fcn_mask_head.py 17.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
# Copyright (c) OpenMMLab. All rights reserved.
from warnings import warn

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, build_conv_layer, build_upsample_layer
from mmcv.ops.carafe import CARAFEPack
from mmcv.runner import BaseModule, ModuleList, auto_fp16, force_fp32
from torch.nn.modules.utils import _pair

from mmdet.core import mask_target
from mmdet.models.builder import HEADS, build_loss

BYTES_PER_FLOAT = 4
# TODO: This memory limit may be too much or too little. It would be better to
# determine it based on available resources.
GPU_MEM_LIMIT = 1024**3  # 1 GB memory limit


@HEADS.register_module()
class FCNMaskHead(BaseModule):

    def __init__(self,
                 num_convs=4,
                 roi_feat_size=14,
                 in_channels=256,
                 conv_kernel_size=3,
                 conv_out_channels=256,
                 num_classes=80,
                 class_agnostic=False,
                 upsample_cfg=dict(type='deconv', scale_factor=2),
                 conv_cfg=None,
                 norm_cfg=None,
                 predictor_cfg=dict(type='Conv'),
                 loss_mask=dict(
                     type='CrossEntropyLoss', use_mask=True, loss_weight=1.0),
                 init_cfg=None):
        assert init_cfg is None, 'To prevent abnormal initialization ' \
                                 'behavior, init_cfg is not allowed to be set'
        super(FCNMaskHead, self).__init__(init_cfg)
        self.upsample_cfg = upsample_cfg.copy()
        if self.upsample_cfg['type'] not in [
                None, 'deconv', 'nearest', 'bilinear', 'carafe'
        ]:
            raise ValueError(
                f'Invalid upsample method {self.upsample_cfg["type"]}, '
                'accepted methods are "deconv", "nearest", "bilinear", '
                '"carafe"')
        self.num_convs = num_convs
        # WARN: roi_feat_size is reserved and not used
        self.roi_feat_size = _pair(roi_feat_size)
        self.in_channels = in_channels
        self.conv_kernel_size = conv_kernel_size
        self.conv_out_channels = conv_out_channels
        self.upsample_method = self.upsample_cfg.get('type')
        self.scale_factor = self.upsample_cfg.pop('scale_factor', None)
        self.num_classes = num_classes
        self.class_agnostic = class_agnostic
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.predictor_cfg = predictor_cfg
        self.fp16_enabled = False
        self.loss_mask = build_loss(loss_mask)

        self.convs = ModuleList()
        for i in range(self.num_convs):
            in_channels = (
                self.in_channels if i == 0 else self.conv_out_channels)
            padding = (self.conv_kernel_size - 1) // 2
            self.convs.append(
                ConvModule(
                    in_channels,
                    self.conv_out_channels,
                    self.conv_kernel_size,
                    padding=padding,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg))
        upsample_in_channels = (
            self.conv_out_channels if self.num_convs > 0 else in_channels)
        upsample_cfg_ = self.upsample_cfg.copy()
        if self.upsample_method is None:
            self.upsample = None
        elif self.upsample_method == 'deconv':
            upsample_cfg_.update(
                in_channels=upsample_in_channels,
                out_channels=self.conv_out_channels,
                kernel_size=self.scale_factor,
                stride=self.scale_factor)
            self.upsample = build_upsample_layer(upsample_cfg_)
        elif self.upsample_method == 'carafe':
            upsample_cfg_.update(
                channels=upsample_in_channels, scale_factor=self.scale_factor)
            self.upsample = build_upsample_layer(upsample_cfg_)
        else:
            # suppress warnings
            align_corners = (None
                             if self.upsample_method == 'nearest' else False)
            upsample_cfg_.update(
                scale_factor=self.scale_factor,
                mode=self.upsample_method,
                align_corners=align_corners)
            self.upsample = build_upsample_layer(upsample_cfg_)

        out_channels = 1 if self.class_agnostic else self.num_classes
        logits_in_channel = (
            self.conv_out_channels
            if self.upsample_method == 'deconv' else upsample_in_channels)
        self.conv_logits = build_conv_layer(self.predictor_cfg,
                                            logits_in_channel, out_channels, 1)
        self.relu = nn.ReLU(inplace=True)
        self.debug_imgs = None

    def init_weights(self):
        super(FCNMaskHead, self).init_weights()
        for m in [self.upsample, self.conv_logits]:
            if m is None:
                continue
            elif isinstance(m, CARAFEPack):
                m.init_weights()
            elif hasattr(m, 'weight') and hasattr(m, 'bias'):
                nn.init.kaiming_normal_(
                    m.weight, mode='fan_out', nonlinearity='relu')
                nn.init.constant_(m.bias, 0)

    @auto_fp16()
    def forward(self, x):
        for conv in self.convs:
            x = conv(x)
        if self.upsample is not None:
            x = self.upsample(x)
            if self.upsample_method == 'deconv':
                x = self.relu(x)
        mask_pred = self.conv_logits(x)
        return mask_pred

    def get_targets(self, sampling_results, gt_masks, rcnn_train_cfg):
        pos_proposals = [res.pos_bboxes for res in sampling_results]
        pos_assigned_gt_inds = [
            res.pos_assigned_gt_inds for res in sampling_results
        ]
        mask_targets = mask_target(pos_proposals, pos_assigned_gt_inds,
                                   gt_masks, rcnn_train_cfg)
        return mask_targets

    @force_fp32(apply_to=('mask_pred', ))
    def loss(self, mask_pred, mask_targets, labels):
        """
        Example:
            >>> from mmdet.models.roi_heads.mask_heads.fcn_mask_head import *  # NOQA
            >>> N = 7  # N = number of extracted ROIs
            >>> C, H, W = 11, 32, 32
            >>> # Create example instance of FCN Mask Head.
            >>> # There are lots of variations depending on the configuration
            >>> self = FCNMaskHead(num_classes=C, num_convs=1)
            >>> inputs = torch.rand(N, self.in_channels, H, W)
            >>> mask_pred = self.forward(inputs)
            >>> sf = self.scale_factor
            >>> labels = torch.randint(0, C, size=(N,))
            >>> # With the default properties the mask targets should indicate
            >>> # a (potentially soft) single-class label
            >>> mask_targets = torch.rand(N, H * sf, W * sf)
            >>> loss = self.loss(mask_pred, mask_targets, labels)
            >>> print('loss = {!r}'.format(loss))
        """
        loss = dict()
        if mask_pred.size(0) == 0:
            loss_mask = mask_pred.sum()
        else:
            if self.class_agnostic:
                loss_mask = self.loss_mask(mask_pred, mask_targets,
                                           torch.zeros_like(labels))
            else:
                loss_mask = self.loss_mask(mask_pred, mask_targets, labels)
        loss['loss_mask'] = loss_mask
        return loss

    def get_seg_masks(self, mask_pred, det_bboxes, det_labels, rcnn_test_cfg,
                      ori_shape, scale_factor, rescale):
        """Get segmentation masks from mask_pred and bboxes.

        Args:
            mask_pred (Tensor or ndarray): shape (n, #class, h, w).
                For single-scale testing, mask_pred is the direct output of
                model, whose type is Tensor, while for multi-scale testing,
                it will be converted to numpy array outside of this method.
            det_bboxes (Tensor): shape (n, 4/5)
            det_labels (Tensor): shape (n, )
            rcnn_test_cfg (dict): rcnn testing config
            ori_shape (Tuple): original image height and width, shape (2,)
            scale_factor(ndarray | Tensor): If ``rescale is True``, box
                coordinates are divided by this scale factor to fit
                ``ori_shape``.
            rescale (bool): If True, the resulting masks will be rescaled to
                ``ori_shape``.

        Returns:
            list[list]: encoded masks. The c-th item in the outer list
                corresponds to the c-th class. Given the c-th outer list, the
                i-th item in that inner list is the mask for the i-th box with
                class label c.

        Example:
            >>> import mmcv
            >>> from mmdet.models.roi_heads.mask_heads.fcn_mask_head import *  # NOQA
            >>> N = 7  # N = number of extracted ROIs
            >>> C, H, W = 11, 32, 32
            >>> # Create example instance of FCN Mask Head.
            >>> self = FCNMaskHead(num_classes=C, num_convs=0)
            >>> inputs = torch.rand(N, self.in_channels, H, W)
            >>> mask_pred = self.forward(inputs)
            >>> # Each input is associated with some bounding box
            >>> det_bboxes = torch.Tensor([[1, 1, 42, 42 ]] * N)
            >>> det_labels = torch.randint(0, C, size=(N,))
            >>> rcnn_test_cfg = mmcv.Config({'mask_thr_binary': 0, })
            >>> ori_shape = (H * 4, W * 4)
            >>> scale_factor = torch.FloatTensor((1, 1))
            >>> rescale = False
            >>> # Encoded masks are a list for each category.
            >>> encoded_masks = self.get_seg_masks(
            >>>     mask_pred, det_bboxes, det_labels, rcnn_test_cfg, ori_shape,
            >>>     scale_factor, rescale
            >>> )
            >>> assert len(encoded_masks) == C
            >>> assert sum(list(map(len, encoded_masks))) == N
        """
        if isinstance(mask_pred, torch.Tensor):
            mask_pred = mask_pred.sigmoid()
        else:
            # In AugTest, has been activated before
            mask_pred = det_bboxes.new_tensor(mask_pred)

        device = mask_pred.device
        cls_segms = [[] for _ in range(self.num_classes)
                     ]  # BG is not included in num_classes
        bboxes = det_bboxes[:, :4]
        labels = det_labels

        # In most cases, scale_factor should have been
        # converted to Tensor when rescale the bbox
        if not isinstance(scale_factor, torch.Tensor):
            if isinstance(scale_factor, float):
                scale_factor = np.array([scale_factor] * 4)
                warn('Scale_factor should be a Tensor or ndarray '
                     'with shape (4,), float would be deprecated. ')
            assert isinstance(scale_factor, np.ndarray)
            scale_factor = torch.Tensor(scale_factor)

        if rescale:
            img_h, img_w = ori_shape[:2]
            bboxes = bboxes / scale_factor.to(bboxes)
        else:
            w_scale, h_scale = scale_factor[0], scale_factor[1]
            img_h = np.round(ori_shape[0] * h_scale.item()).astype(np.int32)
            img_w = np.round(ori_shape[1] * w_scale.item()).astype(np.int32)

        N = len(mask_pred)
        # The actual implementation split the input into chunks,
        # and paste them chunk by chunk.
        if device.type == 'cpu':
            # CPU is most efficient when they are pasted one by one with
            # skip_empty=True, so that it performs minimal number of
            # operations.
            num_chunks = N
        else:
            # GPU benefits from parallelism for larger chunks,
            # but may have memory issue
            # the types of img_w and img_h are np.int32,
            # when the image resolution is large,
            # the calculation of num_chunks will overflow.
            # so we need to change the types of img_w and img_h to int.
            # See https://github.com/open-mmlab/mmdetection/pull/5191
            num_chunks = int(
                np.ceil(N * int(img_h) * int(img_w) * BYTES_PER_FLOAT /
                        GPU_MEM_LIMIT))
            assert (num_chunks <=
                    N), 'Default GPU_MEM_LIMIT is too small; try increasing it'
        chunks = torch.chunk(torch.arange(N, device=device), num_chunks)

        threshold = rcnn_test_cfg.mask_thr_binary
        im_mask = torch.zeros(
            N,
            img_h,
            img_w,
            device=device,
            dtype=torch.bool if threshold >= 0 else torch.uint8)

        if not self.class_agnostic:
            mask_pred = mask_pred[range(N), labels][:, None]

        for inds in chunks:
            masks_chunk, spatial_inds = _do_paste_mask(
                mask_pred[inds],
                bboxes[inds],
                img_h,
                img_w,
                skip_empty=device.type == 'cpu')

            if threshold >= 0:
                masks_chunk = (masks_chunk >= threshold).to(dtype=torch.bool)
            else:
                # for visualization and debugging
                masks_chunk = (masks_chunk * 255).to(dtype=torch.uint8)

            im_mask[(inds, ) + spatial_inds] = masks_chunk

        for i in range(N):
            cls_segms[labels[i]].append(im_mask[i].detach().cpu().numpy())
        return cls_segms

    def onnx_export(self, mask_pred, det_bboxes, det_labels, rcnn_test_cfg,
                    ori_shape, **kwargs):
        """Get segmentation masks from mask_pred and bboxes.

        Args:
            mask_pred (Tensor): shape (n, #class, h, w).
            det_bboxes (Tensor): shape (n, 4/5)
            det_labels (Tensor): shape (n, )
            rcnn_test_cfg (dict): rcnn testing config
            ori_shape (Tuple): original image height and width, shape (2,)

        Returns:
            Tensor: a mask of shape (N, img_h, img_w).
        """

        mask_pred = mask_pred.sigmoid()
        bboxes = det_bboxes[:, :4]
        labels = det_labels
        # No need to consider rescale and scale_factor while exporting to ONNX
        img_h, img_w = ori_shape[:2]
        threshold = rcnn_test_cfg.mask_thr_binary
        if not self.class_agnostic:
            box_inds = torch.arange(mask_pred.shape[0])
            mask_pred = mask_pred[box_inds, labels][:, None]
        masks, _ = _do_paste_mask(
            mask_pred, bboxes, img_h, img_w, skip_empty=False)
        if threshold >= 0:
            # should convert to float to avoid problems in TRT
            masks = (masks >= threshold).to(dtype=torch.float)
        return masks


def _do_paste_mask(masks, boxes, img_h, img_w, skip_empty=True):
    """Paste instance masks according to boxes.

    This implementation is modified from
    https://github.com/facebookresearch/detectron2/

    Args:
        masks (Tensor): N, 1, H, W
        boxes (Tensor): N, 4
        img_h (int): Height of the image to be pasted.
        img_w (int): Width of the image to be pasted.
        skip_empty (bool): Only paste masks within the region that
            tightly bound all boxes, and returns the results this region only.
            An important optimization for CPU.

    Returns:
        tuple: (Tensor, tuple). The first item is mask tensor, the second one
            is the slice object.
        If skip_empty == False, the whole image will be pasted. It will
            return a mask of shape (N, img_h, img_w) and an empty tuple.
        If skip_empty == True, only area around the mask will be pasted.
            A mask of shape (N, h', w') and its start and end coordinates
            in the original image will be returned.
    """
    # On GPU, paste all masks together (up to chunk size)
    # by using the entire image to sample the masks
    # Compared to pasting them one by one,
    # this has more operations but is faster on COCO-scale dataset.
    device = masks.device
    if skip_empty:
        x0_int, y0_int = torch.clamp(
            boxes.min(dim=0).values.floor()[:2] - 1,
            min=0).to(dtype=torch.int32)
        x1_int = torch.clamp(
            boxes[:, 2].max().ceil() + 1, max=img_w).to(dtype=torch.int32)
        y1_int = torch.clamp(
            boxes[:, 3].max().ceil() + 1, max=img_h).to(dtype=torch.int32)
    else:
        x0_int, y0_int = 0, 0
        x1_int, y1_int = img_w, img_h
    x0, y0, x1, y1 = torch.split(boxes, 1, dim=1)  # each is Nx1

    N = masks.shape[0]

    img_y = torch.arange(y0_int, y1_int, device=device).to(torch.float32) + 0.5
    img_x = torch.arange(x0_int, x1_int, device=device).to(torch.float32) + 0.5
    img_y = (img_y - y0) / (y1 - y0) * 2 - 1
    img_x = (img_x - x0) / (x1 - x0) * 2 - 1
    # img_x, img_y have shapes (N, w), (N, h)
    # IsInf op is not supported with ONNX<=1.7.0
    if not torch.onnx.is_in_onnx_export():
        if torch.isinf(img_x).any():
            inds = torch.where(torch.isinf(img_x))
            img_x[inds] = 0
        if torch.isinf(img_y).any():
            inds = torch.where(torch.isinf(img_y))
            img_y[inds] = 0

    gx = img_x[:, None, :].expand(N, img_y.size(1), img_x.size(1))
    gy = img_y[:, :, None].expand(N, img_y.size(1), img_x.size(1))
    grid = torch.stack([gx, gy], dim=3)

    img_masks = F.grid_sample(
        masks.to(dtype=torch.float32), grid, align_corners=False)

    if skip_empty:
        return img_masks[:, 0], (slice(y0_int, y1_int), slice(x0_int, x1_int))
    else:
        return img_masks[:, 0], ()