paa_head.py 34 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
from mmcv.runner import force_fp32

from mmdet.core import multi_apply, multiclass_nms
from mmdet.core.bbox.iou_calculators import bbox_overlaps
from mmdet.models import HEADS
from mmdet.models.dense_heads import ATSSHead

EPS = 1e-12
try:
    import sklearn.mixture as skm
except ImportError:
    skm = None


def levels_to_images(mlvl_tensor):
    """Concat multi-level feature maps by image.

    [feature_level0, feature_level1...] -> [feature_image0, feature_image1...]
    Convert the shape of each element in mlvl_tensor from (N, C, H, W) to
    (N, H*W , C), then split the element to N elements with shape (H*W, C), and
    concat elements in same image of all level along first dimension.

    Args:
        mlvl_tensor (list[torch.Tensor]): list of Tensor which collect from
            corresponding level. Each element is of shape (N, C, H, W)

    Returns:
        list[torch.Tensor]: A list that contains N tensors and each tensor is
            of shape (num_elements, C)
    """
    batch_size = mlvl_tensor[0].size(0)
    batch_list = [[] for _ in range(batch_size)]
    channels = mlvl_tensor[0].size(1)
    for t in mlvl_tensor:
        t = t.permute(0, 2, 3, 1)
        t = t.view(batch_size, -1, channels).contiguous()
        for img in range(batch_size):
            batch_list[img].append(t[img])
    return [torch.cat(item, 0) for item in batch_list]


@HEADS.register_module()
class PAAHead(ATSSHead):
    """Head of PAAAssignment: Probabilistic Anchor Assignment with IoU
    Prediction for Object Detection.

    Code is modified from the `official github repo
    <https://github.com/kkhoot/PAA/blob/master/paa_core
    /modeling/rpn/paa/loss.py>`_.

    More details can be found in the `paper
    <https://arxiv.org/abs/2007.08103>`_ .

    Args:
        topk (int): Select topk samples with smallest loss in
            each level.
        score_voting (bool): Whether to use score voting in post-process.
        covariance_type : String describing the type of covariance parameters
            to be used in :class:`sklearn.mixture.GaussianMixture`.
            It must be one of:

            - 'full': each component has its own general covariance matrix
            - 'tied': all components share the same general covariance matrix
            - 'diag': each component has its own diagonal covariance matrix
            - 'spherical': each component has its own single variance
            Default: 'diag'. From 'full' to 'spherical', the gmm fitting
            process is faster yet the performance could be influenced. For most
            cases, 'diag' should be a good choice.
    """

    def __init__(self,
                 *args,
                 topk=9,
                 score_voting=True,
                 covariance_type='diag',
                 **kwargs):
        # topk used in paa reassign process
        self.topk = topk
        self.with_score_voting = score_voting
        self.covariance_type = covariance_type
        super(PAAHead, self).__init__(*args, **kwargs)

    @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'iou_preds'))
    def loss(self,
             cls_scores,
             bbox_preds,
             iou_preds,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute losses of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_anchors * num_classes, H, W)
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W)
            iou_preds (list[Tensor]): iou_preds for each scale
                level with shape (N, num_anchors * 1, H, W)
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (list[Tensor] | None): Specify which bounding
                boxes can be ignored when are computing the loss.

        Returns:
            dict[str, Tensor]: A dictionary of loss gmm_assignment.
        """

        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.prior_generator.num_levels

        device = cls_scores[0].device
        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, img_metas, device=device)
        label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
        cls_reg_targets = self.get_targets(
            anchor_list,
            valid_flag_list,
            gt_bboxes,
            img_metas,
            gt_bboxes_ignore_list=gt_bboxes_ignore,
            gt_labels_list=gt_labels,
            label_channels=label_channels,
        )
        (labels, labels_weight, bboxes_target, bboxes_weight, pos_inds,
         pos_gt_index) = cls_reg_targets
        cls_scores = levels_to_images(cls_scores)
        cls_scores = [
            item.reshape(-1, self.cls_out_channels) for item in cls_scores
        ]
        bbox_preds = levels_to_images(bbox_preds)
        bbox_preds = [item.reshape(-1, 4) for item in bbox_preds]
        iou_preds = levels_to_images(iou_preds)
        iou_preds = [item.reshape(-1, 1) for item in iou_preds]
        pos_losses_list, = multi_apply(self.get_pos_loss, anchor_list,
                                       cls_scores, bbox_preds, labels,
                                       labels_weight, bboxes_target,
                                       bboxes_weight, pos_inds)

        with torch.no_grad():
            reassign_labels, reassign_label_weight, \
                reassign_bbox_weights, num_pos = multi_apply(
                    self.paa_reassign,
                    pos_losses_list,
                    labels,
                    labels_weight,
                    bboxes_weight,
                    pos_inds,
                    pos_gt_index,
                    anchor_list)
            num_pos = sum(num_pos)
        # convert all tensor list to a flatten tensor
        cls_scores = torch.cat(cls_scores, 0).view(-1, cls_scores[0].size(-1))
        bbox_preds = torch.cat(bbox_preds, 0).view(-1, bbox_preds[0].size(-1))
        iou_preds = torch.cat(iou_preds, 0).view(-1, iou_preds[0].size(-1))
        labels = torch.cat(reassign_labels, 0).view(-1)
        flatten_anchors = torch.cat(
            [torch.cat(item, 0) for item in anchor_list])
        labels_weight = torch.cat(reassign_label_weight, 0).view(-1)
        bboxes_target = torch.cat(bboxes_target,
                                  0).view(-1, bboxes_target[0].size(-1))

        pos_inds_flatten = ((labels >= 0)
                            &
                            (labels < self.num_classes)).nonzero().reshape(-1)

        losses_cls = self.loss_cls(
            cls_scores,
            labels,
            labels_weight,
            avg_factor=max(num_pos, len(img_metas)))  # avoid num_pos=0
        if num_pos:
            pos_bbox_pred = self.bbox_coder.decode(
                flatten_anchors[pos_inds_flatten],
                bbox_preds[pos_inds_flatten])
            pos_bbox_target = bboxes_target[pos_inds_flatten]
            iou_target = bbox_overlaps(
                pos_bbox_pred.detach(), pos_bbox_target, is_aligned=True)
            losses_iou = self.loss_centerness(
                iou_preds[pos_inds_flatten],
                iou_target.unsqueeze(-1),
                avg_factor=num_pos)
            losses_bbox = self.loss_bbox(
                pos_bbox_pred,
                pos_bbox_target,
                iou_target.clamp(min=EPS),
                avg_factor=iou_target.sum())
        else:
            losses_iou = iou_preds.sum() * 0
            losses_bbox = bbox_preds.sum() * 0

        return dict(
            loss_cls=losses_cls, loss_bbox=losses_bbox, loss_iou=losses_iou)

    def get_pos_loss(self, anchors, cls_score, bbox_pred, label, label_weight,
                     bbox_target, bbox_weight, pos_inds):
        """Calculate loss of all potential positive samples obtained from first
        match process.

        Args:
            anchors (list[Tensor]): Anchors of each scale.
            cls_score (Tensor): Box scores of single image with shape
                (num_anchors, num_classes)
            bbox_pred (Tensor): Box energies / deltas of single image
                with shape (num_anchors, 4)
            label (Tensor): classification target of each anchor with
                shape (num_anchors,)
            label_weight (Tensor): Classification loss weight of each
                anchor with shape (num_anchors).
            bbox_target (dict): Regression target of each anchor with
                shape (num_anchors, 4).
            bbox_weight (Tensor): Bbox weight of each anchor with shape
                (num_anchors, 4).
            pos_inds (Tensor): Index of all positive samples got from
                first assign process.

        Returns:
            Tensor: Losses of all positive samples in single image.
        """
        if not len(pos_inds):
            return cls_score.new([]),
        anchors_all_level = torch.cat(anchors, 0)
        pos_scores = cls_score[pos_inds]
        pos_bbox_pred = bbox_pred[pos_inds]
        pos_label = label[pos_inds]
        pos_label_weight = label_weight[pos_inds]
        pos_bbox_target = bbox_target[pos_inds]
        pos_bbox_weight = bbox_weight[pos_inds]
        pos_anchors = anchors_all_level[pos_inds]
        pos_bbox_pred = self.bbox_coder.decode(pos_anchors, pos_bbox_pred)

        # to keep loss dimension
        loss_cls = self.loss_cls(
            pos_scores,
            pos_label,
            pos_label_weight,
            avg_factor=1.0,
            reduction_override='none')

        loss_bbox = self.loss_bbox(
            pos_bbox_pred,
            pos_bbox_target,
            pos_bbox_weight,
            avg_factor=1.0,  # keep same loss weight before reassign
            reduction_override='none')

        loss_cls = loss_cls.sum(-1)
        pos_loss = loss_bbox + loss_cls
        return pos_loss,

    def paa_reassign(self, pos_losses, label, label_weight, bbox_weight,
                     pos_inds, pos_gt_inds, anchors):
        """Fit loss to GMM distribution and separate positive, ignore, negative
        samples again with GMM model.

        Args:
            pos_losses (Tensor): Losses of all positive samples in
                single image.
            label (Tensor): classification target of each anchor with
                shape (num_anchors,)
            label_weight (Tensor): Classification loss weight of each
                anchor with shape (num_anchors).
            bbox_weight (Tensor): Bbox weight of each anchor with shape
                (num_anchors, 4).
            pos_inds (Tensor): Index of all positive samples got from
                first assign process.
            pos_gt_inds (Tensor): Gt_index of all positive samples got
                from first assign process.
            anchors (list[Tensor]): Anchors of each scale.

        Returns:
            tuple: Usually returns a tuple containing learning targets.

                - label (Tensor): classification target of each anchor after
                  paa assign, with shape (num_anchors,)
                - label_weight (Tensor): Classification loss weight of each
                  anchor after paa assign, with shape (num_anchors).
                - bbox_weight (Tensor): Bbox weight of each anchor with shape
                  (num_anchors, 4).
                - num_pos (int): The number of positive samples after paa
                  assign.
        """
        if not len(pos_inds):
            return label, label_weight, bbox_weight, 0
        label = label.clone()
        label_weight = label_weight.clone()
        bbox_weight = bbox_weight.clone()
        num_gt = pos_gt_inds.max() + 1
        num_level = len(anchors)
        num_anchors_each_level = [item.size(0) for item in anchors]
        num_anchors_each_level.insert(0, 0)
        inds_level_interval = np.cumsum(num_anchors_each_level)
        pos_level_mask = []
        for i in range(num_level):
            mask = (pos_inds >= inds_level_interval[i]) & (
                pos_inds < inds_level_interval[i + 1])
            pos_level_mask.append(mask)
        pos_inds_after_paa = [label.new_tensor([])]
        ignore_inds_after_paa = [label.new_tensor([])]
        for gt_ind in range(num_gt):
            pos_inds_gmm = []
            pos_loss_gmm = []
            gt_mask = pos_gt_inds == gt_ind
            for level in range(num_level):
                level_mask = pos_level_mask[level]
                level_gt_mask = level_mask & gt_mask
                value, topk_inds = pos_losses[level_gt_mask].topk(
                    min(level_gt_mask.sum(), self.topk), largest=False)
                pos_inds_gmm.append(pos_inds[level_gt_mask][topk_inds])
                pos_loss_gmm.append(value)
            pos_inds_gmm = torch.cat(pos_inds_gmm)
            pos_loss_gmm = torch.cat(pos_loss_gmm)
            # fix gmm need at least two sample
            if len(pos_inds_gmm) < 2:
                continue
            device = pos_inds_gmm.device
            pos_loss_gmm, sort_inds = pos_loss_gmm.sort()
            pos_inds_gmm = pos_inds_gmm[sort_inds]
            pos_loss_gmm = pos_loss_gmm.view(-1, 1).cpu().numpy()
            min_loss, max_loss = pos_loss_gmm.min(), pos_loss_gmm.max()
            means_init = np.array([min_loss, max_loss]).reshape(2, 1)
            weights_init = np.array([0.5, 0.5])
            precisions_init = np.array([1.0, 1.0]).reshape(2, 1, 1)  # full
            if self.covariance_type == 'spherical':
                precisions_init = precisions_init.reshape(2)
            elif self.covariance_type == 'diag':
                precisions_init = precisions_init.reshape(2, 1)
            elif self.covariance_type == 'tied':
                precisions_init = np.array([[1.0]])
            if skm is None:
                raise ImportError('Please run "pip install sklearn" '
                                  'to install sklearn first.')
            gmm = skm.GaussianMixture(
                2,
                weights_init=weights_init,
                means_init=means_init,
                precisions_init=precisions_init,
                covariance_type=self.covariance_type)
            gmm.fit(pos_loss_gmm)
            gmm_assignment = gmm.predict(pos_loss_gmm)
            scores = gmm.score_samples(pos_loss_gmm)
            gmm_assignment = torch.from_numpy(gmm_assignment).to(device)
            scores = torch.from_numpy(scores).to(device)

            pos_inds_temp, ignore_inds_temp = self.gmm_separation_scheme(
                gmm_assignment, scores, pos_inds_gmm)
            pos_inds_after_paa.append(pos_inds_temp)
            ignore_inds_after_paa.append(ignore_inds_temp)

        pos_inds_after_paa = torch.cat(pos_inds_after_paa)
        ignore_inds_after_paa = torch.cat(ignore_inds_after_paa)
        reassign_mask = (pos_inds.unsqueeze(1) != pos_inds_after_paa).all(1)
        reassign_ids = pos_inds[reassign_mask]
        label[reassign_ids] = self.num_classes
        label_weight[ignore_inds_after_paa] = 0
        bbox_weight[reassign_ids] = 0
        num_pos = len(pos_inds_after_paa)
        return label, label_weight, bbox_weight, num_pos

    def gmm_separation_scheme(self, gmm_assignment, scores, pos_inds_gmm):
        """A general separation scheme for gmm model.

        It separates a GMM distribution of candidate samples into three
        parts, 0 1 and uncertain areas, and you can implement other
        separation schemes by rewriting this function.

        Args:
            gmm_assignment (Tensor): The prediction of GMM which is of shape
                (num_samples,). The 0/1 value indicates the distribution
                that each sample comes from.
            scores (Tensor): The probability of sample coming from the
                fit GMM distribution. The tensor is of shape (num_samples,).
            pos_inds_gmm (Tensor): All the indexes of samples which are used
                to fit GMM model. The tensor is of shape (num_samples,)

        Returns:
            tuple[Tensor]: The indices of positive and ignored samples.

                - pos_inds_temp (Tensor): Indices of positive samples.
                - ignore_inds_temp (Tensor): Indices of ignore samples.
        """
        # The implementation is (c) in Fig.3 in origin paper instead of (b).
        # You can refer to issues such as
        # https://github.com/kkhoot/PAA/issues/8 and
        # https://github.com/kkhoot/PAA/issues/9.
        fgs = gmm_assignment == 0
        pos_inds_temp = fgs.new_tensor([], dtype=torch.long)
        ignore_inds_temp = fgs.new_tensor([], dtype=torch.long)
        if fgs.nonzero().numel():
            _, pos_thr_ind = scores[fgs].topk(1)
            pos_inds_temp = pos_inds_gmm[fgs][:pos_thr_ind + 1]
            ignore_inds_temp = pos_inds_gmm.new_tensor([])
        return pos_inds_temp, ignore_inds_temp

    def get_targets(
        self,
        anchor_list,
        valid_flag_list,
        gt_bboxes_list,
        img_metas,
        gt_bboxes_ignore_list=None,
        gt_labels_list=None,
        label_channels=1,
        unmap_outputs=True,
    ):
        """Get targets for PAA head.

        This method is almost the same as `AnchorHead.get_targets()`. We direct
        return the results from _get_targets_single instead map it to levels
        by images_to_levels function.

        Args:
            anchor_list (list[list[Tensor]]): Multi level anchors of each
                image. The outer list indicates images, and the inner list
                corresponds to feature levels of the image. Each element of
                the inner list is a tensor of shape (num_anchors, 4).
            valid_flag_list (list[list[Tensor]]): Multi level valid flags of
                each image. The outer list indicates images, and the inner list
                corresponds to feature levels of the image. Each element of
                the inner list is a tensor of shape (num_anchors, )
            gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
            img_metas (list[dict]): Meta info of each image.
            gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be
                ignored.
            gt_labels_list (list[Tensor]): Ground truth labels of each box.
            label_channels (int): Channel of label.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors.

        Returns:
            tuple: Usually returns a tuple containing learning targets.

                - labels (list[Tensor]): Labels of all anchors, each with
                    shape (num_anchors,).
                - label_weights (list[Tensor]): Label weights of all anchor.
                    each with shape (num_anchors,).
                - bbox_targets (list[Tensor]): BBox targets of all anchors.
                    each with shape (num_anchors, 4).
                - bbox_weights (list[Tensor]): BBox weights of all anchors.
                    each with shape (num_anchors, 4).
                - pos_inds (list[Tensor]): Contains all index of positive
                    sample in all anchor.
                - gt_inds (list[Tensor]): Contains all gt_index of positive
                    sample in all anchor.
        """

        num_imgs = len(img_metas)
        assert len(anchor_list) == len(valid_flag_list) == num_imgs
        concat_anchor_list = []
        concat_valid_flag_list = []
        for i in range(num_imgs):
            assert len(anchor_list[i]) == len(valid_flag_list[i])
            concat_anchor_list.append(torch.cat(anchor_list[i]))
            concat_valid_flag_list.append(torch.cat(valid_flag_list[i]))

        # compute targets for each image
        if gt_bboxes_ignore_list is None:
            gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
        if gt_labels_list is None:
            gt_labels_list = [None for _ in range(num_imgs)]
        results = multi_apply(
            self._get_targets_single,
            concat_anchor_list,
            concat_valid_flag_list,
            gt_bboxes_list,
            gt_bboxes_ignore_list,
            gt_labels_list,
            img_metas,
            label_channels=label_channels,
            unmap_outputs=unmap_outputs)

        (labels, label_weights, bbox_targets, bbox_weights, valid_pos_inds,
         valid_neg_inds, sampling_result) = results

        # Due to valid flag of anchors, we have to calculate the real pos_inds
        # in origin anchor set.
        pos_inds = []
        for i, single_labels in enumerate(labels):
            pos_mask = (0 <= single_labels) & (
                single_labels < self.num_classes)
            pos_inds.append(pos_mask.nonzero().view(-1))

        gt_inds = [item.pos_assigned_gt_inds for item in sampling_result]
        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                gt_inds)

    def _get_targets_single(self,
                            flat_anchors,
                            valid_flags,
                            gt_bboxes,
                            gt_bboxes_ignore,
                            gt_labels,
                            img_meta,
                            label_channels=1,
                            unmap_outputs=True):
        """Compute regression and classification targets for anchors in a
        single image.

        This method is same as `AnchorHead._get_targets_single()`.
        """
        assert unmap_outputs, 'We must map outputs back to the original' \
                              'set of anchors in PAAhead'
        return super(ATSSHead, self)._get_targets_single(
            flat_anchors,
            valid_flags,
            gt_bboxes,
            gt_bboxes_ignore,
            gt_labels,
            img_meta,
            label_channels=1,
            unmap_outputs=True)

    @force_fp32(apply_to=('cls_scores', 'bbox_preds'))
    def get_bboxes(self,
                   cls_scores,
                   bbox_preds,
                   score_factors=None,
                   img_metas=None,
                   cfg=None,
                   rescale=False,
                   with_nms=True,
                   **kwargs):
        assert with_nms, 'PAA only supports "with_nms=True" now and it ' \
                         'means PAAHead does not support ' \
                         'test-time augmentation'
        return super(ATSSHead, self).get_bboxes(cls_scores, bbox_preds,
                                                score_factors, img_metas, cfg,
                                                rescale, with_nms, **kwargs)

    def _get_bboxes_single(self,
                           cls_score_list,
                           bbox_pred_list,
                           score_factor_list,
                           mlvl_priors,
                           img_meta,
                           cfg,
                           rescale=False,
                           with_nms=True,
                           **kwargs):
        """Transform outputs of a single image into bbox predictions.

        Args:
            cls_score_list (list[Tensor]): Box scores from all scale
                levels of a single image, each item has shape
                (num_priors * num_classes, H, W).
            bbox_pred_list (list[Tensor]): Box energies / deltas from
                all scale levels of a single image, each item has shape
                (num_priors * 4, H, W).
            score_factor_list (list[Tensor]): Score factors from all scale
                levels of a single image, each item has shape
                (num_priors * 1, H, W).
            mlvl_priors (list[Tensor]): Each element in the list is
                the priors of a single level in feature pyramid, has shape
                (num_priors, 4).
            img_meta (dict): Image meta info.
            cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            with_nms (bool): If True, do nms before return boxes.
                Default: True.

        Returns:
            tuple[Tensor]: Results of detected bboxes and labels. If with_nms
                is False and mlvl_score_factor is None, return mlvl_bboxes and
                mlvl_scores, else return mlvl_bboxes, mlvl_scores and
                mlvl_score_factor. Usually with_nms is False is used for aug
                test. If with_nms is True, then return the following format

                - det_bboxes (Tensor): Predicted bboxes with shape \
                    [num_bboxes, 5], where the first 4 columns are bounding \
                    box positions (tl_x, tl_y, br_x, br_y) and the 5-th \
                    column are scores between 0 and 1.
                - det_labels (Tensor): Predicted labels of the corresponding \
                    box with shape [num_bboxes].
        """
        cfg = self.test_cfg if cfg is None else cfg
        img_shape = img_meta['img_shape']
        nms_pre = cfg.get('nms_pre', -1)

        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_score_factors = []
        for level_idx, (cls_score, bbox_pred, score_factor, priors) in \
                enumerate(zip(cls_score_list, bbox_pred_list,
                              score_factor_list, mlvl_priors)):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]

            scores = cls_score.permute(1, 2, 0).reshape(
                -1, self.cls_out_channels).sigmoid()
            bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
            score_factor = score_factor.permute(1, 2, 0).reshape(-1).sigmoid()

            if 0 < nms_pre < scores.shape[0]:
                max_scores, _ = (scores *
                                 score_factor[:, None]).sqrt().max(dim=1)
                _, topk_inds = max_scores.topk(nms_pre)
                priors = priors[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                scores = scores[topk_inds, :]
                score_factor = score_factor[topk_inds]

            bboxes = self.bbox_coder.decode(
                priors, bbox_pred, max_shape=img_shape)
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
            mlvl_score_factors.append(score_factor)

        return self._bbox_post_process(mlvl_scores, mlvl_bboxes,
                                       img_meta['scale_factor'], cfg, rescale,
                                       with_nms, mlvl_score_factors, **kwargs)

    def _bbox_post_process(self,
                           mlvl_scores,
                           mlvl_bboxes,
                           scale_factor,
                           cfg,
                           rescale=False,
                           with_nms=True,
                           mlvl_score_factors=None,
                           **kwargs):
        """bbox post-processing method.

        The boxes would be rescaled to the original image scale and do
        the nms operation. Usually with_nms is False is used for aug test.

        Args:
            mlvl_scores (list[Tensor]): Box scores from all scale
                levels of a single image, each item has shape
                (num_bboxes, num_class).
            mlvl_bboxes (list[Tensor]): Decoded bboxes from all scale
                levels of a single image, each item has shape (num_bboxes, 4).
            scale_factor (ndarray, optional): Scale factor of the image arange
                as (w_scale, h_scale, w_scale, h_scale).
            cfg (mmcv.Config): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            with_nms (bool): If True, do nms before return boxes.
                Default: True.
            mlvl_score_factors (list[Tensor], optional): Score factor from
                all scale levels of a single image, each item has shape
                (num_bboxes, ). Default: None.

        Returns:
            tuple[Tensor]: Results of detected bboxes and labels. If with_nms
                is False and mlvl_score_factor is None, return mlvl_bboxes and
                mlvl_scores, else return mlvl_bboxes, mlvl_scores and
                mlvl_score_factor. Usually with_nms is False is used for aug
                test. If with_nms is True, then return the following format

                - det_bboxes (Tensor): Predicted bboxes with shape \
                    [num_bboxes, 5], where the first 4 columns are bounding \
                    box positions (tl_x, tl_y, br_x, br_y) and the 5-th \
                    column are scores between 0 and 1.
                - det_labels (Tensor): Predicted labels of the corresponding \
                    box with shape [num_bboxes].
        """
        mlvl_bboxes = torch.cat(mlvl_bboxes)
        if rescale:
            mlvl_bboxes /= mlvl_bboxes.new_tensor(scale_factor)
        mlvl_scores = torch.cat(mlvl_scores)
        # Add a dummy background class to the backend when using sigmoid
        # remind that we set FG labels to [0, num_class-1] since mmdet v2.0
        # BG cat_id: num_class
        padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
        mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)

        mlvl_iou_preds = torch.cat(mlvl_score_factors)
        mlvl_nms_scores = (mlvl_scores * mlvl_iou_preds[:, None]).sqrt()
        det_bboxes, det_labels = multiclass_nms(
            mlvl_bboxes,
            mlvl_nms_scores,
            cfg.score_thr,
            cfg.nms,
            cfg.max_per_img,
            score_factors=None)
        if self.with_score_voting and len(det_bboxes) > 0:
            det_bboxes, det_labels = self.score_voting(det_bboxes, det_labels,
                                                       mlvl_bboxes,
                                                       mlvl_nms_scores,
                                                       cfg.score_thr)

        return det_bboxes, det_labels

    def score_voting(self, det_bboxes, det_labels, mlvl_bboxes,
                     mlvl_nms_scores, score_thr):
        """Implementation of score voting method works on each remaining boxes
        after NMS procedure.

        Args:
            det_bboxes (Tensor): Remaining boxes after NMS procedure,
                with shape (k, 5), each dimension means
                (x1, y1, x2, y2, score).
            det_labels (Tensor): The label of remaining boxes, with shape
                (k, 1),Labels are 0-based.
            mlvl_bboxes (Tensor): All boxes before the NMS procedure,
                with shape (num_anchors,4).
            mlvl_nms_scores (Tensor): The scores of all boxes which is used
                in the NMS procedure, with shape (num_anchors, num_class)
            score_thr (float): The score threshold of bboxes.

        Returns:
            tuple: Usually returns a tuple containing voting results.

                - det_bboxes_voted (Tensor): Remaining boxes after
                    score voting procedure, with shape (k, 5), each
                    dimension means (x1, y1, x2, y2, score).
                - det_labels_voted (Tensor): Label of remaining bboxes
                    after voting, with shape (num_anchors,).
        """
        candidate_mask = mlvl_nms_scores > score_thr
        candidate_mask_nonzeros = candidate_mask.nonzero(as_tuple=False)
        candidate_inds = candidate_mask_nonzeros[:, 0]
        candidate_labels = candidate_mask_nonzeros[:, 1]
        candidate_bboxes = mlvl_bboxes[candidate_inds]
        candidate_scores = mlvl_nms_scores[candidate_mask]
        det_bboxes_voted = []
        det_labels_voted = []
        for cls in range(self.cls_out_channels):
            candidate_cls_mask = candidate_labels == cls
            if not candidate_cls_mask.any():
                continue
            candidate_cls_scores = candidate_scores[candidate_cls_mask]
            candidate_cls_bboxes = candidate_bboxes[candidate_cls_mask]
            det_cls_mask = det_labels == cls
            det_cls_bboxes = det_bboxes[det_cls_mask].view(
                -1, det_bboxes.size(-1))
            det_candidate_ious = bbox_overlaps(det_cls_bboxes[:, :4],
                                               candidate_cls_bboxes)
            for det_ind in range(len(det_cls_bboxes)):
                single_det_ious = det_candidate_ious[det_ind]
                pos_ious_mask = single_det_ious > 0.01
                pos_ious = single_det_ious[pos_ious_mask]
                pos_bboxes = candidate_cls_bboxes[pos_ious_mask]
                pos_scores = candidate_cls_scores[pos_ious_mask]
                pis = (torch.exp(-(1 - pos_ious)**2 / 0.025) *
                       pos_scores)[:, None]
                voted_box = torch.sum(
                    pis * pos_bboxes, dim=0) / torch.sum(
                        pis, dim=0)
                voted_score = det_cls_bboxes[det_ind][-1:][None, :]
                det_bboxes_voted.append(
                    torch.cat((voted_box[None, :], voted_score), dim=1))
                det_labels_voted.append(cls)

        det_bboxes_voted = torch.cat(det_bboxes_voted, dim=0)
        det_labels_voted = det_labels.new_tensor(det_labels_voted)
        return det_bboxes_voted, det_labels_voted