yolox_pafpn.py
5.67 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from mmcv.runner import BaseModule
from ..builder import NECKS
from ..utils import CSPLayer
@NECKS.register_module()
class YOLOXPAFPN(BaseModule):
"""Path Aggregation Network used in YOLOX.
Args:
in_channels (List[int]): Number of input channels per scale.
out_channels (int): Number of output channels (used at each scale)
num_csp_blocks (int): Number of bottlenecks in CSPLayer. Default: 3
use_depthwise (bool): Whether to depthwise separable convolution in
blocks. Default: False
upsample_cfg (dict): Config dict for interpolate layer.
Default: `dict(scale_factor=2, mode='nearest')`
conv_cfg (dict, optional): Config dict for convolution layer.
Default: None, which means using conv2d.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN')
act_cfg (dict): Config dict for activation layer.
Default: dict(type='Swish')
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(self,
in_channels,
out_channels,
num_csp_blocks=3,
use_depthwise=False,
upsample_cfg=dict(scale_factor=2, mode='nearest'),
conv_cfg=None,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='Swish'),
init_cfg=dict(
type='Kaiming',
layer='Conv2d',
a=math.sqrt(5),
distribution='uniform',
mode='fan_in',
nonlinearity='leaky_relu')):
super(YOLOXPAFPN, self).__init__(init_cfg)
self.in_channels = in_channels
self.out_channels = out_channels
conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule
# build top-down blocks
self.upsample = nn.Upsample(**upsample_cfg)
self.reduce_layers = nn.ModuleList()
self.top_down_blocks = nn.ModuleList()
for idx in range(len(in_channels) - 1, 0, -1):
self.reduce_layers.append(
ConvModule(
in_channels[idx],
in_channels[idx - 1],
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
self.top_down_blocks.append(
CSPLayer(
in_channels[idx - 1] * 2,
in_channels[idx - 1],
num_blocks=num_csp_blocks,
add_identity=False,
use_depthwise=use_depthwise,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
# build bottom-up blocks
self.downsamples = nn.ModuleList()
self.bottom_up_blocks = nn.ModuleList()
for idx in range(len(in_channels) - 1):
self.downsamples.append(
conv(
in_channels[idx],
in_channels[idx],
3,
stride=2,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
self.bottom_up_blocks.append(
CSPLayer(
in_channels[idx] * 2,
in_channels[idx + 1],
num_blocks=num_csp_blocks,
add_identity=False,
use_depthwise=use_depthwise,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
self.out_convs = nn.ModuleList()
for i in range(len(in_channels)):
self.out_convs.append(
ConvModule(
in_channels[i],
out_channels,
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg))
def forward(self, inputs):
"""
Args:
inputs (tuple[Tensor]): input features.
Returns:
tuple[Tensor]: YOLOXPAFPN features.
"""
assert len(inputs) == len(self.in_channels)
# top-down path
inner_outs = [inputs[-1]]
for idx in range(len(self.in_channels) - 1, 0, -1):
feat_heigh = inner_outs[0]
feat_low = inputs[idx - 1]
feat_heigh = self.reduce_layers[len(self.in_channels) - 1 - idx](
feat_heigh)
inner_outs[0] = feat_heigh
upsample_feat = self.upsample(feat_heigh)
inner_out = self.top_down_blocks[len(self.in_channels) - 1 - idx](
torch.cat([upsample_feat, feat_low], 1))
inner_outs.insert(0, inner_out)
# bottom-up path
outs = [inner_outs[0]]
for idx in range(len(self.in_channels) - 1):
feat_low = outs[-1]
feat_height = inner_outs[idx + 1]
downsample_feat = self.downsamples[idx](feat_low)
out = self.bottom_up_blocks[idx](
torch.cat([downsample_feat, feat_height], 1))
outs.append(out)
# out convs
for idx, conv in enumerate(self.out_convs):
outs[idx] = conv(outs[idx])
return tuple(outs)