image.py
19.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import matplotlib.pyplot as plt
import mmcv
import numpy as np
import pycocotools.mask as mask_util
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
from mmdet.core.evaluation.panoptic_utils import INSTANCE_OFFSET
from ..mask.structures import bitmap_to_polygon
from ..utils import mask2ndarray
from .palette import get_palette, palette_val
__all__ = [
'color_val_matplotlib', 'draw_masks', 'draw_bboxes', 'draw_labels',
'imshow_det_bboxes', 'imshow_gt_det_bboxes'
]
EPS = 1e-2
def color_val_matplotlib(color):
"""Convert various input in BGR order to normalized RGB matplotlib color
tuples.
Args:
color (:obj`Color` | str | tuple | int | ndarray): Color inputs.
Returns:
tuple[float]: A tuple of 3 normalized floats indicating RGB channels.
"""
color = mmcv.color_val(color)
color = [color / 255 for color in color[::-1]]
return tuple(color)
def _get_adaptive_scales(areas, min_area=800, max_area=30000):
"""Get adaptive scales according to areas.
The scale range is [0.5, 1.0]. When the area is less than
``'min_area'``, the scale is 0.5 while the area is larger than
``'max_area'``, the scale is 1.0.
Args:
areas (ndarray): The areas of bboxes or masks with the
shape of (n, ).
min_area (int): Lower bound areas for adaptive scales.
Default: 800.
max_area (int): Upper bound areas for adaptive scales.
Default: 30000.
Returns:
ndarray: The adaotive scales with the shape of (n, ).
"""
scales = 0.5 + (areas - min_area) / (max_area - min_area)
scales = np.clip(scales, 0.5, 1.0)
return scales
def _get_bias_color(base, max_dist=30):
"""Get different colors for each masks.
Get different colors for each masks by adding a bias
color to the base category color.
Args:
base (ndarray): The base category color with the shape
of (3, ).
max_dist (int): The max distance of bias. Default: 30.
Returns:
ndarray: The new color for a mask with the shape of (3, ).
"""
new_color = base + np.random.randint(
low=-max_dist, high=max_dist + 1, size=3)
return np.clip(new_color, 0, 255, new_color)
def draw_bboxes(ax, bboxes, color='g', alpha=0.8, thickness=2):
"""Draw bounding boxes on the axes.
Args:
ax (matplotlib.Axes): The input axes.
bboxes (ndarray): The input bounding boxes with the shape
of (n, 4).
color (list[tuple] | matplotlib.color): the colors for each
bounding boxes.
alpha (float): Transparency of bounding boxes. Default: 0.8.
thickness (int): Thickness of lines. Default: 2.
Returns:
matplotlib.Axes: The result axes.
"""
polygons = []
for i, bbox in enumerate(bboxes):
bbox_int = bbox.astype(np.int32)
poly = [[bbox_int[0], bbox_int[1]], [bbox_int[0], bbox_int[3]],
[bbox_int[2], bbox_int[3]], [bbox_int[2], bbox_int[1]]]
np_poly = np.array(poly).reshape((4, 2))
polygons.append(Polygon(np_poly))
p = PatchCollection(
polygons,
facecolor='none',
edgecolors=color,
linewidths=thickness,
alpha=alpha)
ax.add_collection(p)
return ax
def draw_labels(ax,
labels,
positions,
scores=None,
class_names=None,
color='w',
font_size=8,
scales=None,
horizontal_alignment='left'):
"""Draw labels on the axes.
Args:
ax (matplotlib.Axes): The input axes.
labels (ndarray): The labels with the shape of (n, ).
positions (ndarray): The positions to draw each labels.
scores (ndarray): The scores for each labels.
class_names (list[str]): The class names.
color (list[tuple] | matplotlib.color): The colors for labels.
font_size (int): Font size of texts. Default: 8.
scales (list[float]): Scales of texts. Default: None.
horizontal_alignment (str): The horizontal alignment method of
texts. Default: 'left'.
Returns:
matplotlib.Axes: The result axes.
"""
for i, (pos, label) in enumerate(zip(positions, labels)):
label_text = class_names[
label] if class_names is not None else f'class {label}'
if scores is not None:
label_text += f'|{scores[i]:.02f}'
text_color = color[i] if isinstance(color, list) else color
font_size_mask = font_size if scales is None else font_size * scales[i]
ax.text(
pos[0],
pos[1],
f'{label_text}',
bbox={
'facecolor': 'black',
'alpha': 0.8,
'pad': 0.7,
'edgecolor': 'none'
},
color=text_color,
fontsize=font_size_mask,
verticalalignment='top',
horizontalalignment=horizontal_alignment)
return ax
def draw_masks(ax, img, masks, color=None, with_edge=True, alpha=0.8):
"""Draw masks on the image and their edges on the axes.
Args:
ax (matplotlib.Axes): The input axes.
img (ndarray): The image with the shape of (3, h, w).
masks (ndarray): The masks with the shape of (n, h, w).
color (ndarray): The colors for each masks with the shape
of (n, 3).
with_edge (bool): Whether to draw edges. Default: True.
alpha (float): Transparency of bounding boxes. Default: 0.8.
Returns:
matplotlib.Axes: The result axes.
ndarray: The result image.
"""
taken_colors = set([0, 0, 0])
if color is None:
random_colors = np.random.randint(0, 255, (masks.size(0), 3))
color = [tuple(c) for c in random_colors]
color = np.array(color, dtype=np.uint8)
polygons = []
for i, mask in enumerate(masks):
if with_edge:
contours, _ = bitmap_to_polygon(mask)
polygons += [Polygon(c) for c in contours]
color_mask = color[i]
while tuple(color_mask) in taken_colors:
color_mask = _get_bias_color(color_mask)
taken_colors.add(tuple(color_mask))
mask = mask.astype(bool)
img[mask] = img[mask] * (1 - alpha) + color_mask * alpha
p = PatchCollection(
polygons, facecolor='none', edgecolors='w', linewidths=1, alpha=0.8)
ax.add_collection(p)
return ax, img
def imshow_det_bboxes(img,
bboxes=None,
labels=None,
segms=None,
class_names=None,
score_thr=0,
bbox_color='green',
text_color='green',
mask_color=None,
thickness=2,
font_size=8,
win_name='',
show=True,
wait_time=0,
out_file=None):
"""Draw bboxes and class labels (with scores) on an image.
Args:
img (str | ndarray): The image to be displayed.
bboxes (ndarray): Bounding boxes (with scores), shaped (n, 4) or
(n, 5).
labels (ndarray): Labels of bboxes.
segms (ndarray | None): Masks, shaped (n,h,w) or None.
class_names (list[str]): Names of each classes.
score_thr (float): Minimum score of bboxes to be shown. Default: 0.
bbox_color (list[tuple] | tuple | str | None): Colors of bbox lines.
If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: 'green'.
text_color (list[tuple] | tuple | str | None): Colors of texts.
If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: 'green'.
mask_color (list[tuple] | tuple | str | None, optional): Colors of
masks. If a single color is given, it will be applied to all
classes. The tuple of color should be in RGB order.
Default: None.
thickness (int): Thickness of lines. Default: 2.
font_size (int): Font size of texts. Default: 13.
show (bool): Whether to show the image. Default: True.
win_name (str): The window name. Default: ''.
wait_time (float): Value of waitKey param. Default: 0.
out_file (str, optional): The filename to write the image.
Default: None.
Returns:
ndarray: The image with bboxes drawn on it.
"""
assert bboxes is None or bboxes.ndim == 2, \
f' bboxes ndim should be 2, but its ndim is {bboxes.ndim}.'
assert labels.ndim == 1, \
f' labels ndim should be 1, but its ndim is {labels.ndim}.'
assert bboxes is None or bboxes.shape[1] == 4 or bboxes.shape[1] == 5, \
f' bboxes.shape[1] should be 4 or 5, but its {bboxes.shape[1]}.'
assert bboxes is None or bboxes.shape[0] <= labels.shape[0], \
'labels.shape[0] should not be less than bboxes.shape[0].'
assert segms is None or segms.shape[0] == labels.shape[0], \
'segms.shape[0] and labels.shape[0] should have the same length.'
assert segms is not None or bboxes is not None, \
'segms and bboxes should not be None at the same time.'
img = mmcv.imread(img).astype(np.uint8)
if score_thr > 0:
assert bboxes is not None and bboxes.shape[1] == 5
scores = bboxes[:, -1]
inds = scores > score_thr
bboxes = bboxes[inds, :]
labels = labels[inds]
if segms is not None:
segms = segms[inds, ...]
img = mmcv.bgr2rgb(img)
width, height = img.shape[1], img.shape[0]
img = np.ascontiguousarray(img)
fig = plt.figure(win_name, frameon=False)
plt.title(win_name)
canvas = fig.canvas
dpi = fig.get_dpi()
# add a small EPS to avoid precision lost due to matplotlib's truncation
# (https://github.com/matplotlib/matplotlib/issues/15363)
fig.set_size_inches((width + EPS) / dpi, (height + EPS) / dpi)
# remove white edges by set subplot margin
plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
ax = plt.gca()
ax.axis('off')
max_label = int(max(labels) if len(labels) > 0 else 0)
text_palette = palette_val(get_palette(text_color, max_label + 1))
text_colors = [text_palette[label] for label in labels]
num_bboxes = 0
if bboxes is not None:
num_bboxes = bboxes.shape[0]
bbox_palette = palette_val(get_palette(bbox_color, max_label + 1))
colors = [bbox_palette[label] for label in labels[:num_bboxes]]
draw_bboxes(ax, bboxes, colors, alpha=0.8, thickness=thickness)
horizontal_alignment = 'left'
positions = bboxes[:, :2].astype(np.int32) + thickness
areas = (bboxes[:, 3] - bboxes[:, 1]) * (bboxes[:, 2] - bboxes[:, 0])
scales = _get_adaptive_scales(areas)
scores = bboxes[:, 4] if bboxes.shape[1] == 5 else None
draw_labels(
ax,
labels[:num_bboxes],
positions,
scores=scores,
class_names=class_names,
color=text_colors,
font_size=font_size,
scales=scales,
horizontal_alignment=horizontal_alignment)
if segms is not None:
mask_palette = get_palette(mask_color, max_label + 1)
colors = [mask_palette[label] for label in labels]
colors = np.array(colors, dtype=np.uint8)
draw_masks(ax, img, segms, colors, with_edge=True)
if num_bboxes < segms.shape[0]:
segms = segms[num_bboxes:]
horizontal_alignment = 'center'
areas = []
positions = []
for mask in segms:
_, _, stats, centroids = cv2.connectedComponentsWithStats(
mask.astype(np.uint8), connectivity=8)
largest_id = np.argmax(stats[1:, -1]) + 1
positions.append(centroids[largest_id])
areas.append(stats[largest_id, -1])
areas = np.stack(areas, axis=0)
scales = _get_adaptive_scales(areas)
draw_labels(
ax,
labels[num_bboxes:],
positions,
class_names=class_names,
color=text_colors,
font_size=font_size,
scales=scales,
horizontal_alignment=horizontal_alignment)
plt.imshow(img)
stream, _ = canvas.print_to_buffer()
buffer = np.frombuffer(stream, dtype='uint8')
img_rgba = buffer.reshape(height, width, 4)
rgb, alpha = np.split(img_rgba, [3], axis=2)
img = rgb.astype('uint8')
img = mmcv.rgb2bgr(img)
if show:
# We do not use cv2 for display because in some cases, opencv will
# conflict with Qt, it will output a warning: Current thread
# is not the object's thread. You can refer to
# https://github.com/opencv/opencv-python/issues/46 for details
if wait_time == 0:
plt.show()
else:
plt.show(block=False)
plt.pause(wait_time)
if out_file is not None:
mmcv.imwrite(img, out_file)
plt.close()
return img
def imshow_gt_det_bboxes(img,
annotation,
result,
class_names=None,
score_thr=0,
gt_bbox_color=(61, 102, 255),
gt_text_color=(200, 200, 200),
gt_mask_color=(61, 102, 255),
det_bbox_color=(241, 101, 72),
det_text_color=(200, 200, 200),
det_mask_color=(241, 101, 72),
thickness=2,
font_size=13,
win_name='',
show=True,
wait_time=0,
out_file=None):
"""General visualization GT and result function.
Args:
img (str | ndarray): The image to be displayed.
annotation (dict): Ground truth annotations where contain keys of
'gt_bboxes' and 'gt_labels' or 'gt_masks'.
result (tuple[list] | list): The detection result, can be either
(bbox, segm) or just bbox.
class_names (list[str]): Names of each classes.
score_thr (float): Minimum score of bboxes to be shown. Default: 0.
gt_bbox_color (list[tuple] | tuple | str | None): Colors of bbox lines.
If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: (61, 102, 255).
gt_text_color (list[tuple] | tuple | str | None): Colors of texts.
If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: (200, 200, 200).
gt_mask_color (list[tuple] | tuple | str | None, optional): Colors of
masks. If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: (61, 102, 255).
det_bbox_color (list[tuple] | tuple | str | None):Colors of bbox lines.
If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: (241, 101, 72).
det_text_color (list[tuple] | tuple | str | None):Colors of texts.
If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: (200, 200, 200).
det_mask_color (list[tuple] | tuple | str | None, optional): Color of
masks. If a single color is given, it will be applied to all classes.
The tuple of color should be in RGB order. Default: (241, 101, 72).
thickness (int): Thickness of lines. Default: 2.
font_size (int): Font size of texts. Default: 13.
win_name (str): The window name. Default: ''.
show (bool): Whether to show the image. Default: True.
wait_time (float): Value of waitKey param. Default: 0.
out_file (str, optional): The filename to write the image.
Default: None.
Returns:
ndarray: The image with bboxes or masks drawn on it.
"""
assert 'gt_bboxes' in annotation
assert 'gt_labels' in annotation
assert isinstance(result, (tuple, list, dict)), 'Expected ' \
f'tuple or list or dict, but get {type(result)}'
gt_bboxes = annotation['gt_bboxes']
gt_labels = annotation['gt_labels']
gt_masks = annotation.get('gt_masks', None)
if gt_masks is not None:
gt_masks = mask2ndarray(gt_masks)
gt_seg = annotation.get('gt_semantic_seg', None)
if gt_seg is not None:
pad_value = 255 # the padding value of gt_seg
sem_labels = np.unique(gt_seg)
all_labels = np.concatenate((gt_labels, sem_labels), axis=0)
all_labels, counts = np.unique(all_labels, return_counts=True)
stuff_labels = all_labels[np.logical_and(counts < 2,
all_labels != pad_value)]
stuff_masks = gt_seg[None] == stuff_labels[:, None, None]
gt_labels = np.concatenate((gt_labels, stuff_labels), axis=0)
gt_masks = np.concatenate((gt_masks, stuff_masks.astype(np.uint8)),
axis=0)
# If you need to show the bounding boxes,
# please comment the following line
# gt_bboxes = None
img = mmcv.imread(img)
img = imshow_det_bboxes(
img,
gt_bboxes,
gt_labels,
gt_masks,
class_names=class_names,
bbox_color=gt_bbox_color,
text_color=gt_text_color,
mask_color=gt_mask_color,
thickness=thickness,
font_size=font_size,
win_name=win_name,
show=False)
if not isinstance(result, dict):
if isinstance(result, tuple):
bbox_result, segm_result = result
if isinstance(segm_result, tuple):
segm_result = segm_result[0] # ms rcnn
else:
bbox_result, segm_result = result, None
bboxes = np.vstack(bbox_result)
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(bbox_result)
]
labels = np.concatenate(labels)
segms = None
if segm_result is not None and len(labels) > 0: # non empty
segms = mmcv.concat_list(segm_result)
segms = mask_util.decode(segms)
segms = segms.transpose(2, 0, 1)
else:
assert class_names is not None, 'We need to know the number ' \
'of classes.'
VOID = len(class_names)
bboxes = None
pan_results = result['pan_results']
# keep objects ahead
ids = np.unique(pan_results)[::-1]
legal_indices = ids != VOID
ids = ids[legal_indices]
labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)
segms = (pan_results[None] == ids[:, None, None])
img = imshow_det_bboxes(
img,
bboxes,
labels,
segms=segms,
class_names=class_names,
score_thr=score_thr,
bbox_color=det_bbox_color,
text_color=det_text_color,
mask_color=det_mask_color,
thickness=thickness,
font_size=font_size,
win_name=win_name,
show=show,
wait_time=wait_time,
out_file=out_file)
return img