centripetal_head.py 19.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import ConvModule, normal_init
from mmcv.ops import DeformConv2d
from mmcv.runner import force_fp32

from mmdet.core import multi_apply
from ..builder import HEADS, build_loss
from .corner_head import CornerHead


@HEADS.register_module()
class CentripetalHead(CornerHead):
    """Head of CentripetalNet: Pursuing High-quality Keypoint Pairs for Object
    Detection.

    CentripetalHead inherits from :class:`CornerHead`. It removes the
    embedding branch and adds guiding shift and centripetal shift branches.
    More details can be found in the `paper
    <https://arxiv.org/abs/2003.09119>`_ .

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        num_feat_levels (int): Levels of feature from the previous module. 2
            for HourglassNet-104 and 1 for HourglassNet-52. HourglassNet-104
            outputs the final feature and intermediate supervision feature and
            HourglassNet-52 only outputs the final feature. Default: 2.
        corner_emb_channels (int): Channel of embedding vector. Default: 1.
        train_cfg (dict | None): Training config. Useless in CornerHead,
            but we keep this variable for SingleStageDetector. Default: None.
        test_cfg (dict | None): Testing config of CornerHead. Default: None.
        loss_heatmap (dict | None): Config of corner heatmap loss. Default:
            GaussianFocalLoss.
        loss_embedding (dict | None): Config of corner embedding loss. Default:
            AssociativeEmbeddingLoss.
        loss_offset (dict | None): Config of corner offset loss. Default:
            SmoothL1Loss.
        loss_guiding_shift (dict): Config of guiding shift loss. Default:
            SmoothL1Loss.
        loss_centripetal_shift (dict): Config of centripetal shift loss.
            Default: SmoothL1Loss.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None
    """

    def __init__(self,
                 *args,
                 centripetal_shift_channels=2,
                 guiding_shift_channels=2,
                 feat_adaption_conv_kernel=3,
                 loss_guiding_shift=dict(
                     type='SmoothL1Loss', beta=1.0, loss_weight=0.05),
                 loss_centripetal_shift=dict(
                     type='SmoothL1Loss', beta=1.0, loss_weight=1),
                 init_cfg=None,
                 **kwargs):
        assert init_cfg is None, 'To prevent abnormal initialization ' \
                                 'behavior, init_cfg is not allowed to be set'
        assert centripetal_shift_channels == 2, (
            'CentripetalHead only support centripetal_shift_channels == 2')
        self.centripetal_shift_channels = centripetal_shift_channels
        assert guiding_shift_channels == 2, (
            'CentripetalHead only support guiding_shift_channels == 2')
        self.guiding_shift_channels = guiding_shift_channels
        self.feat_adaption_conv_kernel = feat_adaption_conv_kernel
        super(CentripetalHead, self).__init__(
            *args, init_cfg=init_cfg, **kwargs)
        self.loss_guiding_shift = build_loss(loss_guiding_shift)
        self.loss_centripetal_shift = build_loss(loss_centripetal_shift)

    def _init_centripetal_layers(self):
        """Initialize centripetal layers.

        Including feature adaption deform convs (feat_adaption), deform offset
        prediction convs (dcn_off), guiding shift (guiding_shift) and
        centripetal shift ( centripetal_shift). Each branch has two parts:
        prefix `tl_` for top-left and `br_` for bottom-right.
        """
        self.tl_feat_adaption = nn.ModuleList()
        self.br_feat_adaption = nn.ModuleList()
        self.tl_dcn_offset = nn.ModuleList()
        self.br_dcn_offset = nn.ModuleList()
        self.tl_guiding_shift = nn.ModuleList()
        self.br_guiding_shift = nn.ModuleList()
        self.tl_centripetal_shift = nn.ModuleList()
        self.br_centripetal_shift = nn.ModuleList()

        for _ in range(self.num_feat_levels):
            self.tl_feat_adaption.append(
                DeformConv2d(self.in_channels, self.in_channels,
                             self.feat_adaption_conv_kernel, 1, 1))
            self.br_feat_adaption.append(
                DeformConv2d(self.in_channels, self.in_channels,
                             self.feat_adaption_conv_kernel, 1, 1))

            self.tl_guiding_shift.append(
                self._make_layers(
                    out_channels=self.guiding_shift_channels,
                    in_channels=self.in_channels))
            self.br_guiding_shift.append(
                self._make_layers(
                    out_channels=self.guiding_shift_channels,
                    in_channels=self.in_channels))

            self.tl_dcn_offset.append(
                ConvModule(
                    self.guiding_shift_channels,
                    self.feat_adaption_conv_kernel**2 *
                    self.guiding_shift_channels,
                    1,
                    bias=False,
                    act_cfg=None))
            self.br_dcn_offset.append(
                ConvModule(
                    self.guiding_shift_channels,
                    self.feat_adaption_conv_kernel**2 *
                    self.guiding_shift_channels,
                    1,
                    bias=False,
                    act_cfg=None))

            self.tl_centripetal_shift.append(
                self._make_layers(
                    out_channels=self.centripetal_shift_channels,
                    in_channels=self.in_channels))
            self.br_centripetal_shift.append(
                self._make_layers(
                    out_channels=self.centripetal_shift_channels,
                    in_channels=self.in_channels))

    def _init_layers(self):
        """Initialize layers for CentripetalHead.

        Including two parts: CornerHead layers and CentripetalHead layers
        """
        super()._init_layers()  # using _init_layers in CornerHead
        self._init_centripetal_layers()

    def init_weights(self):
        super(CentripetalHead, self).init_weights()
        for i in range(self.num_feat_levels):
            normal_init(self.tl_feat_adaption[i], std=0.01)
            normal_init(self.br_feat_adaption[i], std=0.01)
            normal_init(self.tl_dcn_offset[i].conv, std=0.1)
            normal_init(self.br_dcn_offset[i].conv, std=0.1)
            _ = [x.conv.reset_parameters() for x in self.tl_guiding_shift[i]]
            _ = [x.conv.reset_parameters() for x in self.br_guiding_shift[i]]
            _ = [
                x.conv.reset_parameters() for x in self.tl_centripetal_shift[i]
            ]
            _ = [
                x.conv.reset_parameters() for x in self.br_centripetal_shift[i]
            ]

    def forward_single(self, x, lvl_ind):
        """Forward feature of a single level.

        Args:
            x (Tensor): Feature of a single level.
            lvl_ind (int): Level index of current feature.

        Returns:
            tuple[Tensor]: A tuple of CentripetalHead's output for current
            feature level. Containing the following Tensors:

                - tl_heat (Tensor): Predicted top-left corner heatmap.
                - br_heat (Tensor): Predicted bottom-right corner heatmap.
                - tl_off (Tensor): Predicted top-left offset heatmap.
                - br_off (Tensor): Predicted bottom-right offset heatmap.
                - tl_guiding_shift (Tensor): Predicted top-left guiding shift
                  heatmap.
                - br_guiding_shift (Tensor): Predicted bottom-right guiding
                  shift heatmap.
                - tl_centripetal_shift (Tensor): Predicted top-left centripetal
                  shift heatmap.
                - br_centripetal_shift (Tensor): Predicted bottom-right
                  centripetal shift heatmap.
        """
        tl_heat, br_heat, _, _, tl_off, br_off, tl_pool, br_pool = super(
        ).forward_single(
            x, lvl_ind, return_pool=True)

        tl_guiding_shift = self.tl_guiding_shift[lvl_ind](tl_pool)
        br_guiding_shift = self.br_guiding_shift[lvl_ind](br_pool)

        tl_dcn_offset = self.tl_dcn_offset[lvl_ind](tl_guiding_shift.detach())
        br_dcn_offset = self.br_dcn_offset[lvl_ind](br_guiding_shift.detach())

        tl_feat_adaption = self.tl_feat_adaption[lvl_ind](tl_pool,
                                                          tl_dcn_offset)
        br_feat_adaption = self.br_feat_adaption[lvl_ind](br_pool,
                                                          br_dcn_offset)

        tl_centripetal_shift = self.tl_centripetal_shift[lvl_ind](
            tl_feat_adaption)
        br_centripetal_shift = self.br_centripetal_shift[lvl_ind](
            br_feat_adaption)

        result_list = [
            tl_heat, br_heat, tl_off, br_off, tl_guiding_shift,
            br_guiding_shift, tl_centripetal_shift, br_centripetal_shift
        ]
        return result_list

    @force_fp32()
    def loss(self,
             tl_heats,
             br_heats,
             tl_offs,
             br_offs,
             tl_guiding_shifts,
             br_guiding_shifts,
             tl_centripetal_shifts,
             br_centripetal_shifts,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute losses of the head.

        Args:
            tl_heats (list[Tensor]): Top-left corner heatmaps for each level
                with shape (N, num_classes, H, W).
            br_heats (list[Tensor]): Bottom-right corner heatmaps for each
                level with shape (N, num_classes, H, W).
            tl_offs (list[Tensor]): Top-left corner offsets for each level
                with shape (N, corner_offset_channels, H, W).
            br_offs (list[Tensor]): Bottom-right corner offsets for each level
                with shape (N, corner_offset_channels, H, W).
            tl_guiding_shifts (list[Tensor]): Top-left guiding shifts for each
                level with shape (N, guiding_shift_channels, H, W).
            br_guiding_shifts (list[Tensor]): Bottom-right guiding shifts for
                each level with shape (N, guiding_shift_channels, H, W).
            tl_centripetal_shifts (list[Tensor]): Top-left centripetal shifts
                for each level with shape (N, centripetal_shift_channels, H,
                W).
            br_centripetal_shifts (list[Tensor]): Bottom-right centripetal
                shifts for each level with shape (N,
                centripetal_shift_channels, H, W).
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [left, top, right, bottom] format.
            gt_labels (list[Tensor]): Class indices corresponding to each box.
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (list[Tensor] | None): Specify which bounding
                boxes can be ignored when computing the loss.

        Returns:
            dict[str, Tensor]: A dictionary of loss components. Containing the
            following losses:

                - det_loss (list[Tensor]): Corner keypoint losses of all
                  feature levels.
                - off_loss (list[Tensor]): Corner offset losses of all feature
                  levels.
                - guiding_loss (list[Tensor]): Guiding shift losses of all
                  feature levels.
                - centripetal_loss (list[Tensor]): Centripetal shift losses of
                  all feature levels.
        """
        targets = self.get_targets(
            gt_bboxes,
            gt_labels,
            tl_heats[-1].shape,
            img_metas[0]['pad_shape'],
            with_corner_emb=self.with_corner_emb,
            with_guiding_shift=True,
            with_centripetal_shift=True)
        mlvl_targets = [targets for _ in range(self.num_feat_levels)]
        [det_losses, off_losses, guiding_losses, centripetal_losses
         ] = multi_apply(self.loss_single, tl_heats, br_heats, tl_offs,
                         br_offs, tl_guiding_shifts, br_guiding_shifts,
                         tl_centripetal_shifts, br_centripetal_shifts,
                         mlvl_targets)
        loss_dict = dict(
            det_loss=det_losses,
            off_loss=off_losses,
            guiding_loss=guiding_losses,
            centripetal_loss=centripetal_losses)
        return loss_dict

    def loss_single(self, tl_hmp, br_hmp, tl_off, br_off, tl_guiding_shift,
                    br_guiding_shift, tl_centripetal_shift,
                    br_centripetal_shift, targets):
        """Compute losses for single level.

        Args:
            tl_hmp (Tensor): Top-left corner heatmap for current level with
                shape (N, num_classes, H, W).
            br_hmp (Tensor): Bottom-right corner heatmap for current level with
                shape (N, num_classes, H, W).
            tl_off (Tensor): Top-left corner offset for current level with
                shape (N, corner_offset_channels, H, W).
            br_off (Tensor): Bottom-right corner offset for current level with
                shape (N, corner_offset_channels, H, W).
            tl_guiding_shift (Tensor): Top-left guiding shift for current level
                with shape (N, guiding_shift_channels, H, W).
            br_guiding_shift (Tensor): Bottom-right guiding shift for current
                level with shape (N, guiding_shift_channels, H, W).
            tl_centripetal_shift (Tensor): Top-left centripetal shift for
                current level with shape (N, centripetal_shift_channels, H, W).
            br_centripetal_shift (Tensor): Bottom-right centripetal shift for
                current level with shape (N, centripetal_shift_channels, H, W).
            targets (dict): Corner target generated by `get_targets`.

        Returns:
            tuple[torch.Tensor]: Losses of the head's different branches
            containing the following losses:

                - det_loss (Tensor): Corner keypoint loss.
                - off_loss (Tensor): Corner offset loss.
                - guiding_loss (Tensor): Guiding shift loss.
                - centripetal_loss (Tensor): Centripetal shift loss.
        """
        targets['corner_embedding'] = None

        det_loss, _, _, off_loss = super().loss_single(tl_hmp, br_hmp, None,
                                                       None, tl_off, br_off,
                                                       targets)

        gt_tl_guiding_shift = targets['topleft_guiding_shift']
        gt_br_guiding_shift = targets['bottomright_guiding_shift']
        gt_tl_centripetal_shift = targets['topleft_centripetal_shift']
        gt_br_centripetal_shift = targets['bottomright_centripetal_shift']

        gt_tl_heatmap = targets['topleft_heatmap']
        gt_br_heatmap = targets['bottomright_heatmap']
        # We only compute the offset loss at the real corner position.
        # The value of real corner would be 1 in heatmap ground truth.
        # The mask is computed in class agnostic mode and its shape is
        # batch * 1 * width * height.
        tl_mask = gt_tl_heatmap.eq(1).sum(1).gt(0).unsqueeze(1).type_as(
            gt_tl_heatmap)
        br_mask = gt_br_heatmap.eq(1).sum(1).gt(0).unsqueeze(1).type_as(
            gt_br_heatmap)

        # Guiding shift loss
        tl_guiding_loss = self.loss_guiding_shift(
            tl_guiding_shift,
            gt_tl_guiding_shift,
            tl_mask,
            avg_factor=tl_mask.sum())
        br_guiding_loss = self.loss_guiding_shift(
            br_guiding_shift,
            gt_br_guiding_shift,
            br_mask,
            avg_factor=br_mask.sum())
        guiding_loss = (tl_guiding_loss + br_guiding_loss) / 2.0
        # Centripetal shift loss
        tl_centripetal_loss = self.loss_centripetal_shift(
            tl_centripetal_shift,
            gt_tl_centripetal_shift,
            tl_mask,
            avg_factor=tl_mask.sum())
        br_centripetal_loss = self.loss_centripetal_shift(
            br_centripetal_shift,
            gt_br_centripetal_shift,
            br_mask,
            avg_factor=br_mask.sum())
        centripetal_loss = (tl_centripetal_loss + br_centripetal_loss) / 2.0

        return det_loss, off_loss, guiding_loss, centripetal_loss

    @force_fp32()
    def get_bboxes(self,
                   tl_heats,
                   br_heats,
                   tl_offs,
                   br_offs,
                   tl_guiding_shifts,
                   br_guiding_shifts,
                   tl_centripetal_shifts,
                   br_centripetal_shifts,
                   img_metas,
                   rescale=False,
                   with_nms=True):
        """Transform network output for a batch into bbox predictions.

        Args:
            tl_heats (list[Tensor]): Top-left corner heatmaps for each level
                with shape (N, num_classes, H, W).
            br_heats (list[Tensor]): Bottom-right corner heatmaps for each
                level with shape (N, num_classes, H, W).
            tl_offs (list[Tensor]): Top-left corner offsets for each level
                with shape (N, corner_offset_channels, H, W).
            br_offs (list[Tensor]): Bottom-right corner offsets for each level
                with shape (N, corner_offset_channels, H, W).
            tl_guiding_shifts (list[Tensor]): Top-left guiding shifts for each
                level with shape (N, guiding_shift_channels, H, W). Useless in
                this function, we keep this arg because it's the raw output
                from CentripetalHead.
            br_guiding_shifts (list[Tensor]): Bottom-right guiding shifts for
                each level with shape (N, guiding_shift_channels, H, W).
                Useless in this function, we keep this arg because it's the
                raw output from CentripetalHead.
            tl_centripetal_shifts (list[Tensor]): Top-left centripetal shifts
                for each level with shape (N, centripetal_shift_channels, H,
                W).
            br_centripetal_shifts (list[Tensor]): Bottom-right centripetal
                shifts for each level with shape (N,
                centripetal_shift_channels, H, W).
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            rescale (bool): If True, return boxes in original image space.
                Default: False.
            with_nms (bool): If True, do nms before return boxes.
                Default: True.
        """
        assert tl_heats[-1].shape[0] == br_heats[-1].shape[0] == len(img_metas)
        result_list = []
        for img_id in range(len(img_metas)):
            result_list.append(
                self._get_bboxes_single(
                    tl_heats[-1][img_id:img_id + 1, :],
                    br_heats[-1][img_id:img_id + 1, :],
                    tl_offs[-1][img_id:img_id + 1, :],
                    br_offs[-1][img_id:img_id + 1, :],
                    img_metas[img_id],
                    tl_emb=None,
                    br_emb=None,
                    tl_centripetal_shift=tl_centripetal_shifts[-1][
                        img_id:img_id + 1, :],
                    br_centripetal_shift=br_centripetal_shifts[-1][
                        img_id:img_id + 1, :],
                    rescale=rescale,
                    with_nms=with_nms))

        return result_list