transforms.py 9.02 KB
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch


def find_inside_bboxes(bboxes, img_h, img_w):
    """Find bboxes as long as a part of bboxes is inside the image.

    Args:
        bboxes (Tensor): Shape (N, 4).
        img_h (int): Image height.
        img_w (int): Image width.

    Returns:
        Tensor: Index of the remaining bboxes.
    """
    inside_inds = (bboxes[:, 0] < img_w) & (bboxes[:, 2] > 0) \
        & (bboxes[:, 1] < img_h) & (bboxes[:, 3] > 0)
    return inside_inds


def bbox_flip(bboxes, img_shape, direction='horizontal'):
    """Flip bboxes horizontally or vertically.

    Args:
        bboxes (Tensor): Shape (..., 4*k)
        img_shape (tuple): Image shape.
        direction (str): Flip direction, options are "horizontal", "vertical",
            "diagonal". Default: "horizontal"

    Returns:
        Tensor: Flipped bboxes.
    """
    assert bboxes.shape[-1] % 4 == 0
    assert direction in ['horizontal', 'vertical', 'diagonal']
    flipped = bboxes.clone()
    if direction == 'horizontal':
        flipped[..., 0::4] = img_shape[1] - bboxes[..., 2::4]
        flipped[..., 2::4] = img_shape[1] - bboxes[..., 0::4]
    elif direction == 'vertical':
        flipped[..., 1::4] = img_shape[0] - bboxes[..., 3::4]
        flipped[..., 3::4] = img_shape[0] - bboxes[..., 1::4]
    else:
        flipped[..., 0::4] = img_shape[1] - bboxes[..., 2::4]
        flipped[..., 1::4] = img_shape[0] - bboxes[..., 3::4]
        flipped[..., 2::4] = img_shape[1] - bboxes[..., 0::4]
        flipped[..., 3::4] = img_shape[0] - bboxes[..., 1::4]
    return flipped


def bbox_mapping(bboxes,
                 img_shape,
                 scale_factor,
                 flip,
                 flip_direction='horizontal'):
    """Map bboxes from the original image scale to testing scale."""
    new_bboxes = bboxes * bboxes.new_tensor(scale_factor)
    if flip:
        new_bboxes = bbox_flip(new_bboxes, img_shape, flip_direction)
    return new_bboxes


def bbox_mapping_back(bboxes,
                      img_shape,
                      scale_factor,
                      flip,
                      flip_direction='horizontal'):
    """Map bboxes from testing scale to original image scale."""
    new_bboxes = bbox_flip(bboxes, img_shape,
                           flip_direction) if flip else bboxes
    new_bboxes = new_bboxes.view(-1, 4) / new_bboxes.new_tensor(scale_factor)
    return new_bboxes.view(bboxes.shape)


def bbox2roi(bbox_list):
    """Convert a list of bboxes to roi format.

    Args:
        bbox_list (list[Tensor]): a list of bboxes corresponding to a batch
            of images.

    Returns:
        Tensor: shape (n, 5), [batch_ind, x1, y1, x2, y2]
    """
    rois_list = []
    for img_id, bboxes in enumerate(bbox_list):
        if bboxes.size(0) > 0:
            img_inds = bboxes.new_full((bboxes.size(0), 1), img_id)
            rois = torch.cat([img_inds, bboxes[:, :4]], dim=-1)
        else:
            rois = bboxes.new_zeros((0, 5))
        rois_list.append(rois)
    rois = torch.cat(rois_list, 0)
    return rois


def roi2bbox(rois):
    """Convert rois to bounding box format.

    Args:
        rois (torch.Tensor): RoIs with the shape (n, 5) where the first
            column indicates batch id of each RoI.

    Returns:
        list[torch.Tensor]: Converted boxes of corresponding rois.
    """
    bbox_list = []
    img_ids = torch.unique(rois[:, 0].cpu(), sorted=True)
    for img_id in img_ids:
        inds = (rois[:, 0] == img_id.item())
        bbox = rois[inds, 1:]
        bbox_list.append(bbox)
    return bbox_list


def bbox2result(bboxes, labels, num_classes):
    """Convert detection results to a list of numpy arrays.

    Args:
        bboxes (torch.Tensor | np.ndarray): shape (n, 5)
        labels (torch.Tensor | np.ndarray): shape (n, )
        num_classes (int): class number, including background class

    Returns:
        list(ndarray): bbox results of each class
    """
    if bboxes.shape[0] == 0:
        return [np.zeros((0, 5), dtype=np.float32) for i in range(num_classes)]
    else:
        if isinstance(bboxes, torch.Tensor):
            bboxes = bboxes.detach().cpu().numpy()
            labels = labels.detach().cpu().numpy()
        return [bboxes[labels == i, :] for i in range(num_classes)]


def distance2bbox(points, distance, max_shape=None):
    """Decode distance prediction to bounding box.

    Args:
        points (Tensor): Shape (B, N, 2) or (N, 2).
        distance (Tensor): Distance from the given point to 4
            boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4)
        max_shape (Sequence[int] or torch.Tensor or Sequence[
            Sequence[int]],optional): Maximum bounds for boxes, specifies
            (H, W, C) or (H, W). If priors shape is (B, N, 4), then
            the max_shape should be a Sequence[Sequence[int]]
            and the length of max_shape should also be B.

    Returns:
        Tensor: Boxes with shape (N, 4) or (B, N, 4)
    """

    x1 = points[..., 0] - distance[..., 0]
    y1 = points[..., 1] - distance[..., 1]
    x2 = points[..., 0] + distance[..., 2]
    y2 = points[..., 1] + distance[..., 3]

    bboxes = torch.stack([x1, y1, x2, y2], -1)

    if max_shape is not None:
        if bboxes.dim() == 2 and not torch.onnx.is_in_onnx_export():
            # speed up
            bboxes[:, 0::2].clamp_(min=0, max=max_shape[1])
            bboxes[:, 1::2].clamp_(min=0, max=max_shape[0])
            return bboxes

        # clip bboxes with dynamic `min` and `max` for onnx
        if torch.onnx.is_in_onnx_export():
            from mmdet.core.export import dynamic_clip_for_onnx
            x1, y1, x2, y2 = dynamic_clip_for_onnx(x1, y1, x2, y2, max_shape)
            bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
            return bboxes
        if not isinstance(max_shape, torch.Tensor):
            max_shape = x1.new_tensor(max_shape)
        max_shape = max_shape[..., :2].type_as(x1)
        if max_shape.ndim == 2:
            assert bboxes.ndim == 3
            assert max_shape.size(0) == bboxes.size(0)

        min_xy = x1.new_tensor(0)
        max_xy = torch.cat([max_shape, max_shape],
                           dim=-1).flip(-1).unsqueeze(-2)
        bboxes = torch.where(bboxes < min_xy, min_xy, bboxes)
        bboxes = torch.where(bboxes > max_xy, max_xy, bboxes)

    return bboxes


def bbox2distance(points, bbox, max_dis=None, eps=0.1):
    """Decode bounding box based on distances.

    Args:
        points (Tensor): Shape (n, 2), [x, y].
        bbox (Tensor): Shape (n, 4), "xyxy" format
        max_dis (float): Upper bound of the distance.
        eps (float): a small value to ensure target < max_dis, instead <=

    Returns:
        Tensor: Decoded distances.
    """
    left = points[:, 0] - bbox[:, 0]
    top = points[:, 1] - bbox[:, 1]
    right = bbox[:, 2] - points[:, 0]
    bottom = bbox[:, 3] - points[:, 1]
    if max_dis is not None:
        left = left.clamp(min=0, max=max_dis - eps)
        top = top.clamp(min=0, max=max_dis - eps)
        right = right.clamp(min=0, max=max_dis - eps)
        bottom = bottom.clamp(min=0, max=max_dis - eps)
    return torch.stack([left, top, right, bottom], -1)


def bbox_rescale(bboxes, scale_factor=1.0):
    """Rescale bounding box w.r.t. scale_factor.

    Args:
        bboxes (Tensor): Shape (n, 4) for bboxes or (n, 5) for rois
        scale_factor (float): rescale factor

    Returns:
        Tensor: Rescaled bboxes.
    """
    if bboxes.size(1) == 5:
        bboxes_ = bboxes[:, 1:]
        inds_ = bboxes[:, 0]
    else:
        bboxes_ = bboxes
    cx = (bboxes_[:, 0] + bboxes_[:, 2]) * 0.5
    cy = (bboxes_[:, 1] + bboxes_[:, 3]) * 0.5
    w = bboxes_[:, 2] - bboxes_[:, 0]
    h = bboxes_[:, 3] - bboxes_[:, 1]
    w = w * scale_factor
    h = h * scale_factor
    x1 = cx - 0.5 * w
    x2 = cx + 0.5 * w
    y1 = cy - 0.5 * h
    y2 = cy + 0.5 * h
    if bboxes.size(1) == 5:
        rescaled_bboxes = torch.stack([inds_, x1, y1, x2, y2], dim=-1)
    else:
        rescaled_bboxes = torch.stack([x1, y1, x2, y2], dim=-1)
    return rescaled_bboxes


def bbox_cxcywh_to_xyxy(bbox):
    """Convert bbox coordinates from (cx, cy, w, h) to (x1, y1, x2, y2).

    Args:
        bbox (Tensor): Shape (n, 4) for bboxes.

    Returns:
        Tensor: Converted bboxes.
    """
    cx, cy, w, h = bbox.split((1, 1, 1, 1), dim=-1)
    bbox_new = [(cx - 0.5 * w), (cy - 0.5 * h), (cx + 0.5 * w), (cy + 0.5 * h)]
    return torch.cat(bbox_new, dim=-1)


def bbox_xyxy_to_cxcywh(bbox):
    """Convert bbox coordinates from (x1, y1, x2, y2) to (cx, cy, w, h).

    Args:
        bbox (Tensor): Shape (n, 4) for bboxes.

    Returns:
        Tensor: Converted bboxes.
    """
    x1, y1, x2, y2 = bbox.split((1, 1, 1, 1), dim=-1)
    bbox_new = [(x1 + x2) / 2, (y1 + y2) / 2, (x2 - x1), (y2 - y1)]
    return torch.cat(bbox_new, dim=-1)