structures.py 41.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod

import cv2
import mmcv
import numpy as np
import pycocotools.mask as maskUtils
import torch
from mmcv.ops.roi_align import roi_align


class BaseInstanceMasks(metaclass=ABCMeta):
    """Base class for instance masks."""

    @abstractmethod
    def rescale(self, scale, interpolation='nearest'):
        """Rescale masks as large as possible while keeping the aspect ratio.
        For details can refer to `mmcv.imrescale`.

        Args:
            scale (tuple[int]): The maximum size (h, w) of rescaled mask.
            interpolation (str): Same as :func:`mmcv.imrescale`.

        Returns:
            BaseInstanceMasks: The rescaled masks.
        """

    @abstractmethod
    def resize(self, out_shape, interpolation='nearest'):
        """Resize masks to the given out_shape.

        Args:
            out_shape: Target (h, w) of resized mask.
            interpolation (str): See :func:`mmcv.imresize`.

        Returns:
            BaseInstanceMasks: The resized masks.
        """

    @abstractmethod
    def flip(self, flip_direction='horizontal'):
        """Flip masks alone the given direction.

        Args:
            flip_direction (str): Either 'horizontal' or 'vertical'.

        Returns:
            BaseInstanceMasks: The flipped masks.
        """

    @abstractmethod
    def pad(self, out_shape, pad_val):
        """Pad masks to the given size of (h, w).

        Args:
            out_shape (tuple[int]): Target (h, w) of padded mask.
            pad_val (int): The padded value.

        Returns:
            BaseInstanceMasks: The padded masks.
        """

    @abstractmethod
    def crop(self, bbox):
        """Crop each mask by the given bbox.

        Args:
            bbox (ndarray): Bbox in format [x1, y1, x2, y2], shape (4, ).

        Return:
            BaseInstanceMasks: The cropped masks.
        """

    @abstractmethod
    def crop_and_resize(self,
                        bboxes,
                        out_shape,
                        inds,
                        device,
                        interpolation='bilinear',
                        binarize=True):
        """Crop and resize masks by the given bboxes.

        This function is mainly used in mask targets computation.
        It firstly align mask to bboxes by assigned_inds, then crop mask by the
        assigned bbox and resize to the size of (mask_h, mask_w)

        Args:
            bboxes (Tensor): Bboxes in format [x1, y1, x2, y2], shape (N, 4)
            out_shape (tuple[int]): Target (h, w) of resized mask
            inds (ndarray): Indexes to assign masks to each bbox,
                shape (N,) and values should be between [0, num_masks - 1].
            device (str): Device of bboxes
            interpolation (str): See `mmcv.imresize`
            binarize (bool): if True fractional values are rounded to 0 or 1
                after the resize operation. if False and unsupported an error
                will be raised. Defaults to True.

        Return:
            BaseInstanceMasks: the cropped and resized masks.
        """

    @abstractmethod
    def expand(self, expanded_h, expanded_w, top, left):
        """see :class:`Expand`."""

    @property
    @abstractmethod
    def areas(self):
        """ndarray: areas of each instance."""

    @abstractmethod
    def to_ndarray(self):
        """Convert masks to the format of ndarray.

        Return:
            ndarray: Converted masks in the format of ndarray.
        """

    @abstractmethod
    def to_tensor(self, dtype, device):
        """Convert masks to the format of Tensor.

        Args:
            dtype (str): Dtype of converted mask.
            device (torch.device): Device of converted masks.

        Returns:
            Tensor: Converted masks in the format of Tensor.
        """

    @abstractmethod
    def translate(self,
                  out_shape,
                  offset,
                  direction='horizontal',
                  fill_val=0,
                  interpolation='bilinear'):
        """Translate the masks.

        Args:
            out_shape (tuple[int]): Shape for output mask, format (h, w).
            offset (int | float): The offset for translate.
            direction (str): The translate direction, either "horizontal"
                or "vertical".
            fill_val (int | float): Border value. Default 0.
            interpolation (str): Same as :func:`mmcv.imtranslate`.

        Returns:
            Translated masks.
        """

    def shear(self,
              out_shape,
              magnitude,
              direction='horizontal',
              border_value=0,
              interpolation='bilinear'):
        """Shear the masks.

        Args:
            out_shape (tuple[int]): Shape for output mask, format (h, w).
            magnitude (int | float): The magnitude used for shear.
            direction (str): The shear direction, either "horizontal"
                or "vertical".
            border_value (int | tuple[int]): Value used in case of a
                constant border. Default 0.
            interpolation (str): Same as in :func:`mmcv.imshear`.

        Returns:
            ndarray: Sheared masks.
        """

    @abstractmethod
    def rotate(self, out_shape, angle, center=None, scale=1.0, fill_val=0):
        """Rotate the masks.

        Args:
            out_shape (tuple[int]): Shape for output mask, format (h, w).
            angle (int | float): Rotation angle in degrees. Positive values
                mean counter-clockwise rotation.
            center (tuple[float], optional): Center point (w, h) of the
                rotation in source image. If not specified, the center of
                the image will be used.
            scale (int | float): Isotropic scale factor.
            fill_val (int | float): Border value. Default 0 for masks.

        Returns:
            Rotated masks.
        """


class BitmapMasks(BaseInstanceMasks):
    """This class represents masks in the form of bitmaps.

    Args:
        masks (ndarray): ndarray of masks in shape (N, H, W), where N is
            the number of objects.
        height (int): height of masks
        width (int): width of masks

    Example:
        >>> from mmdet.core.mask.structures import *  # NOQA
        >>> num_masks, H, W = 3, 32, 32
        >>> rng = np.random.RandomState(0)
        >>> masks = (rng.rand(num_masks, H, W) > 0.1).astype(np.int)
        >>> self = BitmapMasks(masks, height=H, width=W)

        >>> # demo crop_and_resize
        >>> num_boxes = 5
        >>> bboxes = np.array([[0, 0, 30, 10.0]] * num_boxes)
        >>> out_shape = (14, 14)
        >>> inds = torch.randint(0, len(self), size=(num_boxes,))
        >>> device = 'cpu'
        >>> interpolation = 'bilinear'
        >>> new = self.crop_and_resize(
        ...     bboxes, out_shape, inds, device, interpolation)
        >>> assert len(new) == num_boxes
        >>> assert new.height, new.width == out_shape
    """

    def __init__(self, masks, height, width):
        self.height = height
        self.width = width
        if len(masks) == 0:
            self.masks = np.empty((0, self.height, self.width), dtype=np.uint8)
        else:
            assert isinstance(masks, (list, np.ndarray))
            if isinstance(masks, list):
                assert isinstance(masks[0], np.ndarray)
                assert masks[0].ndim == 2  # (H, W)
            else:
                assert masks.ndim == 3  # (N, H, W)

            self.masks = np.stack(masks).reshape(-1, height, width)
            assert self.masks.shape[1] == self.height
            assert self.masks.shape[2] == self.width

    def __getitem__(self, index):
        """Index the BitmapMask.

        Args:
            index (int | ndarray): Indices in the format of integer or ndarray.

        Returns:
            :obj:`BitmapMasks`: Indexed bitmap masks.
        """
        masks = self.masks[index].reshape(-1, self.height, self.width)
        return BitmapMasks(masks, self.height, self.width)

    def __iter__(self):
        return iter(self.masks)

    def __repr__(self):
        s = self.__class__.__name__ + '('
        s += f'num_masks={len(self.masks)}, '
        s += f'height={self.height}, '
        s += f'width={self.width})'
        return s

    def __len__(self):
        """Number of masks."""
        return len(self.masks)

    def rescale(self, scale, interpolation='nearest'):
        """See :func:`BaseInstanceMasks.rescale`."""
        if len(self.masks) == 0:
            new_w, new_h = mmcv.rescale_size((self.width, self.height), scale)
            rescaled_masks = np.empty((0, new_h, new_w), dtype=np.uint8)
        else:
            rescaled_masks = np.stack([
                mmcv.imrescale(mask, scale, interpolation=interpolation)
                for mask in self.masks
            ])
        height, width = rescaled_masks.shape[1:]
        return BitmapMasks(rescaled_masks, height, width)

    def resize(self, out_shape, interpolation='nearest'):
        """See :func:`BaseInstanceMasks.resize`."""
        if len(self.masks) == 0:
            resized_masks = np.empty((0, *out_shape), dtype=np.uint8)
        else:
            resized_masks = np.stack([
                mmcv.imresize(
                    mask, out_shape[::-1], interpolation=interpolation)
                for mask in self.masks
            ])
        return BitmapMasks(resized_masks, *out_shape)

    def flip(self, flip_direction='horizontal'):
        """See :func:`BaseInstanceMasks.flip`."""
        assert flip_direction in ('horizontal', 'vertical', 'diagonal')

        if len(self.masks) == 0:
            flipped_masks = self.masks
        else:
            flipped_masks = np.stack([
                mmcv.imflip(mask, direction=flip_direction)
                for mask in self.masks
            ])
        return BitmapMasks(flipped_masks, self.height, self.width)

    def pad(self, out_shape, pad_val=0):
        """See :func:`BaseInstanceMasks.pad`."""
        if len(self.masks) == 0:
            padded_masks = np.empty((0, *out_shape), dtype=np.uint8)
        else:
            padded_masks = np.stack([
                mmcv.impad(mask, shape=out_shape, pad_val=pad_val)
                for mask in self.masks
            ])
        return BitmapMasks(padded_masks, *out_shape)

    def crop(self, bbox):
        """See :func:`BaseInstanceMasks.crop`."""
        assert isinstance(bbox, np.ndarray)
        assert bbox.ndim == 1

        # clip the boundary
        bbox = bbox.copy()
        bbox[0::2] = np.clip(bbox[0::2], 0, self.width)
        bbox[1::2] = np.clip(bbox[1::2], 0, self.height)
        x1, y1, x2, y2 = bbox
        w = np.maximum(x2 - x1, 1)
        h = np.maximum(y2 - y1, 1)

        if len(self.masks) == 0:
            cropped_masks = np.empty((0, h, w), dtype=np.uint8)
        else:
            cropped_masks = self.masks[:, y1:y1 + h, x1:x1 + w]
        return BitmapMasks(cropped_masks, h, w)

    def crop_and_resize(self,
                        bboxes,
                        out_shape,
                        inds,
                        device='cpu',
                        interpolation='bilinear',
                        binarize=True):
        """See :func:`BaseInstanceMasks.crop_and_resize`."""
        if len(self.masks) == 0:
            empty_masks = np.empty((0, *out_shape), dtype=np.uint8)
            return BitmapMasks(empty_masks, *out_shape)

        # convert bboxes to tensor
        if isinstance(bboxes, np.ndarray):
            bboxes = torch.from_numpy(bboxes).to(device=device)
        if isinstance(inds, np.ndarray):
            inds = torch.from_numpy(inds).to(device=device)

        num_bbox = bboxes.shape[0]
        fake_inds = torch.arange(
            num_bbox, device=device).to(dtype=bboxes.dtype)[:, None]
        rois = torch.cat([fake_inds, bboxes], dim=1)  # Nx5
        rois = rois.to(device=device)
        if num_bbox > 0:
            gt_masks_th = torch.from_numpy(self.masks).to(device).index_select(
                0, inds).to(dtype=rois.dtype)
            targets = roi_align(gt_masks_th[:, None, :, :], rois, out_shape,
                                1.0, 0, 'avg', True).squeeze(1)
            if binarize:
                resized_masks = (targets >= 0.5).cpu().numpy()
            else:
                resized_masks = targets.cpu().numpy()
        else:
            resized_masks = []
        return BitmapMasks(resized_masks, *out_shape)

    def expand(self, expanded_h, expanded_w, top, left):
        """See :func:`BaseInstanceMasks.expand`."""
        if len(self.masks) == 0:
            expanded_mask = np.empty((0, expanded_h, expanded_w),
                                     dtype=np.uint8)
        else:
            expanded_mask = np.zeros((len(self), expanded_h, expanded_w),
                                     dtype=np.uint8)
            expanded_mask[:, top:top + self.height,
                          left:left + self.width] = self.masks
        return BitmapMasks(expanded_mask, expanded_h, expanded_w)

    def translate(self,
                  out_shape,
                  offset,
                  direction='horizontal',
                  fill_val=0,
                  interpolation='bilinear'):
        """Translate the BitmapMasks.

        Args:
            out_shape (tuple[int]): Shape for output mask, format (h, w).
            offset (int | float): The offset for translate.
            direction (str): The translate direction, either "horizontal"
                or "vertical".
            fill_val (int | float): Border value. Default 0 for masks.
            interpolation (str): Same as :func:`mmcv.imtranslate`.

        Returns:
            BitmapMasks: Translated BitmapMasks.

        Example:
            >>> from mmdet.core.mask.structures import BitmapMasks
            >>> self = BitmapMasks.random(dtype=np.uint8)
            >>> out_shape = (32, 32)
            >>> offset = 4
            >>> direction = 'horizontal'
            >>> fill_val = 0
            >>> interpolation = 'bilinear'
            >>> # Note, There seem to be issues when:
            >>> # * out_shape is different than self's shape
            >>> # * the mask dtype is not supported by cv2.AffineWarp
            >>> new = self.translate(out_shape, offset, direction, fill_val,
            >>>                      interpolation)
            >>> assert len(new) == len(self)
            >>> assert new.height, new.width == out_shape
        """
        if len(self.masks) == 0:
            translated_masks = np.empty((0, *out_shape), dtype=np.uint8)
        else:
            translated_masks = mmcv.imtranslate(
                self.masks.transpose((1, 2, 0)),
                offset,
                direction,
                border_value=fill_val,
                interpolation=interpolation)
            if translated_masks.ndim == 2:
                translated_masks = translated_masks[:, :, None]
            translated_masks = translated_masks.transpose(
                (2, 0, 1)).astype(self.masks.dtype)
        return BitmapMasks(translated_masks, *out_shape)

    def shear(self,
              out_shape,
              magnitude,
              direction='horizontal',
              border_value=0,
              interpolation='bilinear'):
        """Shear the BitmapMasks.

        Args:
            out_shape (tuple[int]): Shape for output mask, format (h, w).
            magnitude (int | float): The magnitude used for shear.
            direction (str): The shear direction, either "horizontal"
                or "vertical".
            border_value (int | tuple[int]): Value used in case of a
                constant border.
            interpolation (str): Same as in :func:`mmcv.imshear`.

        Returns:
            BitmapMasks: The sheared masks.
        """
        if len(self.masks) == 0:
            sheared_masks = np.empty((0, *out_shape), dtype=np.uint8)
        else:
            sheared_masks = mmcv.imshear(
                self.masks.transpose((1, 2, 0)),
                magnitude,
                direction,
                border_value=border_value,
                interpolation=interpolation)
            if sheared_masks.ndim == 2:
                sheared_masks = sheared_masks[:, :, None]
            sheared_masks = sheared_masks.transpose(
                (2, 0, 1)).astype(self.masks.dtype)
        return BitmapMasks(sheared_masks, *out_shape)

    def rotate(self, out_shape, angle, center=None, scale=1.0, fill_val=0):
        """Rotate the BitmapMasks.

        Args:
            out_shape (tuple[int]): Shape for output mask, format (h, w).
            angle (int | float): Rotation angle in degrees. Positive values
                mean counter-clockwise rotation.
            center (tuple[float], optional): Center point (w, h) of the
                rotation in source image. If not specified, the center of
                the image will be used.
            scale (int | float): Isotropic scale factor.
            fill_val (int | float): Border value. Default 0 for masks.

        Returns:
            BitmapMasks: Rotated BitmapMasks.
        """
        if len(self.masks) == 0:
            rotated_masks = np.empty((0, *out_shape), dtype=self.masks.dtype)
        else:
            rotated_masks = mmcv.imrotate(
                self.masks.transpose((1, 2, 0)),
                angle,
                center=center,
                scale=scale,
                border_value=fill_val)
            if rotated_masks.ndim == 2:
                # case when only one mask, (h, w)
                rotated_masks = rotated_masks[:, :, None]  # (h, w, 1)
            rotated_masks = rotated_masks.transpose(
                (2, 0, 1)).astype(self.masks.dtype)
        return BitmapMasks(rotated_masks, *out_shape)

    @property
    def areas(self):
        """See :py:attr:`BaseInstanceMasks.areas`."""
        return self.masks.sum((1, 2))

    def to_ndarray(self):
        """See :func:`BaseInstanceMasks.to_ndarray`."""
        return self.masks

    def to_tensor(self, dtype, device):
        """See :func:`BaseInstanceMasks.to_tensor`."""
        return torch.tensor(self.masks, dtype=dtype, device=device)

    @classmethod
    def random(cls,
               num_masks=3,
               height=32,
               width=32,
               dtype=np.uint8,
               rng=None):
        """Generate random bitmap masks for demo / testing purposes.

        Example:
            >>> from mmdet.core.mask.structures import BitmapMasks
            >>> self = BitmapMasks.random()
            >>> print('self = {}'.format(self))
            self = BitmapMasks(num_masks=3, height=32, width=32)
        """
        from mmdet.utils.util_random import ensure_rng
        rng = ensure_rng(rng)
        masks = (rng.rand(num_masks, height, width) > 0.1).astype(dtype)
        self = cls(masks, height=height, width=width)
        return self

    def get_bboxes(self):
        num_masks = len(self)
        boxes = np.zeros((num_masks, 4), dtype=np.float32)
        x_any = self.masks.any(axis=1)
        y_any = self.masks.any(axis=2)
        for idx in range(num_masks):
            x = np.where(x_any[idx, :])[0]
            y = np.where(y_any[idx, :])[0]
            if len(x) > 0 and len(y) > 0:
                # use +1 for x_max and y_max so that the right and bottom
                # boundary of instance masks are fully included by the box
                boxes[idx, :] = np.array([x[0], y[0], x[-1] + 1, y[-1] + 1],
                                         dtype=np.float32)
        return boxes


class PolygonMasks(BaseInstanceMasks):
    """This class represents masks in the form of polygons.

    Polygons is a list of three levels. The first level of the list
    corresponds to objects, the second level to the polys that compose the
    object, the third level to the poly coordinates

    Args:
        masks (list[list[ndarray]]): The first level of the list
            corresponds to objects, the second level to the polys that
            compose the object, the third level to the poly coordinates
        height (int): height of masks
        width (int): width of masks

    Example:
        >>> from mmdet.core.mask.structures import *  # NOQA
        >>> masks = [
        >>>     [ np.array([0, 0, 10, 0, 10, 10., 0, 10, 0, 0]) ]
        >>> ]
        >>> height, width = 16, 16
        >>> self = PolygonMasks(masks, height, width)

        >>> # demo translate
        >>> new = self.translate((16, 16), 4., direction='horizontal')
        >>> assert np.all(new.masks[0][0][1::2] == masks[0][0][1::2])
        >>> assert np.all(new.masks[0][0][0::2] == masks[0][0][0::2] + 4)

        >>> # demo crop_and_resize
        >>> num_boxes = 3
        >>> bboxes = np.array([[0, 0, 30, 10.0]] * num_boxes)
        >>> out_shape = (16, 16)
        >>> inds = torch.randint(0, len(self), size=(num_boxes,))
        >>> device = 'cpu'
        >>> interpolation = 'bilinear'
        >>> new = self.crop_and_resize(
        ...     bboxes, out_shape, inds, device, interpolation)
        >>> assert len(new) == num_boxes
        >>> assert new.height, new.width == out_shape
    """

    def __init__(self, masks, height, width):
        assert isinstance(masks, list)
        if len(masks) > 0:
            assert isinstance(masks[0], list)
            assert isinstance(masks[0][0], np.ndarray)

        self.height = height
        self.width = width
        self.masks = masks

    def __getitem__(self, index):
        """Index the polygon masks.

        Args:
            index (ndarray | List): The indices.

        Returns:
            :obj:`PolygonMasks`: The indexed polygon masks.
        """
        if isinstance(index, np.ndarray):
            index = index.tolist()
        if isinstance(index, list):
            masks = [self.masks[i] for i in index]
        else:
            try:
                masks = self.masks[index]
            except Exception:
                raise ValueError(
                    f'Unsupported input of type {type(index)} for indexing!')
        if len(masks) and isinstance(masks[0], np.ndarray):
            masks = [masks]  # ensure a list of three levels
        return PolygonMasks(masks, self.height, self.width)

    def __iter__(self):
        return iter(self.masks)

    def __repr__(self):
        s = self.__class__.__name__ + '('
        s += f'num_masks={len(self.masks)}, '
        s += f'height={self.height}, '
        s += f'width={self.width})'
        return s

    def __len__(self):
        """Number of masks."""
        return len(self.masks)

    def rescale(self, scale, interpolation=None):
        """see :func:`BaseInstanceMasks.rescale`"""
        new_w, new_h = mmcv.rescale_size((self.width, self.height), scale)
        if len(self.masks) == 0:
            rescaled_masks = PolygonMasks([], new_h, new_w)
        else:
            rescaled_masks = self.resize((new_h, new_w))
        return rescaled_masks

    def resize(self, out_shape, interpolation=None):
        """see :func:`BaseInstanceMasks.resize`"""
        if len(self.masks) == 0:
            resized_masks = PolygonMasks([], *out_shape)
        else:
            h_scale = out_shape[0] / self.height
            w_scale = out_shape[1] / self.width
            resized_masks = []
            for poly_per_obj in self.masks:
                resized_poly = []
                for p in poly_per_obj:
                    p = p.copy()
                    p[0::2] = p[0::2] * w_scale
                    p[1::2] = p[1::2] * h_scale
                    resized_poly.append(p)
                resized_masks.append(resized_poly)
            resized_masks = PolygonMasks(resized_masks, *out_shape)
        return resized_masks

    def flip(self, flip_direction='horizontal'):
        """see :func:`BaseInstanceMasks.flip`"""
        assert flip_direction in ('horizontal', 'vertical', 'diagonal')
        if len(self.masks) == 0:
            flipped_masks = PolygonMasks([], self.height, self.width)
        else:
            flipped_masks = []
            for poly_per_obj in self.masks:
                flipped_poly_per_obj = []
                for p in poly_per_obj:
                    p = p.copy()
                    if flip_direction == 'horizontal':
                        p[0::2] = self.width - p[0::2]
                    elif flip_direction == 'vertical':
                        p[1::2] = self.height - p[1::2]
                    else:
                        p[0::2] = self.width - p[0::2]
                        p[1::2] = self.height - p[1::2]
                    flipped_poly_per_obj.append(p)
                flipped_masks.append(flipped_poly_per_obj)
            flipped_masks = PolygonMasks(flipped_masks, self.height,
                                         self.width)
        return flipped_masks

    def crop(self, bbox):
        """see :func:`BaseInstanceMasks.crop`"""
        assert isinstance(bbox, np.ndarray)
        assert bbox.ndim == 1

        # clip the boundary
        bbox = bbox.copy()
        bbox[0::2] = np.clip(bbox[0::2], 0, self.width)
        bbox[1::2] = np.clip(bbox[1::2], 0, self.height)
        x1, y1, x2, y2 = bbox
        w = np.maximum(x2 - x1, 1)
        h = np.maximum(y2 - y1, 1)

        if len(self.masks) == 0:
            cropped_masks = PolygonMasks([], h, w)
        else:
            cropped_masks = []
            for poly_per_obj in self.masks:
                cropped_poly_per_obj = []
                for p in poly_per_obj:
                    # pycocotools will clip the boundary
                    p = p.copy()
                    p[0::2] = p[0::2] - bbox[0]
                    p[1::2] = p[1::2] - bbox[1]
                    cropped_poly_per_obj.append(p)
                cropped_masks.append(cropped_poly_per_obj)
            cropped_masks = PolygonMasks(cropped_masks, h, w)
        return cropped_masks

    def pad(self, out_shape, pad_val=0):
        """padding has no effect on polygons`"""
        return PolygonMasks(self.masks, *out_shape)

    def expand(self, *args, **kwargs):
        """TODO: Add expand for polygon"""
        raise NotImplementedError

    def crop_and_resize(self,
                        bboxes,
                        out_shape,
                        inds,
                        device='cpu',
                        interpolation='bilinear',
                        binarize=True):
        """see :func:`BaseInstanceMasks.crop_and_resize`"""
        out_h, out_w = out_shape
        if len(self.masks) == 0:
            return PolygonMasks([], out_h, out_w)

        if not binarize:
            raise ValueError('Polygons are always binary, '
                             'setting binarize=False is unsupported')

        resized_masks = []
        for i in range(len(bboxes)):
            mask = self.masks[inds[i]]
            bbox = bboxes[i, :]
            x1, y1, x2, y2 = bbox
            w = np.maximum(x2 - x1, 1)
            h = np.maximum(y2 - y1, 1)
            h_scale = out_h / max(h, 0.1)  # avoid too large scale
            w_scale = out_w / max(w, 0.1)

            resized_mask = []
            for p in mask:
                p = p.copy()
                # crop
                # pycocotools will clip the boundary
                p[0::2] = p[0::2] - bbox[0]
                p[1::2] = p[1::2] - bbox[1]

                # resize
                p[0::2] = p[0::2] * w_scale
                p[1::2] = p[1::2] * h_scale
                resized_mask.append(p)
            resized_masks.append(resized_mask)
        return PolygonMasks(resized_masks, *out_shape)

    def translate(self,
                  out_shape,
                  offset,
                  direction='horizontal',
                  fill_val=None,
                  interpolation=None):
        """Translate the PolygonMasks.

        Example:
            >>> self = PolygonMasks.random(dtype=np.int)
            >>> out_shape = (self.height, self.width)
            >>> new = self.translate(out_shape, 4., direction='horizontal')
            >>> assert np.all(new.masks[0][0][1::2] == self.masks[0][0][1::2])
            >>> assert np.all(new.masks[0][0][0::2] == self.masks[0][0][0::2] + 4)  # noqa: E501
        """
        assert fill_val is None or fill_val == 0, 'Here fill_val is not '\
            f'used, and defaultly should be None or 0. got {fill_val}.'
        if len(self.masks) == 0:
            translated_masks = PolygonMasks([], *out_shape)
        else:
            translated_masks = []
            for poly_per_obj in self.masks:
                translated_poly_per_obj = []
                for p in poly_per_obj:
                    p = p.copy()
                    if direction == 'horizontal':
                        p[0::2] = np.clip(p[0::2] + offset, 0, out_shape[1])
                    elif direction == 'vertical':
                        p[1::2] = np.clip(p[1::2] + offset, 0, out_shape[0])
                    translated_poly_per_obj.append(p)
                translated_masks.append(translated_poly_per_obj)
            translated_masks = PolygonMasks(translated_masks, *out_shape)
        return translated_masks

    def shear(self,
              out_shape,
              magnitude,
              direction='horizontal',
              border_value=0,
              interpolation='bilinear'):
        """See :func:`BaseInstanceMasks.shear`."""
        if len(self.masks) == 0:
            sheared_masks = PolygonMasks([], *out_shape)
        else:
            sheared_masks = []
            if direction == 'horizontal':
                shear_matrix = np.stack([[1, magnitude],
                                         [0, 1]]).astype(np.float32)
            elif direction == 'vertical':
                shear_matrix = np.stack([[1, 0], [magnitude,
                                                  1]]).astype(np.float32)
            for poly_per_obj in self.masks:
                sheared_poly = []
                for p in poly_per_obj:
                    p = np.stack([p[0::2], p[1::2]], axis=0)  # [2, n]
                    new_coords = np.matmul(shear_matrix, p)  # [2, n]
                    new_coords[0, :] = np.clip(new_coords[0, :], 0,
                                               out_shape[1])
                    new_coords[1, :] = np.clip(new_coords[1, :], 0,
                                               out_shape[0])
                    sheared_poly.append(
                        new_coords.transpose((1, 0)).reshape(-1))
                sheared_masks.append(sheared_poly)
            sheared_masks = PolygonMasks(sheared_masks, *out_shape)
        return sheared_masks

    def rotate(self, out_shape, angle, center=None, scale=1.0, fill_val=0):
        """See :func:`BaseInstanceMasks.rotate`."""
        if len(self.masks) == 0:
            rotated_masks = PolygonMasks([], *out_shape)
        else:
            rotated_masks = []
            rotate_matrix = cv2.getRotationMatrix2D(center, -angle, scale)
            for poly_per_obj in self.masks:
                rotated_poly = []
                for p in poly_per_obj:
                    p = p.copy()
                    coords = np.stack([p[0::2], p[1::2]], axis=1)  # [n, 2]
                    # pad 1 to convert from format [x, y] to homogeneous
                    # coordinates format [x, y, 1]
                    coords = np.concatenate(
                        (coords, np.ones((coords.shape[0], 1), coords.dtype)),
                        axis=1)  # [n, 3]
                    rotated_coords = np.matmul(
                        rotate_matrix[None, :, :],
                        coords[:, :, None])[..., 0]  # [n, 2, 1] -> [n, 2]
                    rotated_coords[:, 0] = np.clip(rotated_coords[:, 0], 0,
                                                   out_shape[1])
                    rotated_coords[:, 1] = np.clip(rotated_coords[:, 1], 0,
                                                   out_shape[0])
                    rotated_poly.append(rotated_coords.reshape(-1))
                rotated_masks.append(rotated_poly)
            rotated_masks = PolygonMasks(rotated_masks, *out_shape)
        return rotated_masks

    def to_bitmap(self):
        """convert polygon masks to bitmap masks."""
        bitmap_masks = self.to_ndarray()
        return BitmapMasks(bitmap_masks, self.height, self.width)

    @property
    def areas(self):
        """Compute areas of masks.

        This func is modified from `detectron2
        <https://github.com/facebookresearch/detectron2/blob/ffff8acc35ea88ad1cb1806ab0f00b4c1c5dbfd9/detectron2/structures/masks.py#L387>`_.
        The function only works with Polygons using the shoelace formula.

        Return:
            ndarray: areas of each instance
        """  # noqa: W501
        area = []
        for polygons_per_obj in self.masks:
            area_per_obj = 0
            for p in polygons_per_obj:
                area_per_obj += self._polygon_area(p[0::2], p[1::2])
            area.append(area_per_obj)
        return np.asarray(area)

    def _polygon_area(self, x, y):
        """Compute the area of a component of a polygon.

        Using the shoelace formula:
        https://stackoverflow.com/questions/24467972/calculate-area-of-polygon-given-x-y-coordinates

        Args:
            x (ndarray): x coordinates of the component
            y (ndarray): y coordinates of the component

        Return:
            float: the are of the component
        """  # noqa: 501
        return 0.5 * np.abs(
            np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)))

    def to_ndarray(self):
        """Convert masks to the format of ndarray."""
        if len(self.masks) == 0:
            return np.empty((0, self.height, self.width), dtype=np.uint8)
        bitmap_masks = []
        for poly_per_obj in self.masks:
            bitmap_masks.append(
                polygon_to_bitmap(poly_per_obj, self.height, self.width))
        return np.stack(bitmap_masks)

    def to_tensor(self, dtype, device):
        """See :func:`BaseInstanceMasks.to_tensor`."""
        if len(self.masks) == 0:
            return torch.empty((0, self.height, self.width),
                               dtype=dtype,
                               device=device)
        ndarray_masks = self.to_ndarray()
        return torch.tensor(ndarray_masks, dtype=dtype, device=device)

    @classmethod
    def random(cls,
               num_masks=3,
               height=32,
               width=32,
               n_verts=5,
               dtype=np.float32,
               rng=None):
        """Generate random polygon masks for demo / testing purposes.

        Adapted from [1]_

        References:
            .. [1] https://gitlab.kitware.com/computer-vision/kwimage/-/blob/928cae35ca8/kwimage/structs/polygon.py#L379  # noqa: E501

        Example:
            >>> from mmdet.core.mask.structures import PolygonMasks
            >>> self = PolygonMasks.random()
            >>> print('self = {}'.format(self))
        """
        from mmdet.utils.util_random import ensure_rng
        rng = ensure_rng(rng)

        def _gen_polygon(n, irregularity, spikeyness):
            """Creates the polygon by sampling points on a circle around the
            centre.  Random noise is added by varying the angular spacing
            between sequential points, and by varying the radial distance of
            each point from the centre.

            Based on original code by Mike Ounsworth

            Args:
                n (int): number of vertices
                irregularity (float): [0,1] indicating how much variance there
                    is in the angular spacing of vertices. [0,1] will map to
                    [0, 2pi/numberOfVerts]
                spikeyness (float): [0,1] indicating how much variance there is
                    in each vertex from the circle of radius aveRadius. [0,1]
                    will map to [0, aveRadius]

            Returns:
                a list of vertices, in CCW order.
            """
            from scipy.stats import truncnorm

            # Generate around the unit circle
            cx, cy = (0.0, 0.0)
            radius = 1

            tau = np.pi * 2

            irregularity = np.clip(irregularity, 0, 1) * 2 * np.pi / n
            spikeyness = np.clip(spikeyness, 1e-9, 1)

            # generate n angle steps
            lower = (tau / n) - irregularity
            upper = (tau / n) + irregularity
            angle_steps = rng.uniform(lower, upper, n)

            # normalize the steps so that point 0 and point n+1 are the same
            k = angle_steps.sum() / (2 * np.pi)
            angles = (angle_steps / k).cumsum() + rng.uniform(0, tau)

            # Convert high and low values to be wrt the standard normal range
            # https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.truncnorm.html
            low = 0
            high = 2 * radius
            mean = radius
            std = spikeyness
            a = (low - mean) / std
            b = (high - mean) / std
            tnorm = truncnorm(a=a, b=b, loc=mean, scale=std)

            # now generate the points
            radii = tnorm.rvs(n, random_state=rng)
            x_pts = cx + radii * np.cos(angles)
            y_pts = cy + radii * np.sin(angles)

            points = np.hstack([x_pts[:, None], y_pts[:, None]])

            # Scale to 0-1 space
            points = points - points.min(axis=0)
            points = points / points.max(axis=0)

            # Randomly place within 0-1 space
            points = points * (rng.rand() * .8 + .2)
            min_pt = points.min(axis=0)
            max_pt = points.max(axis=0)

            high = (1 - max_pt)
            low = (0 - min_pt)
            offset = (rng.rand(2) * (high - low)) + low
            points = points + offset
            return points

        def _order_vertices(verts):
            """
            References:
                https://stackoverflow.com/questions/1709283/how-can-i-sort-a-coordinate-list-for-a-rectangle-counterclockwise
            """
            mlat = verts.T[0].sum() / len(verts)
            mlng = verts.T[1].sum() / len(verts)

            tau = np.pi * 2
            angle = (np.arctan2(mlat - verts.T[0], verts.T[1] - mlng) +
                     tau) % tau
            sortx = angle.argsort()
            verts = verts.take(sortx, axis=0)
            return verts

        # Generate a random exterior for each requested mask
        masks = []
        for _ in range(num_masks):
            exterior = _order_vertices(_gen_polygon(n_verts, 0.9, 0.9))
            exterior = (exterior * [(width, height)]).astype(dtype)
            masks.append([exterior.ravel()])

        self = cls(masks, height, width)
        return self

    def get_bboxes(self):
        num_masks = len(self)
        boxes = np.zeros((num_masks, 4), dtype=np.float32)
        for idx, poly_per_obj in enumerate(self.masks):
            # simply use a number that is big enough for comparison with
            # coordinates
            xy_min = np.array([self.width * 2, self.height * 2],
                              dtype=np.float32)
            xy_max = np.zeros(2, dtype=np.float32)
            for p in poly_per_obj:
                xy = np.array(p).reshape(-1, 2).astype(np.float32)
                xy_min = np.minimum(xy_min, np.min(xy, axis=0))
                xy_max = np.maximum(xy_max, np.max(xy, axis=0))
            boxes[idx, :2] = xy_min
            boxes[idx, 2:] = xy_max

        return boxes


def polygon_to_bitmap(polygons, height, width):
    """Convert masks from the form of polygons to bitmaps.

    Args:
        polygons (list[ndarray]): masks in polygon representation
        height (int): mask height
        width (int): mask width

    Return:
        ndarray: the converted masks in bitmap representation
    """
    rles = maskUtils.frPyObjects(polygons, height, width)
    rle = maskUtils.merge(rles)
    bitmap_mask = maskUtils.decode(rle).astype(np.bool)
    return bitmap_mask


def bitmap_to_polygon(bitmap):
    """Convert masks from the form of bitmaps to polygons.

    Args:
        bitmap (ndarray): masks in bitmap representation.

    Return:
        list[ndarray]: the converted mask in polygon representation.
        bool: whether the mask has holes.
    """
    bitmap = np.ascontiguousarray(bitmap).astype(np.uint8)
    # cv2.RETR_CCOMP: retrieves all of the contours and organizes them
    #   into a two-level hierarchy. At the top level, there are external
    #   boundaries of the components. At the second level, there are
    #   boundaries of the holes. If there is another contour inside a hole
    #   of a connected component, it is still put at the top level.
    # cv2.CHAIN_APPROX_NONE: stores absolutely all the contour points.
    outs = cv2.findContours(bitmap, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
    contours = outs[-2]
    hierarchy = outs[-1]
    if hierarchy is None:
        return [], False
    # hierarchy[i]: 4 elements, for the indexes of next, previous,
    # parent, or nested contours. If there is no corresponding contour,
    # it will be -1.
    with_hole = (hierarchy.reshape(-1, 4)[:, 3] >= 0).any()
    contours = [c.reshape(-1, 2) for c in contours]
    return contours, with_hole