general_data.py
10.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import numpy as np
import torch
from mmdet.utils.util_mixins import NiceRepr
class GeneralData(NiceRepr):
"""A general data structure of OpenMMlab.
A data structure that stores the meta information,
the annotations of the images or the model predictions,
which can be used in communication between components.
The attributes in `GeneralData` are divided into two parts,
the `meta_info_fields` and the `data_fields` respectively.
- `meta_info_fields`: Usually contains the
information about the image such as filename,
image_shape, pad_shape, etc. All attributes in
it are immutable once set,
but the user can add new meta information with
`set_meta_info` function, all information can be accessed
with methods `meta_info_keys`, `meta_info_values`,
`meta_info_items`.
- `data_fields`: Annotations or model predictions are
stored. The attributes can be accessed or modified by
dict-like or object-like operations, such as
`.` , `[]`, `in`, `del`, `pop(str)` `get(str)`, `keys()`,
`values()`, `items()`. Users can also apply tensor-like methods
to all obj:`torch.Tensor` in the `data_fileds`,
such as `.cuda()`, `.cpu()`, `.numpy()`, `device`, `.to()`
`.detach()`, `.numpy()`
Args:
meta_info (dict, optional): A dict contains the meta information
of single image. such as `img_shape`, `scale_factor`, etc.
Default: None.
data (dict, optional): A dict contains annotations of single image or
model predictions. Default: None.
Examples:
>>> from mmdet.core import GeneralData
>>> img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
>>> instance_data = GeneralData(meta_info=img_meta)
>>> img_shape in instance_data
True
>>> instance_data.det_labels = torch.LongTensor([0, 1, 2, 3])
>>> instance_data["det_scores"] = torch.Tensor([0.01, 0.1, 0.2, 0.3])
>>> print(results)
<GeneralData(
META INFORMATION
img_shape: (800, 1196, 3)
pad_shape: (800, 1216, 3)
DATA FIELDS
shape of det_labels: torch.Size([4])
shape of det_scores: torch.Size([4])
) at 0x7f84acd10f90>
>>> instance_data.det_scores
tensor([0.0100, 0.1000, 0.2000, 0.3000])
>>> instance_data.det_labels
tensor([0, 1, 2, 3])
>>> instance_data['det_labels']
tensor([0, 1, 2, 3])
>>> 'det_labels' in instance_data
True
>>> instance_data.img_shape
(800, 1196, 3)
>>> 'det_scores' in instance_data
True
>>> del instance_data.det_scores
>>> 'det_scores' in instance_data
False
>>> det_labels = instance_data.pop('det_labels', None)
>>> det_labels
tensor([0, 1, 2, 3])
>>> 'det_labels' in instance_data
>>> False
"""
def __init__(self, meta_info=None, data=None):
self._meta_info_fields = set()
self._data_fields = set()
if meta_info is not None:
self.set_meta_info(meta_info=meta_info)
if data is not None:
self.set_data(data)
def set_meta_info(self, meta_info):
"""Add meta information.
Args:
meta_info (dict): A dict contains the meta information
of image. such as `img_shape`, `scale_factor`, etc.
Default: None.
"""
assert isinstance(meta_info,
dict), f'meta should be a `dict` but get {meta_info}'
meta = copy.deepcopy(meta_info)
for k, v in meta.items():
# should be consistent with original meta_info
if k in self._meta_info_fields:
ori_value = getattr(self, k)
if isinstance(ori_value, (torch.Tensor, np.ndarray)):
if (ori_value == v).all():
continue
else:
raise KeyError(
f'img_meta_info {k} has been set as '
f'{getattr(self, k)} before, which is immutable ')
elif ori_value == v:
continue
else:
raise KeyError(
f'img_meta_info {k} has been set as '
f'{getattr(self, k)} before, which is immutable ')
else:
self._meta_info_fields.add(k)
self.__dict__[k] = v
def set_data(self, data):
"""Update a dict to `data_fields`.
Args:
data (dict): A dict contains annotations of image or
model predictions. Default: None.
"""
assert isinstance(data,
dict), f'meta should be a `dict` but get {data}'
for k, v in data.items():
self.__setattr__(k, v)
def new(self, meta_info=None, data=None):
"""Return a new results with same image meta information.
Args:
meta_info (dict, optional): A dict contains the meta information
of image. such as `img_shape`, `scale_factor`, etc.
Default: None.
data (dict, optional): A dict contains annotations of image or
model predictions. Default: None.
"""
new_data = self.__class__()
new_data.set_meta_info(dict(self.meta_info_items()))
if meta_info is not None:
new_data.set_meta_info(meta_info)
if data is not None:
new_data.set_data(data)
return new_data
def keys(self):
"""
Returns:
list: Contains all keys in data_fields.
"""
return [key for key in self._data_fields]
def meta_info_keys(self):
"""
Returns:
list: Contains all keys in meta_info_fields.
"""
return [key for key in self._meta_info_fields]
def values(self):
"""
Returns:
list: Contains all values in data_fields.
"""
return [getattr(self, k) for k in self.keys()]
def meta_info_values(self):
"""
Returns:
list: Contains all values in meta_info_fields.
"""
return [getattr(self, k) for k in self.meta_info_keys()]
def items(self):
for k in self.keys():
yield (k, getattr(self, k))
def meta_info_items(self):
for k in self.meta_info_keys():
yield (k, getattr(self, k))
def __setattr__(self, name, val):
if name in ('_meta_info_fields', '_data_fields'):
if not hasattr(self, name):
super().__setattr__(name, val)
else:
raise AttributeError(
f'{name} has been used as a '
f'private attribute, which is immutable. ')
else:
if name in self._meta_info_fields:
raise AttributeError(f'`{name}` is used in meta information,'
f'which is immutable')
self._data_fields.add(name)
super().__setattr__(name, val)
def __delattr__(self, item):
if item in ('_meta_info_fields', '_data_fields'):
raise AttributeError(f'{item} has been used as a '
f'private attribute, which is immutable. ')
if item in self._meta_info_fields:
raise KeyError(f'{item} is used in meta information, '
f'which is immutable.')
super().__delattr__(item)
if item in self._data_fields:
self._data_fields.remove(item)
# dict-like methods
__setitem__ = __setattr__
__delitem__ = __delattr__
def __getitem__(self, name):
return getattr(self, name)
def get(self, *args):
assert len(args) < 3, '`get` get more than 2 arguments'
return self.__dict__.get(*args)
def pop(self, *args):
assert len(args) < 3, '`pop` get more than 2 arguments'
name = args[0]
if name in self._meta_info_fields:
raise KeyError(f'{name} is a key in meta information, '
f'which is immutable')
if args[0] in self._data_fields:
self._data_fields.remove(args[0])
return self.__dict__.pop(*args)
# with default value
elif len(args) == 2:
return args[1]
else:
raise KeyError(f'{args[0]}')
def __contains__(self, item):
return item in self._data_fields or \
item in self._meta_info_fields
# Tensor-like methods
def to(self, *args, **kwargs):
"""Apply same name function to all tensors in data_fields."""
new_data = self.new()
for k, v in self.items():
if hasattr(v, 'to'):
v = v.to(*args, **kwargs)
new_data[k] = v
return new_data
# Tensor-like methods
def cpu(self):
"""Apply same name function to all tensors in data_fields."""
new_data = self.new()
for k, v in self.items():
if isinstance(v, torch.Tensor):
v = v.cpu()
new_data[k] = v
return new_data
# Tensor-like methods
def cuda(self):
"""Apply same name function to all tensors in data_fields."""
new_data = self.new()
for k, v in self.items():
if isinstance(v, torch.Tensor):
v = v.cuda()
new_data[k] = v
return new_data
# Tensor-like methods
def detach(self):
"""Apply same name function to all tensors in data_fields."""
new_data = self.new()
for k, v in self.items():
if isinstance(v, torch.Tensor):
v = v.detach()
new_data[k] = v
return new_data
# Tensor-like methods
def numpy(self):
"""Apply same name function to all tensors in data_fields."""
new_data = self.new()
for k, v in self.items():
if isinstance(v, torch.Tensor):
v = v.detach().cpu().numpy()
new_data[k] = v
return new_data
def __nice__(self):
repr = '\n \n META INFORMATION \n'
for k, v in self.meta_info_items():
repr += f'{k}: {v} \n'
repr += '\n DATA FIELDS \n'
for k, v in self.items():
if isinstance(v, (torch.Tensor, np.ndarray)):
repr += f'shape of {k}: {v.shape} \n'
else:
repr += f'{k}: {v} \n'
return repr + '\n'