point_rend_roi_head.py 18.7 KB
# Copyright (c) OpenMMLab. All rights reserved.
# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend  # noqa
import os
import warnings

import numpy as np
import torch
import torch.nn.functional as F
from mmcv.ops import point_sample, rel_roi_point_to_rel_img_point

from mmdet.core import bbox2roi, bbox_mapping, merge_aug_masks
from .. import builder
from ..builder import HEADS
from .standard_roi_head import StandardRoIHead


@HEADS.register_module()
class PointRendRoIHead(StandardRoIHead):
    """`PointRend <https://arxiv.org/abs/1912.08193>`_."""

    def __init__(self, point_head, *args, **kwargs):
        super().__init__(*args, **kwargs)
        assert self.with_bbox and self.with_mask
        self.init_point_head(point_head)

    def init_point_head(self, point_head):
        """Initialize ``point_head``"""
        self.point_head = builder.build_head(point_head)

    def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks,
                            img_metas):
        """Run forward function and calculate loss for mask head and point head
        in training."""
        mask_results = super()._mask_forward_train(x, sampling_results,
                                                   bbox_feats, gt_masks,
                                                   img_metas)
        if mask_results['loss_mask'] is not None:
            loss_point = self._mask_point_forward_train(
                x, sampling_results, mask_results['mask_pred'], gt_masks,
                img_metas)
            mask_results['loss_mask'].update(loss_point)

        return mask_results

    def _mask_point_forward_train(self, x, sampling_results, mask_pred,
                                  gt_masks, img_metas):
        """Run forward function and calculate loss for point head in
        training."""
        pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])
        rel_roi_points = self.point_head.get_roi_rel_points_train(
            mask_pred, pos_labels, cfg=self.train_cfg)
        rois = bbox2roi([res.pos_bboxes for res in sampling_results])

        fine_grained_point_feats = self._get_fine_grained_point_feats(
            x, rois, rel_roi_points, img_metas)
        coarse_point_feats = point_sample(mask_pred, rel_roi_points)
        mask_point_pred = self.point_head(fine_grained_point_feats,
                                          coarse_point_feats)
        mask_point_target = self.point_head.get_targets(
            rois, rel_roi_points, sampling_results, gt_masks, self.train_cfg)
        loss_mask_point = self.point_head.loss(mask_point_pred,
                                               mask_point_target, pos_labels)

        return loss_mask_point

    def _get_fine_grained_point_feats(self, x, rois, rel_roi_points,
                                      img_metas):
        """Sample fine grained feats from each level feature map and
        concatenate them together.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            rois (Tensor): shape (num_rois, 5).
            rel_roi_points (Tensor): A tensor of shape (num_rois, num_points,
                2) that contains [0, 1] x [0, 1] normalized coordinates of the
                most uncertain points from the [mask_height, mask_width] grid.
            img_metas (list[dict]): Image meta info.

        Returns:
            Tensor: The fine grained features for each points,
                has shape (num_rois, feats_channels, num_points).
        """
        num_imgs = len(img_metas)
        fine_grained_feats = []
        for idx in range(self.mask_roi_extractor.num_inputs):
            feats = x[idx]
            spatial_scale = 1. / float(
                self.mask_roi_extractor.featmap_strides[idx])
            point_feats = []
            for batch_ind in range(num_imgs):
                # unravel batch dim
                feat = feats[batch_ind].unsqueeze(0)
                inds = (rois[:, 0].long() == batch_ind)
                if inds.any():
                    rel_img_points = rel_roi_point_to_rel_img_point(
                        rois[inds], rel_roi_points[inds], feat.shape[2:],
                        spatial_scale).unsqueeze(0)
                    point_feat = point_sample(feat, rel_img_points)
                    point_feat = point_feat.squeeze(0).transpose(0, 1)
                    point_feats.append(point_feat)
            fine_grained_feats.append(torch.cat(point_feats, dim=0))
        return torch.cat(fine_grained_feats, dim=1)

    def _mask_point_forward_test(self, x, rois, label_pred, mask_pred,
                                 img_metas):
        """Mask refining process with point head in testing.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            rois (Tensor): shape (num_rois, 5).
            label_pred (Tensor): The predication class for each rois.
            mask_pred (Tensor): The predication coarse masks of
                shape (num_rois, num_classes, small_size, small_size).
            img_metas (list[dict]): Image meta info.

        Returns:
            Tensor: The refined masks of shape (num_rois, num_classes,
                large_size, large_size).
        """
        refined_mask_pred = mask_pred.clone()
        for subdivision_step in range(self.test_cfg.subdivision_steps):
            refined_mask_pred = F.interpolate(
                refined_mask_pred,
                scale_factor=self.test_cfg.scale_factor,
                mode='bilinear',
                align_corners=False)
            # If `subdivision_num_points` is larger or equal to the
            # resolution of the next step, then we can skip this step
            num_rois, channels, mask_height, mask_width = \
                refined_mask_pred.shape
            if (self.test_cfg.subdivision_num_points >=
                    self.test_cfg.scale_factor**2 * mask_height * mask_width
                    and
                    subdivision_step < self.test_cfg.subdivision_steps - 1):
                continue
            point_indices, rel_roi_points = \
                self.point_head.get_roi_rel_points_test(
                    refined_mask_pred, label_pred, cfg=self.test_cfg)
            fine_grained_point_feats = self._get_fine_grained_point_feats(
                x, rois, rel_roi_points, img_metas)
            coarse_point_feats = point_sample(mask_pred, rel_roi_points)
            mask_point_pred = self.point_head(fine_grained_point_feats,
                                              coarse_point_feats)

            point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1)
            refined_mask_pred = refined_mask_pred.reshape(
                num_rois, channels, mask_height * mask_width)
            refined_mask_pred = refined_mask_pred.scatter_(
                2, point_indices, mask_point_pred)
            refined_mask_pred = refined_mask_pred.view(num_rois, channels,
                                                       mask_height, mask_width)

        return refined_mask_pred

    def simple_test_mask(self,
                         x,
                         img_metas,
                         det_bboxes,
                         det_labels,
                         rescale=False):
        """Obtain mask prediction without augmentation."""
        ori_shapes = tuple(meta['ori_shape'] for meta in img_metas)
        scale_factors = tuple(meta['scale_factor'] for meta in img_metas)

        if isinstance(scale_factors[0], float):
            warnings.warn(
                'Scale factor in img_metas should be a '
                'ndarray with shape (4,) '
                'arrange as (factor_w, factor_h, factor_w, factor_h), '
                'The scale_factor with float type has been deprecated. ')
            scale_factors = np.array([scale_factors] * 4, dtype=np.float32)

        num_imgs = len(det_bboxes)
        if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes):
            segm_results = [[[] for _ in range(self.mask_head.num_classes)]
                            for _ in range(num_imgs)]
        else:
            # if det_bboxes is rescaled to the original image size, we need to
            # rescale it back to the testing scale to obtain RoIs.
            _bboxes = [det_bboxes[i][:, :4] for i in range(len(det_bboxes))]
            if rescale:
                scale_factors = [
                    torch.from_numpy(scale_factor).to(det_bboxes[0].device)
                    for scale_factor in scale_factors
                ]
                _bboxes = [
                    _bboxes[i] * scale_factors[i] for i in range(len(_bboxes))
                ]

            mask_rois = bbox2roi(_bboxes)
            mask_results = self._mask_forward(x, mask_rois)
            # split batch mask prediction back to each image
            mask_pred = mask_results['mask_pred']
            num_mask_roi_per_img = [len(det_bbox) for det_bbox in det_bboxes]
            mask_preds = mask_pred.split(num_mask_roi_per_img, 0)
            mask_rois = mask_rois.split(num_mask_roi_per_img, 0)

            # apply mask post-processing to each image individually
            segm_results = []
            for i in range(num_imgs):
                if det_bboxes[i].shape[0] == 0:
                    segm_results.append(
                        [[] for _ in range(self.mask_head.num_classes)])
                else:
                    x_i = [xx[[i]] for xx in x]
                    mask_rois_i = mask_rois[i]
                    mask_rois_i[:, 0] = 0  # TODO: remove this hack
                    mask_pred_i = self._mask_point_forward_test(
                        x_i, mask_rois_i, det_labels[i], mask_preds[i],
                        [img_metas])
                    segm_result = self.mask_head.get_seg_masks(
                        mask_pred_i, _bboxes[i], det_labels[i], self.test_cfg,
                        ori_shapes[i], scale_factors[i], rescale)
                    segm_results.append(segm_result)
        return segm_results

    def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels):
        """Test for mask head with test time augmentation."""
        if det_bboxes.shape[0] == 0:
            segm_result = [[] for _ in range(self.mask_head.num_classes)]
        else:
            aug_masks = []
            for x, img_meta in zip(feats, img_metas):
                img_shape = img_meta[0]['img_shape']
                scale_factor = img_meta[0]['scale_factor']
                flip = img_meta[0]['flip']
                _bboxes = bbox_mapping(det_bboxes[:, :4], img_shape,
                                       scale_factor, flip)
                mask_rois = bbox2roi([_bboxes])
                mask_results = self._mask_forward(x, mask_rois)
                mask_results['mask_pred'] = self._mask_point_forward_test(
                    x, mask_rois, det_labels, mask_results['mask_pred'],
                    img_meta)
                # convert to numpy array to save memory
                aug_masks.append(
                    mask_results['mask_pred'].sigmoid().cpu().numpy())
            merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg)

            ori_shape = img_metas[0][0]['ori_shape']
            segm_result = self.mask_head.get_seg_masks(
                merged_masks,
                det_bboxes,
                det_labels,
                self.test_cfg,
                ori_shape,
                scale_factor=1.0,
                rescale=False)
        return segm_result

    def _onnx_get_fine_grained_point_feats(self, x, rois, rel_roi_points):
        """Export the process of sampling fine grained feats to onnx.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            rois (Tensor): shape (num_rois, 5).
            rel_roi_points (Tensor): A tensor of shape (num_rois, num_points,
                2) that contains [0, 1] x [0, 1] normalized coordinates of the
                most uncertain points from the [mask_height, mask_width] grid.

        Returns:
            Tensor: The fine grained features for each points,
                has shape (num_rois, feats_channels, num_points).
        """
        batch_size = x[0].shape[0]
        num_rois = rois.shape[0]
        fine_grained_feats = []
        for idx in range(self.mask_roi_extractor.num_inputs):
            feats = x[idx]
            spatial_scale = 1. / float(
                self.mask_roi_extractor.featmap_strides[idx])

            rel_img_points = rel_roi_point_to_rel_img_point(
                rois, rel_roi_points, feats, spatial_scale)
            channels = feats.shape[1]
            num_points = rel_img_points.shape[1]
            rel_img_points = rel_img_points.reshape(batch_size, -1, num_points,
                                                    2)
            point_feats = point_sample(feats, rel_img_points)
            point_feats = point_feats.transpose(1, 2).reshape(
                num_rois, channels, num_points)
            fine_grained_feats.append(point_feats)
        return torch.cat(fine_grained_feats, dim=1)

    def _mask_point_onnx_export(self, x, rois, label_pred, mask_pred):
        """Export mask refining process with point head to onnx.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            rois (Tensor): shape (num_rois, 5).
            label_pred (Tensor): The predication class for each rois.
            mask_pred (Tensor): The predication coarse masks of
                shape (num_rois, num_classes, small_size, small_size).

        Returns:
            Tensor: The refined masks of shape (num_rois, num_classes,
                large_size, large_size).
        """
        refined_mask_pred = mask_pred.clone()
        for subdivision_step in range(self.test_cfg.subdivision_steps):
            refined_mask_pred = F.interpolate(
                refined_mask_pred,
                scale_factor=self.test_cfg.scale_factor,
                mode='bilinear',
                align_corners=False)
            # If `subdivision_num_points` is larger or equal to the
            # resolution of the next step, then we can skip this step
            num_rois, channels, mask_height, mask_width = \
                refined_mask_pred.shape
            if (self.test_cfg.subdivision_num_points >=
                    self.test_cfg.scale_factor**2 * mask_height * mask_width
                    and
                    subdivision_step < self.test_cfg.subdivision_steps - 1):
                continue
            point_indices, rel_roi_points = \
                self.point_head.get_roi_rel_points_test(
                    refined_mask_pred, label_pred, cfg=self.test_cfg)
            fine_grained_point_feats = self._onnx_get_fine_grained_point_feats(
                x, rois, rel_roi_points)
            coarse_point_feats = point_sample(mask_pred, rel_roi_points)
            mask_point_pred = self.point_head(fine_grained_point_feats,
                                              coarse_point_feats)

            point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1)
            refined_mask_pred = refined_mask_pred.reshape(
                num_rois, channels, mask_height * mask_width)

            is_trt_backend = os.environ.get('ONNX_BACKEND') == 'MMCVTensorRT'
            # avoid ScatterElements op in ONNX for TensorRT
            if is_trt_backend:
                mask_shape = refined_mask_pred.shape
                point_shape = point_indices.shape
                inds_dim0 = torch.arange(point_shape[0]).reshape(
                    point_shape[0], 1, 1).expand_as(point_indices)
                inds_dim1 = torch.arange(point_shape[1]).reshape(
                    1, point_shape[1], 1).expand_as(point_indices)
                inds_1d = inds_dim0.reshape(
                    -1) * mask_shape[1] * mask_shape[2] + inds_dim1.reshape(
                        -1) * mask_shape[2] + point_indices.reshape(-1)
                refined_mask_pred = refined_mask_pred.reshape(-1)
                refined_mask_pred[inds_1d] = mask_point_pred.reshape(-1)
                refined_mask_pred = refined_mask_pred.reshape(*mask_shape)
            else:
                refined_mask_pred = refined_mask_pred.scatter_(
                    2, point_indices, mask_point_pred)

            refined_mask_pred = refined_mask_pred.view(num_rois, channels,
                                                       mask_height, mask_width)

        return refined_mask_pred

    def mask_onnx_export(self, x, img_metas, det_bboxes, det_labels, **kwargs):
        """Export mask branch to onnx which supports batch inference.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            img_metas (list[dict]): Image meta info.
            det_bboxes (Tensor): Bboxes and corresponding scores.
                has shape [N, num_bboxes, 5].
            det_labels (Tensor): class labels of
                shape [N, num_bboxes].

        Returns:
            Tensor: The segmentation results of shape [N, num_bboxes,
                image_height, image_width].
        """
        if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes):
            raise RuntimeError('[ONNX Error] Can not record MaskHead '
                               'as it has not been executed this time')
        batch_size = det_bboxes.size(0)
        # if det_bboxes is rescaled to the original image size, we need to
        # rescale it back to the testing scale to obtain RoIs.
        det_bboxes = det_bboxes[..., :4]
        batch_index = torch.arange(
            det_bboxes.size(0), device=det_bboxes.device).float().view(
                -1, 1, 1).expand(det_bboxes.size(0), det_bboxes.size(1), 1)
        mask_rois = torch.cat([batch_index, det_bboxes], dim=-1)
        mask_rois = mask_rois.view(-1, 5)
        mask_results = self._mask_forward(x, mask_rois)
        mask_pred = mask_results['mask_pred']
        max_shape = img_metas[0]['img_shape_for_onnx']
        num_det = det_bboxes.shape[1]
        det_bboxes = det_bboxes.reshape(-1, 4)
        det_labels = det_labels.reshape(-1)

        mask_pred = self._mask_point_onnx_export(x, mask_rois, det_labels,
                                                 mask_pred)

        segm_results = self.mask_head.onnx_export(mask_pred, det_bboxes,
                                                  det_labels, self.test_cfg,
                                                  max_shape)
        segm_results = segm_results.reshape(batch_size, num_det, max_shape[0],
                                            max_shape[1])
        return segm_results