_hot_smoother = one_hot_smoother
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.bbox_coder = build_bbox_coder(bbox_coder)
self.prior_generator = build_prior_generator(anchor_generator)
self.loss_cls = build_loss(loss_cls)
self.loss_conf = build_loss(loss_conf)
self.loss_xy = build_loss(loss_xy)
self.loss_wh = build_loss(loss_wh)
self.num_base_priors = self.prior_generator.num_base_priors[0]
assert len(
self.prior_generator.num_base_priors) == len(featmap_strides)
self._init_layers()
@property
def anchor_generator(self):
warnings.warn('DeprecationWarning: `anchor_generator` is deprecated, '
'please use "prior_generator" instead')
return self.prior_generator
@property
def num_anchors(self):
"""
Returns:
int: Number of anchors on each point of feature map.
"""
warnings.warn('DeprecationWarning: `num_anchors` is deprecated, '
'please use "num_base_priors" instead')
return self.num_base_priors
@property
def num_levels(self):
return len(self.featmap_strides)
@property
def num_attrib(self):
"""int: number of attributes in pred_map, bboxes (4) +
objectness (1) + num_classes"""
return 5 + self.num_classes
def _init_layers(self):
self.convs_bridge = nn.ModuleList()
self.convs_pred = nn.ModuleList()
for i in range(self.num_levels):
conv_bridge = ConvModule(
self.in_channels[i],
self.out_channels[i],
3,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
conv_pred = nn.Conv2d(self.out_channels[i],
self.num_base_priors * self.num_attrib, 1)
self.convs_bridge.append(conv_bridge)
self.convs_pred.append(conv_pred)
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, mean=0, std=0.01)
if is_norm(m):
constant_init(m, 1)
# Use prior in model initialization to improve stability
for conv_pred, stride in zip(self.convs_pred, self.featmap_strides):
bias = conv_pred.bias.reshape(self.num_base_priors, -1)
# init objectness with prior of 8 objects per feature map
# refer to https://github.com/ultralytics/yolov3
nn.init.constant_(bias.data[:, 4],
bias_init_with_prob(8 / (608 / stride)**2))
nn.init.constant_(bias.data[:, 5:], bias_init_with_prob(0.01))
def forward(self, feats):
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple[Tensor]: A tuple of multi-level predication map, each is a
4D-tensor of shape (batch_size, 5+num_classes, height, width).
"""
assert len(feats) == self.num_levels
pred_maps = []
for i in range(self.num_levels):
x = feats[i]
x = self.convs_bridge[i](x)
pred_map = self.convs_pred[i](x)
pred_maps.append(pred_map)
return tuple(pred_maps),
@force_fp32(apply_to=('pred_maps', ))
def get_bboxes(self,
pred_maps,
img_metas,
cfg=None,
rescale=False,
with_nms=True):
"""Transform network output for a batch into bbox predictions. It has
been accelerated since PR #5991.
Args:
pred_maps (list[Tensor]): Raw predictions for a batch of images.
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
cfg (mmcv.Config | None): Test / postprocessing configuration,
if None, test_cfg would be used. Default: None.
rescale (bool): If True, return boxes in original image space.
Default: False.
with_nms (bool): If True, do nms before return boxes.
Default: True.
Returns:
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
The first item is an (n, 5) tensor, where 5 represent
(tl_x, tl_y, br_x, br_y, score) and the score between 0 and 1.
The shape of the second tensor in the tuple is (n,), and
each element represents the class label of the corresponding
box.
"""
assert len(pred_maps) == self.num_levels
cfg = self.test_cfg if cfg is None else cfg
scale_factors = [img_meta['scale_factor'] for img_meta in img_metas]
num_imgs = len(img_metas)
featmap_sizes = [pred_map.shape[-2:] for pred_map in pred_maps]
mlvl_anchors = self.prior_generator.grid_priors(
featmap_sizes, device=pred_maps[0].device)
flatten_preds = []
flatten_strides = []
for pred, stride in zip(pred_maps, self.featmap_strides):
pred = pred.permute(0, 2, 3, 1).reshape(num_imgs, -1,
self.num_attrib)
pred[..., :2].sigmoid_()
flatten_preds.append(pred)
flatten_strides.append(
pred.new_tensor(stride).expand(pred.size(1)))
flatten_preds = torch.cat(flatten_preds, dim=1)
flatten_bbox_preds = flatten_preds[..., :4]
flatten_objectness = flatten_preds[..., 4].sigmoid()
flatten_cls_scores = flatten_preds[..., 5:].sigmoid()
flatten_anchors = torch.cat(mlvl_anchors)
flatten_strides = torch.cat(flatten_strides)
flatten_bboxes = self.bbox_coder.decode(flatten_anchors,
flatten_bbox_preds,
flatten_strides.unsqueeze(-1))
if with_nms and (flatten_objectness.size(0) == 0):
return torch.zeros((0, 5)), torch.zeros((0, ))
if rescale:
flatten_bboxes /= flatten_bboxes.new_tensor(
scale_factors).unsqueeze(1)
padding = flatten_bboxes.new_zeros(num_imgs, flatten_bboxes.shape[1],
1)
flatten_cls_scores = torch.cat([flatten_cls_scores, padding], dim=-1)
det_results = []
for (bboxes, scores, objectness) in zip(flatten_bboxes,
flatten_cls_scores,
flatten_objectness):
# Filtering out all predictions with conf < conf_thr
conf_thr = cfg.get('conf_thr', -1)
if conf_thr > 0:
conf_inds = objectness >= conf_thr
bboxes = bboxes[conf_inds, :]
scores = scores[conf_inds, :]
objectness = objectness[conf_inds]
det_bboxes, det_labels = multiclass_nms(
bboxes,
scores,
cfg.score_thr,
cfg.nms,
cfg.max_per_img,
score_factors=objectness)
det_results.append(tuple([det_bboxes, det_labels]))
return det_results
@force_fp32(apply_to=('pred_maps', ))
def loss(self,
pred_maps,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=None):
"""Compute loss of the head.
Args:
pred_maps (list[Tensor]): Prediction map for each scale level,
shape (N, num_anchors * num_attrib, H, W)
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): class indices corresponding to each box
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
boxes can be ignored when computing the loss.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
num_imgs = len(img_metas)
device = pred_maps[0][0].device
featmap_sizes = [
pred_maps[i].shape[-2:] for i in range(self.num_levels)
]
mlvl_anchors = self.prior_generator.grid_priors(
featmap_sizes, device=device)
anchor_list = [mlvl_anchors for _ in range(num_imgs)]
responsible_flag_list = []
for img_id in range(len(img_metas)):
responsible_flag_list.append(
self.prior_generator.responsible_flags(featmap_sizes,
gt_bboxes[img_id],
device))
target_maps_list, neg_maps_list = self.get_targets(
anchor_list, responsible_flag_list, gt_bboxes, gt_labels)
losses_cls, losses_conf, losses_xy, losses_wh = multi_apply(
self.loss_single, pred_maps, target_maps_list, neg_maps_list)
return dict(
loss_cls=losses_cls,
loss_conf=losses_conf,
loss_xy=losses_xy,
loss_wh=losses_wh)
def loss_single(self, pred_map, target_map, neg_map):
"""Compute loss of a single image from a batch.
Args:
pred_map (Tensor): Raw predictions for a single level.
target_map (Tensor): The Ground-Truth target for a single level.
neg_map (Tensor): The negative masks for a single level.
Returns:
tuple:
loss_cls (Tensor): Classification loss.
loss_conf (Tensor): Confidence loss.
loss_xy (Tensor): Regression loss of x, y coordinate.
loss_wh (Tensor): Regression loss of w, h coordinate.
"""
num_imgs = len(pred_map)
pred_map = pred_map.permute(0, 2, 3,
1).reshape(num_imgs, -1, self.num_attrib)
neg_mask = neg_map.float()
pos_mask = target_map[..., 4]
pos_and_neg_mask = neg_mask + pos_mask
pos_mask = pos_mask.unsqueeze(dim=-1)
if torch.max(pos_and_neg_mask) > 1.:
warnings.warn('There is overlap between pos and neg sample.')
pos_and_neg_mask = pos_and_neg_mask.clamp(min=0., max=1.)
pred_xy = pred_map[..., :2]
pred_wh = pred_map[..., 2:4]
pred_conf = pred_map[..., 4]
pred_label = pred_map[..., 5:]
target_xy = target_map[..., :2]
target_wh = target_map[..., 2:4]
target_conf = target_map[..., 4]
target_label = target_map[..., 5:]
loss_cls = self.loss_cls(pred_label, target_label, weight=pos_mask)
loss_conf = self.loss_conf(
pred_conf, target_conf, weight=pos_and_neg_mask)
loss_xy = self.loss_xy(pred_xy, target_xy, weight=pos_mask)
loss_wh = self.loss_wh(pred_wh, target_wh, weight=pos_mask)
return loss_cls, loss_conf, loss_xy, loss_wh
def get_targets(self, anchor_list, responsible_flag_list, gt_bboxes_list,
gt_labels_list):
"""Compute target maps for anchors in multiple images.
Args:
anchor_list (list[list[Tensor]]): Multi level anchors of each
image. The outer list indicates images, and the inner list
corresponds to feature levels of the image. Each element of
the inner list is a tensor of shape (num_total_anchors, 4).
responsible_flag_list (list[list[Tensor]]): Multi level responsible
flags of each image. Each element is a tensor of shape
(num_total_anchors, )
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
gt_labels_list (list[Tensor]): Ground truth labels of each box.
Returns:
tuple: Usually returns a tuple containing learning targets.
- target_map_list (list[Tensor]): Target map of each level.
- neg_map_list (list[Tensor]): Negative map of each level.
"""
num_imgs = len(anchor_list)
# anchor number of multi levels
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
results = multi_apply(self._get_targets_single, anchor_list,
responsible_flag_list, gt_bboxes_list,
gt_labels_list)
all_target_maps, all_neg_maps = results
assert num_imgs == len(all_target_maps) == len(all_neg_maps)
target_maps_list = images_to_levels(all_target_maps, num_level_anchors)
neg_maps_list = images_to_levels(all_neg_maps, num_level_anchors)
return target_maps_list, neg_maps_list
def _get_targets_single(self, anchors, responsible_flags, gt_bboxes,
gt_labels):
"""Generate matching bounding box prior and converted GT.
Args:
anchors (list[Tensor]): Multi-level anchors of the image.
responsible_flags (list[Tensor]): Multi-level responsible flags of
anchors
gt_bboxes (Tensor): Ground truth bboxes of single image.
gt_labels (Tensor): Ground truth labels of single image.
Returns:
tuple:
target_map (Tensor): Predication target map of each
scale level, shape (num_total_anchors,
5+num_classes)
neg_map (Tensor): Negative map of each scale level,
shape (num_total_anchors,)
"""
anchor_strides = []
for i in range(len(anchors)):
anchor_strides.append(
torch.tensor(self.featmap_strides[i],
device=gt_bboxes.device).repeat(len(anchors[i])))
concat_anchors = torch.cat(anchors)
concat_responsible_flags = torch.cat(responsible_flags)
anchor_strides = torch.cat(anchor_strides)
assert len(anchor_strides) == len(concat_anchors) == \
len(concat_responsible_flags)
assign_result = self.assigner.assign(concat_anchors,
concat_responsible_flags,
gt_bboxes)
sampling_result = self.sampler.sample(assign_result, concat_anchors,
gt_bboxes)
target_map = concat_anchors.new_zeros(
concat_anchors.size(0), self.num_attrib)
target_map[sampling_result.pos_inds, :4] = self.bbox_coder.encode(
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes,
anchor_strides[sampling_result.pos_inds])
target_map[sampling_result.pos_inds, 4] = 1
gt_labels_one_hot = F.one_hot(
gt_labels, num_classes=self.num_classes).float()
if self.one_hot_smoother != 0: # label smooth
gt_labels_one_hot = gt_labels_one_hot * (
1 - self.one_hot_smoother
) + self.one_hot_smoother / self.num_classes
target_map[sampling_result.pos_inds, 5:] = gt_labels_one_hot[
sampling_result.pos_assigned_gt_inds]
neg_map = concat_anchors.new_zeros(
concat_anchors.size(0), dtype=torch.uint8)
neg_map[sampling_result.neg_inds] = 1
return target_map, neg_map
def aug_test(self, feats, img_metas, rescale=False):
"""Test function with test time augmentation.
Args:
feats (list[Tensor]): the outer list indicates test-time
augmentations and inner Tensor should have a shape NxCxHxW,
which contains features for all images in the batch.
img_metas (list[list[dict]]): the outer list indicates test-time
augs (multiscale, flip, etc.) and the inner list indicates
images in a batch. each dict has image information.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[ndarray]: bbox results of each class
"""
return self.aug_test_bboxes(feats, img_metas, rescale=rescale)
@force_fp32(apply_to=('pred_maps'))
def onnx_export(self, pred_maps, img_metas, with_nms=True):
num_levels = len(pred_maps)
pred_maps_list = [pred_maps[i].detach() for i in range(num_levels)]
cfg = self.test_cfg
assert len(pred_maps_list) == self.num_levels
device = pred_maps_list[0].device
batch_size = pred_maps_list[0].shape[0]
featmap_sizes = [
pred_maps_list[i].shape[-2:] for i in range(self.num_levels)
]
mlvl_anchors = self.prior_generator.grid_priors(
featmap_sizes, device=device)
# convert to tensor to keep tracing
nms_pre_tensor = torch.tensor(
cfg.get('nms_pre', -1), device=device, dtype=torch.long)
multi_lvl_bboxes = []
multi_lvl_cls_scores = []
multi_lvl_conf_scores = []
for i in range(self.num_levels):
# get some key info for current scale
pred_map = pred_maps_list[i]
stride = self.featmap_strides[i]
# (b,h, w, num_anchors*num_attrib) ->
# (b,h*w*num_anchors, num_attrib)
pred_map = pred_map.permute(0, 2, 3,
1).reshape(batch_size, -1,
self.num_attrib)
# Inplace operation like
# ```pred_map[..., :2] = \torch.sigmoid(pred_map[..., :2])```
# would create constant tensor when exporting to onnx
pred_map_conf = torch.sigmoid(pred_map[..., :2])
pred_map_rest = pred_map[..., 2:]
pred_map = torch.cat([pred_map_conf, pred_map_rest], dim=-1)
pred_map_boxes = pred_map[..., :4]
multi_lvl_anchor = mlvl_anchors[i]
multi_lvl_anchor = multi_lvl_anchor.expand_as(pred_map_boxes)
bbox_pred = self.bbox_coder.decode(multi_lvl_anchor,
pred_map_boxes, stride)
# conf and cls
conf_pred = torch.sigmoid(pred_map[..., 4])
cls_pred = torch.sigmoid(pred_map[..., 5:]).view(
batch_size, -1, self.num_classes) # Cls pred one-hot.
# Get top-k prediction
from mmdet.core.export import get_k_for_topk
nms_pre = get_k_for_topk(nms_pre_tensor, bbox_pred.shape[1])
if nms_pre > 0:
_, topk_inds = conf_pred.topk(nms_pre)
batch_inds = torch.arange(batch_size).view(
-1, 1).expand_as(topk_inds).long()
# Avoid onnx2tensorrt issue in https://github.com/NVIDIA/TensorRT/issues/1134 # noqa: E501
transformed_inds = (
bbox_pred.shape[1] * batch_inds + topk_inds)
bbox_pred = bbox_pred.reshape(-1,
4)[transformed_inds, :].reshape(
batch_size, -1, 4)
cls_pred = cls_pred.reshape(
-1, self.num_classes)[transformed_inds, :].reshape(
batch_size, -1, self.num_classes)
conf_pred = conf_pred.reshape(-1, 1)[transformed_inds].reshape(
batch_size, -1)
# Save the result of current scale
multi_lvl_bboxes.append(bbox_pred)
multi_lvl_cls_scores.append(cls_pred)
multi_lvl_conf_scores.append(conf_pred)
# Merge the results of different scales together
batch_mlvl_bboxes = torch.cat(multi_lvl_bboxes, dim=1)
batch_mlvl_scores = torch.cat(multi_lvl_cls_scores, dim=1)
batch_mlvl_conf_scores = torch.cat(multi_lvl_conf_scores, dim=1)
# Replace multiclass_nms with ONNX::NonMaxSuppression in deployment
from mmdet.core.export import add_dummy_nms_for_onnx
conf_thr = cfg.get('conf_thr', -1)
score_thr = cfg.get('score_thr', -1)
# follow original pipeline of YOLOv3
if conf_thr > 0:
mask = (batch_mlvl_conf_scores >= conf_thr).float()
batch_mlvl_conf_scores *= mask
if score_thr > 0:
mask = (batch_mlvl_scores > score_thr).float()
batch_mlvl_scores *= mask
batch_mlvl_conf_scores = batch_mlvl_conf_scores.unsqueeze(2).expand_as(
batch_mlvl_scores)
batch_mlvl_scores = batch_mlvl_scores * batch_mlvl_conf_scores
if with_nms:
max_output_boxes_per_class = cfg.nms.get(
'max_output_boxes_per_class', 200)
iou_threshold = cfg.nms.get('iou_threshold', 0.5)
# keep aligned with original pipeline, improve
# mAP by 1% for YOLOv3 in ONNX
score_threshold = 0
nms_pre = cfg.get('deploy_nms_pre', -1)
return add_dummy_nms_for_onnx(
batch_mlvl_bboxes,
batch_mlvl_scores,
max_output_boxes_per_class,
iou_threshold,
score_threshold,
nms_pre,
cfg.max_per_img,
)
else:
return batch_mlvl_bboxes, batch_mlvl_scores