misc.py
7.18 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Copyright (c) OpenMMLab. All rights reserved.
from functools import partial
import numpy as np
import torch
from six.moves import map, zip
from ..mask.structures import BitmapMasks, PolygonMasks
def multi_apply(func, *args, **kwargs):
"""Apply function to a list of arguments.
Note:
This function applies the ``func`` to multiple inputs and
map the multiple outputs of the ``func`` into different
list. Each list contains the same type of outputs corresponding
to different inputs.
Args:
func (Function): A function that will be applied to a list of
arguments
Returns:
tuple(list): A tuple containing multiple list, each list contains \
a kind of returned results by the function
"""
pfunc = partial(func, **kwargs) if kwargs else func
map_results = map(pfunc, *args)
return tuple(map(list, zip(*map_results)))
def unmap(data, count, inds, fill=0):
"""Unmap a subset of item (data) back to the original set of items (of size
count)"""
if data.dim() == 1:
ret = data.new_full((count, ), fill)
ret[inds.type(torch.bool)] = data
else:
new_size = (count, ) + data.size()[1:]
ret = data.new_full(new_size, fill)
ret[inds.type(torch.bool), :] = data
return ret
def mask2ndarray(mask):
"""Convert Mask to ndarray..
Args:
mask (:obj:`BitmapMasks` or :obj:`PolygonMasks` or
torch.Tensor or np.ndarray): The mask to be converted.
Returns:
np.ndarray: Ndarray mask of shape (n, h, w) that has been converted
"""
if isinstance(mask, (BitmapMasks, PolygonMasks)):
mask = mask.to_ndarray()
elif isinstance(mask, torch.Tensor):
mask = mask.detach().cpu().numpy()
elif not isinstance(mask, np.ndarray):
raise TypeError(f'Unsupported {type(mask)} data type')
return mask
def flip_tensor(src_tensor, flip_direction):
"""flip tensor base on flip_direction.
Args:
src_tensor (Tensor): input feature map, shape (B, C, H, W).
flip_direction (str): The flipping direction. Options are
'horizontal', 'vertical', 'diagonal'.
Returns:
out_tensor (Tensor): Flipped tensor.
"""
assert src_tensor.ndim == 4
valid_directions = ['horizontal', 'vertical', 'diagonal']
assert flip_direction in valid_directions
if flip_direction == 'horizontal':
out_tensor = torch.flip(src_tensor, [3])
elif flip_direction == 'vertical':
out_tensor = torch.flip(src_tensor, [2])
else:
out_tensor = torch.flip(src_tensor, [2, 3])
return out_tensor
def select_single_mlvl(mlvl_tensors, batch_id, detach=True):
"""Extract a multi-scale single image tensor from a multi-scale batch
tensor based on batch index.
Note: The default value of detach is True, because the proposal gradient
needs to be detached during the training of the two-stage model. E.g
Cascade Mask R-CNN.
Args:
mlvl_tensors (list[Tensor]): Batch tensor for all scale levels,
each is a 4D-tensor.
batch_id (int): Batch index.
detach (bool): Whether detach gradient. Default True.
Returns:
list[Tensor]: Multi-scale single image tensor.
"""
assert isinstance(mlvl_tensors, (list, tuple))
num_levels = len(mlvl_tensors)
if detach:
mlvl_tensor_list = [
mlvl_tensors[i][batch_id].detach() for i in range(num_levels)
]
else:
mlvl_tensor_list = [
mlvl_tensors[i][batch_id] for i in range(num_levels)
]
return mlvl_tensor_list
def filter_scores_and_topk(scores, score_thr, topk, results=None):
"""Filter results using score threshold and topk candidates.
Args:
scores (Tensor): The scores, shape (num_bboxes, K).
score_thr (float): The score filter threshold.
topk (int): The number of topk candidates.
results (dict or list or Tensor, Optional): The results to
which the filtering rule is to be applied. The shape
of each item is (num_bboxes, N).
Returns:
tuple: Filtered results
- scores (Tensor): The scores after being filtered, \
shape (num_bboxes_filtered, ).
- labels (Tensor): The class labels, shape \
(num_bboxes_filtered, ).
- anchor_idxs (Tensor): The anchor indexes, shape \
(num_bboxes_filtered, ).
- filtered_results (dict or list or Tensor, Optional): \
The filtered results. The shape of each item is \
(num_bboxes_filtered, N).
"""
valid_mask = scores > score_thr
scores = scores[valid_mask]
valid_idxs = torch.nonzero(valid_mask)
num_topk = min(topk, valid_idxs.size(0))
# torch.sort is actually faster than .topk (at least on GPUs)
scores, idxs = scores.sort(descending=True)
scores = scores[:num_topk]
topk_idxs = valid_idxs[idxs[:num_topk]]
keep_idxs, labels = topk_idxs.unbind(dim=1)
filtered_results = None
if results is not None:
if isinstance(results, dict):
filtered_results = {k: v[keep_idxs] for k, v in results.items()}
elif isinstance(results, list):
filtered_results = [result[keep_idxs] for result in results]
elif isinstance(results, torch.Tensor):
filtered_results = results[keep_idxs]
else:
raise NotImplementedError(f'Only supports dict or list or Tensor, '
f'but get {type(results)}.')
return scores, labels, keep_idxs, filtered_results
def center_of_mass(mask, esp=1e-6):
"""Calculate the centroid coordinates of the mask.
Args:
mask (Tensor): The mask to be calculated, shape (h, w).
esp (float): Avoid dividing by zero. Default: 1e-6.
Returns:
tuple[Tensor]: the coordinates of the center point of the mask.
- center_h (Tensor): the center point of the height.
- center_w (Tensor): the center point of the width.
"""
h, w = mask.shape
grid_h = torch.arange(h, device=mask.device)[:, None]
grid_w = torch.arange(w, device=mask.device)
normalizer = mask.sum().float().clamp(min=esp)
center_h = (mask * grid_h).sum() / normalizer
center_w = (mask * grid_w).sum() / normalizer
return center_h, center_w
def generate_coordinate(featmap_sizes, device='cuda'):
"""Generate the coordinate.
Args:
featmap_sizes (tuple): The feature to be calculated,
of shape (N, C, W, H).
device (str): The device where the feature will be put on.
Returns:
coord_feat (Tensor): The coordinate feature, of shape (N, 2, W, H).
"""
x_range = torch.linspace(-1, 1, featmap_sizes[-1], device=device)
y_range = torch.linspace(-1, 1, featmap_sizes[-2], device=device)
y, x = torch.meshgrid(y_range, x_range)
y = y.expand([featmap_sizes[0], 1, -1, -1])
x = x.expand([featmap_sizes[0], 1, -1, -1])
coord_feat = torch.cat([x, y], 1)
return coord_feat