fcos_head.py 19.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import torch
import torch.nn as nn
from mmcv.cnn import Scale
from mmcv.runner import force_fp32

from mmdet.core import multi_apply, reduce_mean
from ..builder import HEADS, build_loss
from .anchor_free_head import AnchorFreeHead

INF = 1e8


@HEADS.register_module()
class FCOSHead(AnchorFreeHead):
    """Anchor-free head used in `FCOS <https://arxiv.org/abs/1904.01355>`_.

    The FCOS head does not use anchor boxes. Instead bounding boxes are
    predicted at each pixel and a centerness measure is used to suppress
    low-quality predictions.
    Here norm_on_bbox, centerness_on_reg, dcn_on_last_conv are training
    tricks used in official repo, which will bring remarkable mAP gains
    of up to 4.9. Please see https://github.com/tianzhi0549/FCOS for
    more detail.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        strides (list[int] | list[tuple[int, int]]): Strides of points
            in multiple feature levels. Default: (4, 8, 16, 32, 64).
        regress_ranges (tuple[tuple[int, int]]): Regress range of multiple
            level points.
        center_sampling (bool): If true, use center sampling. Default: False.
        center_sample_radius (float): Radius of center sampling. Default: 1.5.
        norm_on_bbox (bool): If true, normalize the regression targets
            with FPN strides. Default: False.
        centerness_on_reg (bool): If true, position centerness on the
            regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042.
            Default: False.
        conv_bias (bool | str): If specified as `auto`, it will be decided by the
            norm_cfg. Bias of conv will be set as True if `norm_cfg` is None, otherwise
            False. Default: "auto".
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
        loss_centerness (dict): Config of centerness loss.
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True).
        init_cfg (dict or list[dict], optional): Initialization config dict.

    Example:
        >>> self = FCOSHead(11, 7)
        >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]]
        >>> cls_score, bbox_pred, centerness = self.forward(feats)
        >>> assert len(cls_score) == len(self.scales)
    """  # noqa: E501

    def __init__(self,
                 num_classes,
                 in_channels,
                 regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512),
                                 (512, INF)),
                 center_sampling=False,
                 center_sample_radius=1.5,
                 norm_on_bbox=False,
                 centerness_on_reg=False,
                 loss_cls=dict(
                     type='FocalLoss',
                     use_sigmoid=True,
                     gamma=2.0,
                     alpha=0.25,
                     loss_weight=1.0),
                 loss_bbox=dict(type='IoULoss', loss_weight=1.0),
                 loss_centerness=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
                 init_cfg=dict(
                     type='Normal',
                     layer='Conv2d',
                     std=0.01,
                     override=dict(
                         type='Normal',
                         name='conv_cls',
                         std=0.01,
                         bias_prob=0.01)),
                 **kwargs):
        self.regress_ranges = regress_ranges
        self.center_sampling = center_sampling
        self.center_sample_radius = center_sample_radius
        self.norm_on_bbox = norm_on_bbox
        self.centerness_on_reg = centerness_on_reg
        super().__init__(
            num_classes,
            in_channels,
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            norm_cfg=norm_cfg,
            init_cfg=init_cfg,
            **kwargs)
        self.loss_centerness = build_loss(loss_centerness)

    def _init_layers(self):
        """Initialize layers of the head."""
        super()._init_layers()
        self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1)
        self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])

    def forward(self, feats):
        """Forward features from the upstream network.

        Args:
            feats (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple:
                cls_scores (list[Tensor]): Box scores for each scale level, \
                    each is a 4D-tensor, the channel number is \
                    num_points * num_classes.
                bbox_preds (list[Tensor]): Box energies / deltas for each \
                    scale level, each is a 4D-tensor, the channel number is \
                    num_points * 4.
                centernesses (list[Tensor]): centerness for each scale level, \
                    each is a 4D-tensor, the channel number is num_points * 1.
        """
        return multi_apply(self.forward_single, feats, self.scales,
                           self.strides)

    def forward_single(self, x, scale, stride):
        """Forward features of a single scale level.

        Args:
            x (Tensor): FPN feature maps of the specified stride.
            scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
                the bbox prediction.
            stride (int): The corresponding stride for feature maps, only
                used to normalize the bbox prediction when self.norm_on_bbox
                is True.

        Returns:
            tuple: scores for each class, bbox predictions and centerness \
                predictions of input feature maps.
        """
        cls_score, bbox_pred, cls_feat, reg_feat = super().forward_single(x)
        if self.centerness_on_reg:
            centerness = self.conv_centerness(reg_feat)
        else:
            centerness = self.conv_centerness(cls_feat)
        # scale the bbox_pred of different level
        # float to avoid overflow when enabling FP16
        bbox_pred = scale(bbox_pred).float()
        if self.norm_on_bbox:
            # bbox_pred needed for gradient computation has been modified
            # by F.relu(bbox_pred) when run with PyTorch 1.10. So replace
            # F.relu(bbox_pred) with bbox_pred.clamp(min=0)
            bbox_pred = bbox_pred.clamp(min=0)
            if not self.training:
                bbox_pred *= stride
        else:
            bbox_pred = bbox_pred.exp()
        return cls_score, bbox_pred, centerness

    @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'centernesses'))
    def loss(self,
             cls_scores,
             bbox_preds,
             centernesses,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute loss of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level,
                each is a 4D-tensor, the channel number is
                num_points * num_classes.
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level, each is a 4D-tensor, the channel number is
                num_points * 4.
            centernesses (list[Tensor]): centerness for each scale level, each
                is a 4D-tensor, the channel number is num_points * 1.
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (None | list[Tensor]): specify which bounding
                boxes can be ignored when computing the loss.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert len(cls_scores) == len(bbox_preds) == len(centernesses)
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        all_level_points = self.prior_generator.grid_priors(
            featmap_sizes,
            dtype=bbox_preds[0].dtype,
            device=bbox_preds[0].device)
        labels, bbox_targets = self.get_targets(all_level_points, gt_bboxes,
                                                gt_labels)

        num_imgs = cls_scores[0].size(0)
        # flatten cls_scores, bbox_preds and centerness
        flatten_cls_scores = [
            cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
            for cls_score in cls_scores
        ]
        flatten_bbox_preds = [
            bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
            for bbox_pred in bbox_preds
        ]
        flatten_centerness = [
            centerness.permute(0, 2, 3, 1).reshape(-1)
            for centerness in centernesses
        ]
        flatten_cls_scores = torch.cat(flatten_cls_scores)
        flatten_bbox_preds = torch.cat(flatten_bbox_preds)
        flatten_centerness = torch.cat(flatten_centerness)
        flatten_labels = torch.cat(labels)
        flatten_bbox_targets = torch.cat(bbox_targets)
        # repeat points to align with bbox_preds
        flatten_points = torch.cat(
            [points.repeat(num_imgs, 1) for points in all_level_points])

        # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
        bg_class_ind = self.num_classes
        pos_inds = ((flatten_labels >= 0)
                    & (flatten_labels < bg_class_ind)).nonzero().reshape(-1)
        num_pos = torch.tensor(
            len(pos_inds), dtype=torch.float, device=bbox_preds[0].device)
        num_pos = max(reduce_mean(num_pos), 1.0)
        loss_cls = self.loss_cls(
            flatten_cls_scores, flatten_labels, avg_factor=num_pos)

        pos_bbox_preds = flatten_bbox_preds[pos_inds]
        pos_centerness = flatten_centerness[pos_inds]
        pos_bbox_targets = flatten_bbox_targets[pos_inds]
        pos_centerness_targets = self.centerness_target(pos_bbox_targets)
        # centerness weighted iou loss
        centerness_denorm = max(
            reduce_mean(pos_centerness_targets.sum().detach()), 1e-6)

        if len(pos_inds) > 0:
            pos_points = flatten_points[pos_inds]
            pos_decoded_bbox_preds = self.bbox_coder.decode(
                pos_points, pos_bbox_preds)
            pos_decoded_target_preds = self.bbox_coder.decode(
                pos_points, pos_bbox_targets)
            loss_bbox = self.loss_bbox(
                pos_decoded_bbox_preds,
                pos_decoded_target_preds,
                weight=pos_centerness_targets,
                avg_factor=centerness_denorm)
            loss_centerness = self.loss_centerness(
                pos_centerness, pos_centerness_targets, avg_factor=num_pos)
        else:
            loss_bbox = pos_bbox_preds.sum()
            loss_centerness = pos_centerness.sum()

        return dict(
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            loss_centerness=loss_centerness)

    def get_targets(self, points, gt_bboxes_list, gt_labels_list):
        """Compute regression, classification and centerness targets for points
        in multiple images.

        Args:
            points (list[Tensor]): Points of each fpn level, each has shape
                (num_points, 2).
            gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image,
                each has shape (num_gt, 4).
            gt_labels_list (list[Tensor]): Ground truth labels of each box,
                each has shape (num_gt,).

        Returns:
            tuple:
                concat_lvl_labels (list[Tensor]): Labels of each level. \
                concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \
                    level.
        """
        assert len(points) == len(self.regress_ranges)
        num_levels = len(points)
        # expand regress ranges to align with points
        expanded_regress_ranges = [
            points[i].new_tensor(self.regress_ranges[i])[None].expand_as(
                points[i]) for i in range(num_levels)
        ]
        # concat all levels points and regress ranges
        concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0)
        concat_points = torch.cat(points, dim=0)

        # the number of points per img, per lvl
        num_points = [center.size(0) for center in points]

        # get labels and bbox_targets of each image
        labels_list, bbox_targets_list = multi_apply(
            self._get_target_single,
            gt_bboxes_list,
            gt_labels_list,
            points=concat_points,
            regress_ranges=concat_regress_ranges,
            num_points_per_lvl=num_points)

        # split to per img, per level
        labels_list = [labels.split(num_points, 0) for labels in labels_list]
        bbox_targets_list = [
            bbox_targets.split(num_points, 0)
            for bbox_targets in bbox_targets_list
        ]

        # concat per level image
        concat_lvl_labels = []
        concat_lvl_bbox_targets = []
        for i in range(num_levels):
            concat_lvl_labels.append(
                torch.cat([labels[i] for labels in labels_list]))
            bbox_targets = torch.cat(
                [bbox_targets[i] for bbox_targets in bbox_targets_list])
            if self.norm_on_bbox:
                bbox_targets = bbox_targets / self.strides[i]
            concat_lvl_bbox_targets.append(bbox_targets)
        return concat_lvl_labels, concat_lvl_bbox_targets

    def _get_target_single(self, gt_bboxes, gt_labels, points, regress_ranges,
                           num_points_per_lvl):
        """Compute regression and classification targets for a single image."""
        num_points = points.size(0)
        num_gts = gt_labels.size(0)
        if num_gts == 0:
            return gt_labels.new_full((num_points,), self.num_classes), \
                   gt_bboxes.new_zeros((num_points, 4))

        areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
            gt_bboxes[:, 3] - gt_bboxes[:, 1])
        # TODO: figure out why these two are different
        # areas = areas[None].expand(num_points, num_gts)
        areas = areas[None].repeat(num_points, 1)
        regress_ranges = regress_ranges[:, None, :].expand(
            num_points, num_gts, 2)
        gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4)
        xs, ys = points[:, 0], points[:, 1]
        xs = xs[:, None].expand(num_points, num_gts)
        ys = ys[:, None].expand(num_points, num_gts)

        left = xs - gt_bboxes[..., 0]
        right = gt_bboxes[..., 2] - xs
        top = ys - gt_bboxes[..., 1]
        bottom = gt_bboxes[..., 3] - ys
        bbox_targets = torch.stack((left, top, right, bottom), -1)

        if self.center_sampling:
            # condition1: inside a `center bbox`
            radius = self.center_sample_radius
            center_xs = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) / 2
            center_ys = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) / 2
            center_gts = torch.zeros_like(gt_bboxes)
            stride = center_xs.new_zeros(center_xs.shape)

            # project the points on current lvl back to the `original` sizes
            lvl_begin = 0
            for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl):
                lvl_end = lvl_begin + num_points_lvl
                stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius
                lvl_begin = lvl_end

            x_mins = center_xs - stride
            y_mins = center_ys - stride
            x_maxs = center_xs + stride
            y_maxs = center_ys + stride
            center_gts[..., 0] = torch.where(x_mins > gt_bboxes[..., 0],
                                             x_mins, gt_bboxes[..., 0])
            center_gts[..., 1] = torch.where(y_mins > gt_bboxes[..., 1],
                                             y_mins, gt_bboxes[..., 1])
            center_gts[..., 2] = torch.where(x_maxs > gt_bboxes[..., 2],
                                             gt_bboxes[..., 2], x_maxs)
            center_gts[..., 3] = torch.where(y_maxs > gt_bboxes[..., 3],
                                             gt_bboxes[..., 3], y_maxs)

            cb_dist_left = xs - center_gts[..., 0]
            cb_dist_right = center_gts[..., 2] - xs
            cb_dist_top = ys - center_gts[..., 1]
            cb_dist_bottom = center_gts[..., 3] - ys
            center_bbox = torch.stack(
                (cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1)
            inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0
        else:
            # condition1: inside a gt bbox
            inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0

        # condition2: limit the regression range for each location
        max_regress_distance = bbox_targets.max(-1)[0]
        inside_regress_range = (
            (max_regress_distance >= regress_ranges[..., 0])
            & (max_regress_distance <= regress_ranges[..., 1]))

        # if there are still more than one objects for a location,
        # we choose the one with minimal area
        areas[inside_gt_bbox_mask == 0] = INF
        areas[inside_regress_range == 0] = INF
        min_area, min_area_inds = areas.min(dim=1)

        labels = gt_labels[min_area_inds]
        labels[min_area == INF] = self.num_classes  # set as BG
        bbox_targets = bbox_targets[range(num_points), min_area_inds]

        return labels, bbox_targets

    def centerness_target(self, pos_bbox_targets):
        """Compute centerness targets.

        Args:
            pos_bbox_targets (Tensor): BBox targets of positive bboxes in shape
                (num_pos, 4)

        Returns:
            Tensor: Centerness target.
        """
        # only calculate pos centerness targets, otherwise there may be nan
        left_right = pos_bbox_targets[:, [0, 2]]
        top_bottom = pos_bbox_targets[:, [1, 3]]
        if len(left_right) == 0:
            centerness_targets = left_right[..., 0]
        else:
            centerness_targets = (
                left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * (
                    top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
        return torch.sqrt(centerness_targets)

    def _get_points_single(self,
                           featmap_size,
                           stride,
                           dtype,
                           device,
                           flatten=False):
        """Get points according to feature map size.

        This function will be deprecated soon.
        """
        warnings.warn(
            '`_get_points_single` in `FCOSHead` will be '
            'deprecated soon, we support a multi level point generator now'
            'you can get points of a single level feature map '
            'with `self.prior_generator.single_level_grid_priors` ')

        y, x = super()._get_points_single(featmap_size, stride, dtype, device)
        points = torch.stack((x.reshape(-1) * stride, y.reshape(-1) * stride),
                             dim=-1) + stride // 2
        return points