fsaf_head.py 19.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
from mmcv.runner import force_fp32

from mmdet.core import (anchor_inside_flags, images_to_levels, multi_apply,
                        unmap)
from ..builder import HEADS
from ..losses.accuracy import accuracy
from ..losses.utils import weight_reduce_loss
from .retina_head import RetinaHead


@HEADS.register_module()
class FSAFHead(RetinaHead):
    """Anchor-free head used in `FSAF <https://arxiv.org/abs/1903.00621>`_.

    The head contains two subnetworks. The first classifies anchor boxes and
    the second regresses deltas for the anchors (num_anchors is 1 for anchor-
    free methods)

    Args:
        *args: Same as its base class in :class:`RetinaHead`
        score_threshold (float, optional): The score_threshold to calculate
            positive recall. If given, prediction scores lower than this value
            is counted as incorrect prediction. Default to None.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
        **kwargs: Same as its base class in :class:`RetinaHead`

    Example:
        >>> import torch
        >>> self = FSAFHead(11, 7)
        >>> x = torch.rand(1, 7, 32, 32)
        >>> cls_score, bbox_pred = self.forward_single(x)
        >>> # Each anchor predicts a score for each class except background
        >>> cls_per_anchor = cls_score.shape[1] / self.num_anchors
        >>> box_per_anchor = bbox_pred.shape[1] / self.num_anchors
        >>> assert cls_per_anchor == self.num_classes
        >>> assert box_per_anchor == 4
    """

    def __init__(self, *args, score_threshold=None, init_cfg=None, **kwargs):
        # The positive bias in self.retina_reg conv is to prevent predicted \
        #  bbox with 0 area
        if init_cfg is None:
            init_cfg = dict(
                type='Normal',
                layer='Conv2d',
                std=0.01,
                override=[
                    dict(
                        type='Normal',
                        name='retina_cls',
                        std=0.01,
                        bias_prob=0.01),
                    dict(
                        type='Normal', name='retina_reg', std=0.01, bias=0.25)
                ])
        super().__init__(*args, init_cfg=init_cfg, **kwargs)
        self.score_threshold = score_threshold

    def forward_single(self, x):
        """Forward feature map of a single scale level.

        Args:
            x (Tensor): Feature map of a single scale level.

        Returns:
            tuple (Tensor):
                cls_score (Tensor): Box scores for each scale level
                    Has shape (N, num_points * num_classes, H, W).
                bbox_pred (Tensor): Box energies / deltas for each scale
                    level with shape (N, num_points * 4, H, W).
        """
        cls_score, bbox_pred = super().forward_single(x)
        # relu: TBLR encoder only accepts positive bbox_pred
        return cls_score, self.relu(bbox_pred)

    def _get_targets_single(self,
                            flat_anchors,
                            valid_flags,
                            gt_bboxes,
                            gt_bboxes_ignore,
                            gt_labels,
                            img_meta,
                            label_channels=1,
                            unmap_outputs=True):
        """Compute regression and classification targets for anchors in a
        single image.

        Most of the codes are the same with the base class
          :obj: `AnchorHead`, except that it also collects and returns
          the matched gt index in the image (from 0 to num_gt-1). If the
          anchor bbox is not matched to any gt, the corresponding value in
          pos_gt_inds is -1.
        """
        inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
                                           img_meta['img_shape'][:2],
                                           self.train_cfg.allowed_border)
        if not inside_flags.any():
            return (None, ) * 7
        # Assign gt and sample anchors
        anchors = flat_anchors[inside_flags.type(torch.bool), :]
        assign_result = self.assigner.assign(
            anchors, gt_bboxes, gt_bboxes_ignore,
            None if self.sampling else gt_labels)

        sampling_result = self.sampler.sample(assign_result, anchors,
                                              gt_bboxes)

        num_valid_anchors = anchors.shape[0]
        bbox_targets = torch.zeros_like(anchors)
        bbox_weights = torch.zeros_like(anchors)
        labels = anchors.new_full((num_valid_anchors, ),
                                  self.num_classes,
                                  dtype=torch.long)
        label_weights = anchors.new_zeros((num_valid_anchors, label_channels),
                                          dtype=torch.float)
        pos_gt_inds = anchors.new_full((num_valid_anchors, ),
                                       -1,
                                       dtype=torch.long)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds

        if len(pos_inds) > 0:
            if not self.reg_decoded_bbox:
                pos_bbox_targets = self.bbox_coder.encode(
                    sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
            else:
                # When the regression loss (e.g. `IouLoss`, `GIouLoss`)
                # is applied directly on the decoded bounding boxes, both
                # the predicted boxes and regression targets should be with
                # absolute coordinate format.
                pos_bbox_targets = sampling_result.pos_gt_bboxes
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0
            # The assigned gt_index for each anchor. (0-based)
            pos_gt_inds[pos_inds] = sampling_result.pos_assigned_gt_inds
            if gt_labels is None:
                # Only rpn gives gt_labels as None
                # Foreground is the first class
                labels[pos_inds] = 0
            else:
                labels[pos_inds] = gt_labels[
                    sampling_result.pos_assigned_gt_inds]
            if self.train_cfg.pos_weight <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg.pos_weight

        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        # shadowed_labels is a tensor composed of tuples
        #  (anchor_inds, class_label) that indicate those anchors lying in the
        #  outer region of a gt or overlapped by another gt with a smaller
        #  area.
        #
        # Therefore, only the shadowed labels are ignored for loss calculation.
        # the key `shadowed_labels` is defined in :obj:`CenterRegionAssigner`
        shadowed_labels = assign_result.get_extra_property('shadowed_labels')
        if shadowed_labels is not None and shadowed_labels.numel():
            if len(shadowed_labels.shape) == 2:
                idx_, label_ = shadowed_labels[:, 0], shadowed_labels[:, 1]
                assert (labels[idx_] != label_).all(), \
                    'One label cannot be both positive and ignored'
                label_weights[idx_, label_] = 0
            else:
                label_weights[shadowed_labels] = 0

        # map up to original set of anchors
        if unmap_outputs:
            num_total_anchors = flat_anchors.size(0)
            labels = unmap(labels, num_total_anchors, inside_flags)
            label_weights = unmap(label_weights, num_total_anchors,
                                  inside_flags)
            bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
            bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)
            pos_gt_inds = unmap(
                pos_gt_inds, num_total_anchors, inside_flags, fill=-1)

        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                neg_inds, sampling_result, pos_gt_inds)

    @force_fp32(apply_to=('cls_scores', 'bbox_preds'))
    def loss(self,
             cls_scores,
             bbox_preds,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute loss of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_points * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_points * 4, H, W).
            gt_bboxes (list[Tensor]): each item are the truth boxes for each
                image in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        for i in range(len(bbox_preds)):  # loop over fpn level
            # avoid 0 area of the predicted bbox
            bbox_preds[i] = bbox_preds[i].clamp(min=1e-4)
        # TODO: It may directly use the base-class loss function.
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.prior_generator.num_levels
        batch_size = len(gt_bboxes)
        device = cls_scores[0].device
        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, img_metas, device=device)
        label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
        cls_reg_targets = self.get_targets(
            anchor_list,
            valid_flag_list,
            gt_bboxes,
            img_metas,
            gt_bboxes_ignore_list=gt_bboxes_ignore,
            gt_labels_list=gt_labels,
            label_channels=label_channels)
        if cls_reg_targets is None:
            return None
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         num_total_pos, num_total_neg,
         pos_assigned_gt_inds_list) = cls_reg_targets

        num_gts = np.array(list(map(len, gt_labels)))
        num_total_samples = (
            num_total_pos + num_total_neg if self.sampling else num_total_pos)
        # anchor number of multi levels
        num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
        # concat all level anchors and flags to a single tensor
        concat_anchor_list = []
        for i in range(len(anchor_list)):
            concat_anchor_list.append(torch.cat(anchor_list[i]))
        all_anchor_list = images_to_levels(concat_anchor_list,
                                           num_level_anchors)
        losses_cls, losses_bbox = multi_apply(
            self.loss_single,
            cls_scores,
            bbox_preds,
            all_anchor_list,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            num_total_samples=num_total_samples)

        # `pos_assigned_gt_inds_list` (length: fpn_levels) stores the assigned
        # gt index of each anchor bbox in each fpn level.
        cum_num_gts = list(np.cumsum(num_gts))  # length of batch_size
        for i, assign in enumerate(pos_assigned_gt_inds_list):
            # loop over fpn levels
            for j in range(1, batch_size):
                # loop over batch size
                # Convert gt indices in each img to those in the batch
                assign[j][assign[j] >= 0] += int(cum_num_gts[j - 1])
            pos_assigned_gt_inds_list[i] = assign.flatten()
            labels_list[i] = labels_list[i].flatten()
        num_gts = sum(map(len, gt_labels))  # total number of gt in the batch
        # The unique label index of each gt in the batch
        label_sequence = torch.arange(num_gts, device=device)
        # Collect the average loss of each gt in each level
        with torch.no_grad():
            loss_levels, = multi_apply(
                self.collect_loss_level_single,
                losses_cls,
                losses_bbox,
                pos_assigned_gt_inds_list,
                labels_seq=label_sequence)
            # Shape: (fpn_levels, num_gts). Loss of each gt at each fpn level
            loss_levels = torch.stack(loss_levels, dim=0)
            # Locate the best fpn level for loss back-propagation
            if loss_levels.numel() == 0:  # zero gt
                argmin = loss_levels.new_empty((num_gts, ), dtype=torch.long)
            else:
                _, argmin = loss_levels.min(dim=0)

        # Reweight the loss of each (anchor, label) pair, so that only those
        #  at the best gt level are back-propagated.
        losses_cls, losses_bbox, pos_inds = multi_apply(
            self.reweight_loss_single,
            losses_cls,
            losses_bbox,
            pos_assigned_gt_inds_list,
            labels_list,
            list(range(len(losses_cls))),
            min_levels=argmin)
        num_pos = torch.cat(pos_inds, 0).sum().float()
        pos_recall = self.calculate_pos_recall(cls_scores, labels_list,
                                               pos_inds)

        if num_pos == 0:  # No gt
            avg_factor = num_pos + float(num_total_neg)
        else:
            avg_factor = num_pos
        for i in range(len(losses_cls)):
            losses_cls[i] /= avg_factor
            losses_bbox[i] /= avg_factor
        return dict(
            loss_cls=losses_cls,
            loss_bbox=losses_bbox,
            num_pos=num_pos / batch_size,
            pos_recall=pos_recall)

    def calculate_pos_recall(self, cls_scores, labels_list, pos_inds):
        """Calculate positive recall with score threshold.

        Args:
            cls_scores (list[Tensor]): Classification scores at all fpn levels.
                Each tensor is in shape (N, num_classes * num_anchors, H, W)
            labels_list (list[Tensor]): The label that each anchor is assigned
                to. Shape (N * H * W * num_anchors, )
            pos_inds (list[Tensor]): List of bool tensors indicating whether
                the anchor is assigned to a positive label.
                Shape (N * H * W * num_anchors, )

        Returns:
            Tensor: A single float number indicating the positive recall.
        """
        with torch.no_grad():
            num_class = self.num_classes
            scores = [
                cls.permute(0, 2, 3, 1).reshape(-1, num_class)[pos]
                for cls, pos in zip(cls_scores, pos_inds)
            ]
            labels = [
                label.reshape(-1)[pos]
                for label, pos in zip(labels_list, pos_inds)
            ]
            scores = torch.cat(scores, dim=0)
            labels = torch.cat(labels, dim=0)
            if self.use_sigmoid_cls:
                scores = scores.sigmoid()
            else:
                scores = scores.softmax(dim=1)

            return accuracy(scores, labels, thresh=self.score_threshold)

    def collect_loss_level_single(self, cls_loss, reg_loss, assigned_gt_inds,
                                  labels_seq):
        """Get the average loss in each FPN level w.r.t. each gt label.

        Args:
            cls_loss (Tensor): Classification loss of each feature map pixel,
              shape (num_anchor, num_class)
            reg_loss (Tensor): Regression loss of each feature map pixel,
              shape (num_anchor, 4)
            assigned_gt_inds (Tensor): It indicates which gt the prior is
              assigned to (0-based, -1: no assignment). shape (num_anchor),
            labels_seq: The rank of labels. shape (num_gt)

        Returns:
            shape: (num_gt), average loss of each gt in this level
        """
        if len(reg_loss.shape) == 2:  # iou loss has shape (num_prior, 4)
            reg_loss = reg_loss.sum(dim=-1)  # sum loss in tblr dims
        if len(cls_loss.shape) == 2:
            cls_loss = cls_loss.sum(dim=-1)  # sum loss in class dims
        loss = cls_loss + reg_loss
        assert loss.size(0) == assigned_gt_inds.size(0)
        # Default loss value is 1e6 for a layer where no anchor is positive
        #  to ensure it will not be chosen to back-propagate gradient
        losses_ = loss.new_full(labels_seq.shape, 1e6)
        for i, l in enumerate(labels_seq):
            match = assigned_gt_inds == l
            if match.any():
                losses_[i] = loss[match].mean()
        return losses_,

    def reweight_loss_single(self, cls_loss, reg_loss, assigned_gt_inds,
                             labels, level, min_levels):
        """Reweight loss values at each level.

        Reassign loss values at each level by masking those where the
        pre-calculated loss is too large. Then return the reduced losses.

        Args:
            cls_loss (Tensor): Element-wise classification loss.
              Shape: (num_anchors, num_classes)
            reg_loss (Tensor): Element-wise regression loss.
              Shape: (num_anchors, 4)
            assigned_gt_inds (Tensor): The gt indices that each anchor bbox
              is assigned to. -1 denotes a negative anchor, otherwise it is the
              gt index (0-based). Shape: (num_anchors, ),
            labels (Tensor): Label assigned to anchors. Shape: (num_anchors, ).
            level (int): The current level index in the pyramid
              (0-4 for RetinaNet)
            min_levels (Tensor): The best-matching level for each gt.
              Shape: (num_gts, ),

        Returns:
            tuple:
                - cls_loss: Reduced corrected classification loss. Scalar.
                - reg_loss: Reduced corrected regression loss. Scalar.
                - pos_flags (Tensor): Corrected bool tensor indicating the
                  final positive anchors. Shape: (num_anchors, ).
        """
        loc_weight = torch.ones_like(reg_loss)
        cls_weight = torch.ones_like(cls_loss)
        pos_flags = assigned_gt_inds >= 0  # positive pixel flag
        pos_indices = torch.nonzero(pos_flags, as_tuple=False).flatten()

        if pos_flags.any():  # pos pixels exist
            pos_assigned_gt_inds = assigned_gt_inds[pos_flags]
            zeroing_indices = (min_levels[pos_assigned_gt_inds] != level)
            neg_indices = pos_indices[zeroing_indices]

            if neg_indices.numel():
                pos_flags[neg_indices] = 0
                loc_weight[neg_indices] = 0
                # Only the weight corresponding to the label is
                #  zeroed out if not selected
                zeroing_labels = labels[neg_indices]
                assert (zeroing_labels >= 0).all()
                cls_weight[neg_indices, zeroing_labels] = 0

        # Weighted loss for both cls and reg loss
        cls_loss = weight_reduce_loss(cls_loss, cls_weight, reduction='sum')
        reg_loss = weight_reduce_loss(reg_loss, loc_weight, reduction='sum')

        return cls_loss, reg_loss, pos_flags