transforms.py
9.02 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch
def find_inside_bboxes(bboxes, img_h, img_w):
"""Find bboxes as long as a part of bboxes is inside the image.
Args:
bboxes (Tensor): Shape (N, 4).
img_h (int): Image height.
img_w (int): Image width.
Returns:
Tensor: Index of the remaining bboxes.
"""
inside_inds = (bboxes[:, 0] < img_w) & (bboxes[:, 2] > 0) \
& (bboxes[:, 1] < img_h) & (bboxes[:, 3] > 0)
return inside_inds
def bbox_flip(bboxes, img_shape, direction='horizontal'):
"""Flip bboxes horizontally or vertically.
Args:
bboxes (Tensor): Shape (..., 4*k)
img_shape (tuple): Image shape.
direction (str): Flip direction, options are "horizontal", "vertical",
"diagonal". Default: "horizontal"
Returns:
Tensor: Flipped bboxes.
"""
assert bboxes.shape[-1] % 4 == 0
assert direction in ['horizontal', 'vertical', 'diagonal']
flipped = bboxes.clone()
if direction == 'horizontal':
flipped[..., 0::4] = img_shape[1] - bboxes[..., 2::4]
flipped[..., 2::4] = img_shape[1] - bboxes[..., 0::4]
elif direction == 'vertical':
flipped[..., 1::4] = img_shape[0] - bboxes[..., 3::4]
flipped[..., 3::4] = img_shape[0] - bboxes[..., 1::4]
else:
flipped[..., 0::4] = img_shape[1] - bboxes[..., 2::4]
flipped[..., 1::4] = img_shape[0] - bboxes[..., 3::4]
flipped[..., 2::4] = img_shape[1] - bboxes[..., 0::4]
flipped[..., 3::4] = img_shape[0] - bboxes[..., 1::4]
return flipped
def bbox_mapping(bboxes,
img_shape,
scale_factor,
flip,
flip_direction='horizontal'):
"""Map bboxes from the original image scale to testing scale."""
new_bboxes = bboxes * bboxes.new_tensor(scale_factor)
if flip:
new_bboxes = bbox_flip(new_bboxes, img_shape, flip_direction)
return new_bboxes
def bbox_mapping_back(bboxes,
img_shape,
scale_factor,
flip,
flip_direction='horizontal'):
"""Map bboxes from testing scale to original image scale."""
new_bboxes = bbox_flip(bboxes, img_shape,
flip_direction) if flip else bboxes
new_bboxes = new_bboxes.view(-1, 4) / new_bboxes.new_tensor(scale_factor)
return new_bboxes.view(bboxes.shape)
def bbox2roi(bbox_list):
"""Convert a list of bboxes to roi format.
Args:
bbox_list (list[Tensor]): a list of bboxes corresponding to a batch
of images.
Returns:
Tensor: shape (n, 5), [batch_ind, x1, y1, x2, y2]
"""
rois_list = []
for img_id, bboxes in enumerate(bbox_list):
if bboxes.size(0) > 0:
img_inds = bboxes.new_full((bboxes.size(0), 1), img_id)
rois = torch.cat([img_inds, bboxes[:, :4]], dim=-1)
else:
rois = bboxes.new_zeros((0, 5))
rois_list.append(rois)
rois = torch.cat(rois_list, 0)
return rois
def roi2bbox(rois):
"""Convert rois to bounding box format.
Args:
rois (torch.Tensor): RoIs with the shape (n, 5) where the first
column indicates batch id of each RoI.
Returns:
list[torch.Tensor]: Converted boxes of corresponding rois.
"""
bbox_list = []
img_ids = torch.unique(rois[:, 0].cpu(), sorted=True)
for img_id in img_ids:
inds = (rois[:, 0] == img_id.item())
bbox = rois[inds, 1:]
bbox_list.append(bbox)
return bbox_list
def bbox2result(bboxes, labels, num_classes):
"""Convert detection results to a list of numpy arrays.
Args:
bboxes (torch.Tensor | np.ndarray): shape (n, 5)
labels (torch.Tensor | np.ndarray): shape (n, )
num_classes (int): class number, including background class
Returns:
list(ndarray): bbox results of each class
"""
if bboxes.shape[0] == 0:
return [np.zeros((0, 5), dtype=np.float32) for i in range(num_classes)]
else:
if isinstance(bboxes, torch.Tensor):
bboxes = bboxes.detach().cpu().numpy()
labels = labels.detach().cpu().numpy()
return [bboxes[labels == i, :] for i in range(num_classes)]
def distance2bbox(points, distance, max_shape=None):
"""Decode distance prediction to bounding box.
Args:
points (Tensor): Shape (B, N, 2) or (N, 2).
distance (Tensor): Distance from the given point to 4
boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4)
max_shape (Sequence[int] or torch.Tensor or Sequence[
Sequence[int]],optional): Maximum bounds for boxes, specifies
(H, W, C) or (H, W). If priors shape is (B, N, 4), then
the max_shape should be a Sequence[Sequence[int]]
and the length of max_shape should also be B.
Returns:
Tensor: Boxes with shape (N, 4) or (B, N, 4)
"""
x1 = points[..., 0] - distance[..., 0]
y1 = points[..., 1] - distance[..., 1]
x2 = points[..., 0] + distance[..., 2]
y2 = points[..., 1] + distance[..., 3]
bboxes = torch.stack([x1, y1, x2, y2], -1)
if max_shape is not None:
if bboxes.dim() == 2 and not torch.onnx.is_in_onnx_export():
# speed up
bboxes[:, 0::2].clamp_(min=0, max=max_shape[1])
bboxes[:, 1::2].clamp_(min=0, max=max_shape[0])
return bboxes
# clip bboxes with dynamic `min` and `max` for onnx
if torch.onnx.is_in_onnx_export():
from mmdet.core.export import dynamic_clip_for_onnx
x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, max_shape)
bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
return bboxes
if not isinstance(max_shape, torch.Tensor):
max_shape = x1.new_tensor(max_shape)
max_shape = max_shape[..., :2].type_as(x1)
if max_shape.ndim == 2:
assert bboxes.ndim == 3
assert max_shape.size(0) == bboxes.size(0)
min_xy = x1.new_tensor(0)
max_xy = torch.cat([max_shape, max_shape],
dim=-1).flip(-1).unsqueeze(-2)
bboxes = torch.where(bboxes < min_xy, min_xy, bboxes)
bboxes = torch.where(bboxes > max_xy, max_xy, bboxes)
return bboxes
def bbox2distance(points, bbox, max_dis=None, eps=0.1):
"""Decode bounding box based on distances.
Args:
points (Tensor): Shape (n, 2), [x, y].
bbox (Tensor): Shape (n, 4), "xyxy" format
max_dis (float): Upper bound of the distance.
eps (float): a small value to ensure target < max_dis, instead <=
Returns:
Tensor: Decoded distances.
"""
left = points[:, 0] - bbox[:, 0]
top = points[:, 1] - bbox[:, 1]
right = bbox[:, 2] - points[:, 0]
bottom = bbox[:, 3] - points[:, 1]
if max_dis is not None:
left = left.clamp(min=0, max=max_dis - eps)
top = top.clamp(min=0, max=max_dis - eps)
right = right.clamp(min=0, max=max_dis - eps)
bottom = bottom.clamp(min=0, max=max_dis - eps)
return torch.stack([left, top, right, bottom], -1)
def bbox_rescale(bboxes, scale_factor=1.0):
"""Rescale bounding box w.r.t. scale_factor.
Args:
bboxes (Tensor): Shape (n, 4) for bboxes or (n, 5) for rois
scale_factor (float): rescale factor
Returns:
Tensor: Rescaled bboxes.
"""
if bboxes.size(1) == 5:
bboxes_ = bboxes[:, 1:]
inds_ = bboxes[:, 0]
else:
bboxes_ = bboxes
cx = (bboxes_[:, 0] + bboxes_[:, 2]) * 0.5
cy = (bboxes_[:, 1] + bboxes_[:, 3]) * 0.5
w = bboxes_[:, 2] - bboxes_[:, 0]
h = bboxes_[:, 3] - bboxes_[:, 1]
w = w * scale_factor
h = h * scale_factor
x1 = cx - 0.5 * w
x2 = cx + 0.5 * w
y1 = cy - 0.5 * h
y2 = cy + 0.5 * h
if bboxes.size(1) == 5:
rescaled_bboxes = torch.stack([inds_, x1, y1, x2, y2], dim=-1)
else:
rescaled_bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
return rescaled_bboxes
def bbox_cxcywh_to_xyxy(bbox):
"""Convert bbox coordinates from (cx, cy, w, h) to (x1, y1, x2, y2).
Args:
bbox (Tensor): Shape (n, 4) for bboxes.
Returns:
Tensor: Converted bboxes.
"""
cx, cy, w, h = bbox.split((1, 1, 1, 1), dim=-1)
bbox_new = [(cx - 0.5 * w), (cy - 0.5 * h), (cx + 0.5 * w), (cy + 0.5 * h)]
return torch.cat(bbox_new, dim=-1)
def bbox_xyxy_to_cxcywh(bbox):
"""Convert bbox coordinates from (x1, y1, x2, y2) to (cx, cy, w, h).
Args:
bbox (Tensor): Shape (n, 4) for bboxes.
Returns:
Tensor: Converted bboxes.
"""
x1, y1, x2, y2 = bbox.split((1, 1, 1, 1), dim=-1)
bbox_new = [(x1 + x2) / 2, (y1 + y2) / 2, (x2 - x1), (y2 - y1)]
return torch.cat(bbox_new, dim=-1)