seesaw_loss.py
10.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..builder import LOSSES
from .accuracy import accuracy
from .cross_entropy_loss import cross_entropy
from .utils import weight_reduce_loss
def seesaw_ce_loss(cls_score,
labels,
label_weights,
cum_samples,
num_classes,
p,
q,
eps,
reduction='mean',
avg_factor=None):
"""Calculate the Seesaw CrossEntropy loss.
Args:
cls_score (torch.Tensor): The prediction with shape (N, C),
C is the number of classes.
labels (torch.Tensor): The learning label of the prediction.
label_weights (torch.Tensor): Sample-wise loss weight.
cum_samples (torch.Tensor): Cumulative samples for each category.
num_classes (int): The number of classes.
p (float): The ``p`` in the mitigation factor.
q (float): The ``q`` in the compenstation factor.
eps (float): The minimal value of divisor to smooth
the computation of compensation factor
reduction (str, optional): The method used to reduce the loss.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
Returns:
torch.Tensor: The calculated loss
"""
assert cls_score.size(-1) == num_classes
assert len(cum_samples) == num_classes
onehot_labels = F.one_hot(labels, num_classes)
seesaw_weights = cls_score.new_ones(onehot_labels.size())
# mitigation factor
if p > 0:
sample_ratio_matrix = cum_samples[None, :].clamp(
min=1) / cum_samples[:, None].clamp(min=1)
index = (sample_ratio_matrix < 1.0).float()
sample_weights = sample_ratio_matrix.pow(p) * index + (1 - index)
mitigation_factor = sample_weights[labels.long(), :]
seesaw_weights = seesaw_weights * mitigation_factor
# compensation factor
if q > 0:
scores = F.softmax(cls_score.detach(), dim=1)
self_scores = scores[
torch.arange(0, len(scores)).to(scores.device).long(),
labels.long()]
score_matrix = scores / self_scores[:, None].clamp(min=eps)
index = (score_matrix > 1.0).float()
compensation_factor = score_matrix.pow(q) * index + (1 - index)
seesaw_weights = seesaw_weights * compensation_factor
cls_score = cls_score + (seesaw_weights.log() * (1 - onehot_labels))
loss = F.cross_entropy(cls_score, labels, weight=None, reduction='none')
if label_weights is not None:
label_weights = label_weights.float()
loss = weight_reduce_loss(
loss, weight=label_weights, reduction=reduction, avg_factor=avg_factor)
return loss
@LOSSES.register_module()
class SeesawLoss(nn.Module):
"""
Seesaw Loss for Long-Tailed Instance Segmentation (CVPR 2021)
arXiv: https://arxiv.org/abs/2008.10032
Args:
use_sigmoid (bool, optional): Whether the prediction uses sigmoid
of softmax. Only False is supported.
p (float, optional): The ``p`` in the mitigation factor.
Defaults to 0.8.
q (float, optional): The ``q`` in the compenstation factor.
Defaults to 2.0.
num_classes (int, optional): The number of classes.
Default to 1203 for LVIS v1 dataset.
eps (float, optional): The minimal value of divisor to smooth
the computation of compensation factor
reduction (str, optional): The method that reduces the loss to a
scalar. Options are "none", "mean" and "sum".
loss_weight (float, optional): The weight of the loss. Defaults to 1.0
return_dict (bool, optional): Whether return the losses as a dict.
Default to True.
"""
def __init__(self,
use_sigmoid=False,
p=0.8,
q=2.0,
num_classes=1203,
eps=1e-2,
reduction='mean',
loss_weight=1.0,
return_dict=True):
super(SeesawLoss, self).__init__()
assert not use_sigmoid
self.use_sigmoid = False
self.p = p
self.q = q
self.num_classes = num_classes
self.eps = eps
self.reduction = reduction
self.loss_weight = loss_weight
self.return_dict = return_dict
# 0 for pos, 1 for neg
self.cls_criterion = seesaw_ce_loss
# cumulative samples for each category
self.register_buffer(
'cum_samples',
torch.zeros(self.num_classes + 1, dtype=torch.float))
# custom output channels of the classifier
self.custom_cls_channels = True
# custom activation of cls_score
self.custom_activation = True
# custom accuracy of the classsifier
self.custom_accuracy = True
def _split_cls_score(self, cls_score):
# split cls_score to cls_score_classes and cls_score_objectness
assert cls_score.size(-1) == self.num_classes + 2
cls_score_classes = cls_score[..., :-2]
cls_score_objectness = cls_score[..., -2:]
return cls_score_classes, cls_score_objectness
def get_cls_channels(self, num_classes):
"""Get custom classification channels.
Args:
num_classes (int): The number of classes.
Returns:
int: The custom classification channels.
"""
assert num_classes == self.num_classes
return num_classes + 2
def get_activation(self, cls_score):
"""Get custom activation of cls_score.
Args:
cls_score (torch.Tensor): The prediction with shape (N, C + 2).
Returns:
torch.Tensor: The custom activation of cls_score with shape
(N, C + 1).
"""
cls_score_classes, cls_score_objectness = self._split_cls_score(
cls_score)
score_classes = F.softmax(cls_score_classes, dim=-1)
score_objectness = F.softmax(cls_score_objectness, dim=-1)
score_pos = score_objectness[..., [0]]
score_neg = score_objectness[..., [1]]
score_classes = score_classes * score_pos
scores = torch.cat([score_classes, score_neg], dim=-1)
return scores
def get_accuracy(self, cls_score, labels):
"""Get custom accuracy w.r.t. cls_score and labels.
Args:
cls_score (torch.Tensor): The prediction with shape (N, C + 2).
labels (torch.Tensor): The learning label of the prediction.
Returns:
Dict [str, torch.Tensor]: The accuracy for objectness and classes,
respectively.
"""
pos_inds = labels < self.num_classes
obj_labels = (labels == self.num_classes).long()
cls_score_classes, cls_score_objectness = self._split_cls_score(
cls_score)
acc_objectness = accuracy(cls_score_objectness, obj_labels)
acc_classes = accuracy(cls_score_classes[pos_inds], labels[pos_inds])
acc = dict()
acc['acc_objectness'] = acc_objectness
acc['acc_classes'] = acc_classes
return acc
def forward(self,
cls_score,
labels,
label_weights=None,
avg_factor=None,
reduction_override=None):
"""Forward function.
Args:
cls_score (torch.Tensor): The prediction with shape (N, C + 2).
labels (torch.Tensor): The learning label of the prediction.
label_weights (torch.Tensor, optional): Sample-wise loss weight.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
reduction (str, optional): The method used to reduce the loss.
Options are "none", "mean" and "sum".
Returns:
torch.Tensor | Dict [str, torch.Tensor]:
if return_dict == False: The calculated loss |
if return_dict == True: The dict of calculated losses
for objectness and classes, respectively.
"""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
assert cls_score.size(-1) == self.num_classes + 2
pos_inds = labels < self.num_classes
# 0 for pos, 1 for neg
obj_labels = (labels == self.num_classes).long()
# accumulate the samples for each category
unique_labels = labels.unique()
for u_l in unique_labels:
inds_ = labels == u_l.item()
self.cum_samples[u_l] += inds_.sum()
if label_weights is not None:
label_weights = label_weights.float()
else:
label_weights = labels.new_ones(labels.size(), dtype=torch.float)
cls_score_classes, cls_score_objectness = self._split_cls_score(
cls_score)
# calculate loss_cls_classes (only need pos samples)
if pos_inds.sum() > 0:
loss_cls_classes = self.loss_weight * self.cls_criterion(
cls_score_classes[pos_inds], labels[pos_inds],
label_weights[pos_inds], self.cum_samples[:self.num_classes],
self.num_classes, self.p, self.q, self.eps, reduction,
avg_factor)
else:
loss_cls_classes = cls_score_classes[pos_inds].sum()
# calculate loss_cls_objectness
loss_cls_objectness = self.loss_weight * cross_entropy(
cls_score_objectness, obj_labels, label_weights, reduction,
avg_factor)
if self.return_dict:
loss_cls = dict()
loss_cls['loss_cls_objectness'] = loss_cls_objectness
loss_cls['loss_cls_classes'] = loss_cls_classes
else:
loss_cls = loss_cls_classes + loss_cls_objectness
return loss_cls