resnet.py 23.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import build_conv_layer, build_norm_layer, build_plugin_layer
from mmcv.runner import BaseModule
from torch.nn.modules.batchnorm import _BatchNorm

from ..builder import BACKBONES
from ..utils import ResLayer


class BasicBlock(BaseModule):
    expansion = 1

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 dcn=None,
                 plugins=None,
                 init_cfg=None):
        super(BasicBlock, self).__init__(init_cfg)
        assert dcn is None, 'Not implemented yet.'
        assert plugins is None, 'Not implemented yet.'

        self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)

        self.conv1 = build_conv_layer(
            conv_cfg,
            inplanes,
            planes,
            3,
            stride=stride,
            padding=dilation,
            dilation=dilation,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(
            conv_cfg, planes, planes, 3, padding=1, bias=False)
        self.add_module(self.norm2_name, norm2)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
        self.with_cp = with_cp

    @property
    def norm1(self):
        """nn.Module: normalization layer after the first convolution layer"""
        return getattr(self, self.norm1_name)

    @property
    def norm2(self):
        """nn.Module: normalization layer after the second convolution layer"""
        return getattr(self, self.norm2_name)

    def forward(self, x):
        """Forward function."""

        def _inner_forward(x):
            identity = x

            out = self.conv1(x)
            out = self.norm1(out)
            out = self.relu(out)

            out = self.conv2(out)
            out = self.norm2(out)

            if self.downsample is not None:
                identity = self.downsample(x)

            out += identity

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


class Bottleneck(BaseModule):
    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 dcn=None,
                 plugins=None,
                 init_cfg=None):
        """Bottleneck block for ResNet.

        If style is "pytorch", the stride-two layer is the 3x3 conv layer, if
        it is "caffe", the stride-two layer is the first 1x1 conv layer.
        """
        super(Bottleneck, self).__init__(init_cfg)
        assert style in ['pytorch', 'caffe']
        assert dcn is None or isinstance(dcn, dict)
        assert plugins is None or isinstance(plugins, list)
        if plugins is not None:
            allowed_position = ['after_conv1', 'after_conv2', 'after_conv3']
            assert all(p['position'] in allowed_position for p in plugins)

        self.inplanes = inplanes
        self.planes = planes
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.dcn = dcn
        self.with_dcn = dcn is not None
        self.plugins = plugins
        self.with_plugins = plugins is not None

        if self.with_plugins:
            # collect plugins for conv1/conv2/conv3
            self.after_conv1_plugins = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv1'
            ]
            self.after_conv2_plugins = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv2'
            ]
            self.after_conv3_plugins = [
                plugin['cfg'] for plugin in plugins
                if plugin['position'] == 'after_conv3'
            ]

        if self.style == 'pytorch':
            self.conv1_stride = 1
            self.conv2_stride = stride
        else:
            self.conv1_stride = stride
            self.conv2_stride = 1

        self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(
            norm_cfg, planes * self.expansion, postfix=3)

        self.conv1 = build_conv_layer(
            conv_cfg,
            inplanes,
            planes,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        fallback_on_stride = False
        if self.with_dcn:
            fallback_on_stride = dcn.pop('fallback_on_stride', False)
        if not self.with_dcn or fallback_on_stride:
            self.conv2 = build_conv_layer(
                conv_cfg,
                planes,
                planes,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=dilation,
                dilation=dilation,
                bias=False)
        else:
            assert self.conv_cfg is None, 'conv_cfg must be None for DCN'
            self.conv2 = build_conv_layer(
                dcn,
                planes,
                planes,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=dilation,
                dilation=dilation,
                bias=False)

        self.add_module(self.norm2_name, norm2)
        self.conv3 = build_conv_layer(
            conv_cfg,
            planes,
            planes * self.expansion,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample

        if self.with_plugins:
            self.after_conv1_plugin_names = self.make_block_plugins(
                planes, self.after_conv1_plugins)
            self.after_conv2_plugin_names = self.make_block_plugins(
                planes, self.after_conv2_plugins)
            self.after_conv3_plugin_names = self.make_block_plugins(
                planes * self.expansion, self.after_conv3_plugins)

    def make_block_plugins(self, in_channels, plugins):
        """make plugins for block.

        Args:
            in_channels (int): Input channels of plugin.
            plugins (list[dict]): List of plugins cfg to build.

        Returns:
            list[str]: List of the names of plugin.
        """
        assert isinstance(plugins, list)
        plugin_names = []
        for plugin in plugins:
            plugin = plugin.copy()
            name, layer = build_plugin_layer(
                plugin,
                in_channels=in_channels,
                postfix=plugin.pop('postfix', ''))
            assert not hasattr(self, name), f'duplicate plugin {name}'
            self.add_module(name, layer)
            plugin_names.append(name)
        return plugin_names

    def forward_plugin(self, x, plugin_names):
        out = x
        for name in plugin_names:
            out = getattr(self, name)(x)
        return out

    @property
    def norm1(self):
        """nn.Module: normalization layer after the first convolution layer"""
        return getattr(self, self.norm1_name)

    @property
    def norm2(self):
        """nn.Module: normalization layer after the second convolution layer"""
        return getattr(self, self.norm2_name)

    @property
    def norm3(self):
        """nn.Module: normalization layer after the third convolution layer"""
        return getattr(self, self.norm3_name)

    def forward(self, x):
        """Forward function."""

        def _inner_forward(x):
            identity = x
            out = self.conv1(x)
            out = self.norm1(out)
            out = self.relu(out)

            if self.with_plugins:
                out = self.forward_plugin(out, self.after_conv1_plugin_names)

            out = self.conv2(out)
            out = self.norm2(out)
            out = self.relu(out)

            if self.with_plugins:
                out = self.forward_plugin(out, self.after_conv2_plugin_names)

            out = self.conv3(out)
            out = self.norm3(out)

            if self.with_plugins:
                out = self.forward_plugin(out, self.after_conv3_plugin_names)

            if self.downsample is not None:
                identity = self.downsample(x)

            out += identity

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


@BACKBONES.register_module()
class ResNet(BaseModule):
    """ResNet backbone.

    Args:
        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
        stem_channels (int | None): Number of stem channels. If not specified,
            it will be the same as `base_channels`. Default: None.
        base_channels (int): Number of base channels of res layer. Default: 64.
        in_channels (int): Number of input image channels. Default: 3.
        num_stages (int): Resnet stages. Default: 4.
        strides (Sequence[int]): Strides of the first block of each stage.
        dilations (Sequence[int]): Dilation of each stage.
        out_indices (Sequence[int]): Output from which stages.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv
        avg_down (bool): Use AvgPool instead of stride conv when
            downsampling in the bottleneck.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters.
        norm_cfg (dict): Dictionary to construct and config norm layer.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only.
        plugins (list[dict]): List of plugins for stages, each dict contains:

            - cfg (dict, required): Cfg dict to build plugin.
            - position (str, required): Position inside block to insert
              plugin, options are 'after_conv1', 'after_conv2', 'after_conv3'.
            - stages (tuple[bool], optional): Stages to apply plugin, length
              should be same as 'num_stages'.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
        zero_init_residual (bool): Whether to use zero init for last norm layer
            in resblocks to let them behave as identity.
        pretrained (str, optional): model pretrained path. Default: None
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None

    Example:
        >>> from mmdet.models import ResNet
        >>> import torch
        >>> self = ResNet(depth=18)
        >>> self.eval()
        >>> inputs = torch.rand(1, 3, 32, 32)
        >>> level_outputs = self.forward(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        (1, 64, 8, 8)
        (1, 128, 4, 4)
        (1, 256, 2, 2)
        (1, 512, 1, 1)
    """

    arch_settings = {
        18: (BasicBlock, (2, 2, 2, 2)),
        34: (BasicBlock, (3, 4, 6, 3)),
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }

    def __init__(self,
                 depth,
                 in_channels=3,
                 stem_channels=None,
                 base_channels=64,
                 num_stages=4,
                 strides=(1, 2, 2, 2),
                 dilations=(1, 1, 1, 1),
                 out_indices=(0, 1, 2, 3),
                 style='pytorch',
                 deep_stem=False,
                 avg_down=False,
                 frozen_stages=-1,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN', requires_grad=True),
                 norm_eval=True,
                 dcn=None,
                 stage_with_dcn=(False, False, False, False),
                 plugins=None,
                 with_cp=False,
                 zero_init_residual=True,
                 pretrained=None,
                 init_cfg=None):
        super(ResNet, self).__init__(init_cfg)
        self.zero_init_residual = zero_init_residual
        if depth not in self.arch_settings:
            raise KeyError(f'invalid depth {depth} for resnet')

        block_init_cfg = None
        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be specified at the same time'
        if isinstance(pretrained, str):
            warnings.warn('DeprecationWarning: pretrained is deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        elif pretrained is None:
            if init_cfg is None:
                self.init_cfg = [
                    dict(type='Kaiming', layer='Conv2d'),
                    dict(
                        type='Constant',
                        val=1,
                        layer=['_BatchNorm', 'GroupNorm'])
                ]
                block = self.arch_settings[depth][0]
                if self.zero_init_residual:
                    if block is BasicBlock:
                        block_init_cfg = dict(
                            type='Constant',
                            val=0,
                            override=dict(name='norm2'))
                    elif block is Bottleneck:
                        block_init_cfg = dict(
                            type='Constant',
                            val=0,
                            override=dict(name='norm3'))
        else:
            raise TypeError('pretrained must be a str or None')

        self.depth = depth
        if stem_channels is None:
            stem_channels = base_channels
        self.stem_channels = stem_channels
        self.base_channels = base_channels
        self.num_stages = num_stages
        assert num_stages >= 1 and num_stages <= 4
        self.strides = strides
        self.dilations = dilations
        assert len(strides) == len(dilations) == num_stages
        self.out_indices = out_indices
        assert max(out_indices) < num_stages
        self.style = style
        self.deep_stem = deep_stem
        self.avg_down = avg_down
        self.frozen_stages = frozen_stages
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.with_cp = with_cp
        self.norm_eval = norm_eval
        self.dcn = dcn
        self.stage_with_dcn = stage_with_dcn
        if dcn is not None:
            assert len(stage_with_dcn) == num_stages
        self.plugins = plugins
        self.block, stage_blocks = self.arch_settings[depth]
        self.stage_blocks = stage_blocks[:num_stages]
        self.inplanes = stem_channels

        self._make_stem_layer(in_channels, stem_channels)

        self.res_layers = []
        for i, num_blocks in enumerate(self.stage_blocks):
            stride = strides[i]
            dilation = dilations[i]
            dcn = self.dcn if self.stage_with_dcn[i] else None
            if plugins is not None:
                stage_plugins = self.make_stage_plugins(plugins, i)
            else:
                stage_plugins = None
            planes = base_channels * 2**i
            res_layer = self.make_res_layer(
                block=self.block,
                inplanes=self.inplanes,
                planes=planes,
                num_blocks=num_blocks,
                stride=stride,
                dilation=dilation,
                style=self.style,
                avg_down=self.avg_down,
                with_cp=with_cp,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                dcn=dcn,
                plugins=stage_plugins,
                init_cfg=block_init_cfg)
            self.inplanes = planes * self.block.expansion
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)

        self._freeze_stages()

        self.feat_dim = self.block.expansion * base_channels * 2**(
            len(self.stage_blocks) - 1)

    def make_stage_plugins(self, plugins, stage_idx):
        """Make plugins for ResNet ``stage_idx`` th stage.

        Currently we support to insert ``context_block``,
        ``empirical_attention_block``, ``nonlocal_block`` into the backbone
        like ResNet/ResNeXt. They could be inserted after conv1/conv2/conv3 of
        Bottleneck.

        An example of plugins format could be:

        Examples:
            >>> plugins=[
            ...     dict(cfg=dict(type='xxx', arg1='xxx'),
            ...          stages=(False, True, True, True),
            ...          position='after_conv2'),
            ...     dict(cfg=dict(type='yyy'),
            ...          stages=(True, True, True, True),
            ...          position='after_conv3'),
            ...     dict(cfg=dict(type='zzz', postfix='1'),
            ...          stages=(True, True, True, True),
            ...          position='after_conv3'),
            ...     dict(cfg=dict(type='zzz', postfix='2'),
            ...          stages=(True, True, True, True),
            ...          position='after_conv3')
            ... ]
            >>> self = ResNet(depth=18)
            >>> stage_plugins = self.make_stage_plugins(plugins, 0)
            >>> assert len(stage_plugins) == 3

        Suppose ``stage_idx=0``, the structure of blocks in the stage would be:

        .. code-block:: none

            conv1-> conv2->conv3->yyy->zzz1->zzz2

        Suppose 'stage_idx=1', the structure of blocks in the stage would be:

        .. code-block:: none

            conv1-> conv2->xxx->conv3->yyy->zzz1->zzz2

        If stages is missing, the plugin would be applied to all stages.

        Args:
            plugins (list[dict]): List of plugins cfg to build. The postfix is
                required if multiple same type plugins are inserted.
            stage_idx (int): Index of stage to build

        Returns:
            list[dict]: Plugins for current stage
        """
        stage_plugins = []
        for plugin in plugins:
            plugin = plugin.copy()
            stages = plugin.pop('stages', None)
            assert stages is None or len(stages) == self.num_stages
            # whether to insert plugin into current stage
            if stages is None or stages[stage_idx]:
                stage_plugins.append(plugin)

        return stage_plugins

    def make_res_layer(self, **kwargs):
        """Pack all blocks in a stage into a ``ResLayer``."""
        return ResLayer(**kwargs)

    @property
    def norm1(self):
        """nn.Module: the normalization layer named "norm1" """
        return getattr(self, self.norm1_name)

    def _make_stem_layer(self, in_channels, stem_channels):
        if self.deep_stem:
            self.stem = nn.Sequential(
                build_conv_layer(
                    self.conv_cfg,
                    in_channels,
                    stem_channels // 2,
                    kernel_size=3,
                    stride=2,
                    padding=1,
                    bias=False),
                build_norm_layer(self.norm_cfg, stem_channels // 2)[1],
                nn.ReLU(inplace=True),
                build_conv_layer(
                    self.conv_cfg,
                    stem_channels // 2,
                    stem_channels // 2,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=False),
                build_norm_layer(self.norm_cfg, stem_channels // 2)[1],
                nn.ReLU(inplace=True),
                build_conv_layer(
                    self.conv_cfg,
                    stem_channels // 2,
                    stem_channels,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=False),
                build_norm_layer(self.norm_cfg, stem_channels)[1],
                nn.ReLU(inplace=True))
        else:
            self.conv1 = build_conv_layer(
                self.conv_cfg,
                in_channels,
                stem_channels,
                kernel_size=7,
                stride=2,
                padding=3,
                bias=False)
            self.norm1_name, norm1 = build_norm_layer(
                self.norm_cfg, stem_channels, postfix=1)
            self.add_module(self.norm1_name, norm1)
            self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            if self.deep_stem:
                self.stem.eval()
                for param in self.stem.parameters():
                    param.requires_grad = False
            else:
                self.norm1.eval()
                for m in [self.conv1, self.norm1]:
                    for param in m.parameters():
                        param.requires_grad = False

        for i in range(1, self.frozen_stages + 1):
            m = getattr(self, f'layer{i}')
            m.eval()
            for param in m.parameters():
                param.requires_grad = False

    def forward(self, x):
        """Forward function."""
        if self.deep_stem:
            x = self.stem(x)
        else:
            x = self.conv1(x)
            x = self.norm1(x)
            x = self.relu(x)
        x = self.maxpool(x)
        outs = []
        for i, layer_name in enumerate(self.res_layers):
            res_layer = getattr(self, layer_name)
            x = res_layer(x)
            if i in self.out_indices:
                outs.append(x)
        return tuple(outs)

    def train(self, mode=True):
        """Convert the model into training mode while keep normalization layer
        freezed."""
        super(ResNet, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                # trick: eval have effect on BatchNorm only
                if isinstance(m, _BatchNorm):
                    m.eval()


@BACKBONES.register_module()
class ResNetV1d(ResNet):
    r"""ResNetV1d variant described in `Bag of Tricks
    <https://arxiv.org/pdf/1812.01187.pdf>`_.

    Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in
    the input stem with three 3x3 convs. And in the downsampling block, a 2x2
    avg_pool with stride 2 is added before conv, whose stride is changed to 1.
    """

    def __init__(self, **kwargs):
        super(ResNetV1d, self).__init__(
            deep_stem=True, avg_down=True, **kwargs)