mean_ap.py 31.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
# Copyright (c) OpenMMLab. All rights reserved.
from multiprocessing import Pool

import mmcv
import numpy as np
from mmcv.utils import print_log
from terminaltables import AsciiTable

from .bbox_overlaps import bbox_overlaps
from .class_names import get_classes


def average_precision(recalls, precisions, mode='area'):
    """Calculate average precision (for single or multiple scales).

    Args:
        recalls (ndarray): shape (num_scales, num_dets) or (num_dets, )
        precisions (ndarray): shape (num_scales, num_dets) or (num_dets, )
        mode (str): 'area' or '11points', 'area' means calculating the area
            under precision-recall curve, '11points' means calculating
            the average precision of recalls at [0, 0.1, ..., 1]

    Returns:
        float or ndarray: calculated average precision
    """
    no_scale = False
    if recalls.ndim == 1:
        no_scale = True
        recalls = recalls[np.newaxis, :]
        precisions = precisions[np.newaxis, :]
    assert recalls.shape == precisions.shape and recalls.ndim == 2
    num_scales = recalls.shape[0]
    ap = np.zeros(num_scales, dtype=np.float32)
    if mode == 'area':
        zeros = np.zeros((num_scales, 1), dtype=recalls.dtype)
        ones = np.ones((num_scales, 1), dtype=recalls.dtype)
        mrec = np.hstack((zeros, recalls, ones))
        mpre = np.hstack((zeros, precisions, zeros))
        for i in range(mpre.shape[1] - 1, 0, -1):
            mpre[:, i - 1] = np.maximum(mpre[:, i - 1], mpre[:, i])
        for i in range(num_scales):
            ind = np.where(mrec[i, 1:] != mrec[i, :-1])[0]
            ap[i] = np.sum(
                (mrec[i, ind + 1] - mrec[i, ind]) * mpre[i, ind + 1])
    elif mode == '11points':
        for i in range(num_scales):
            for thr in np.arange(0, 1 + 1e-3, 0.1):
                precs = precisions[i, recalls[i, :] >= thr]
                prec = precs.max() if precs.size > 0 else 0
                ap[i] += prec
        ap /= 11
    else:
        raise ValueError(
            'Unrecognized mode, only "area" and "11points" are supported')
    if no_scale:
        ap = ap[0]
    return ap


def tpfp_imagenet(det_bboxes,
                  gt_bboxes,
                  gt_bboxes_ignore=None,
                  default_iou_thr=0.5,
                  area_ranges=None,
                  use_legacy_coordinate=False):
    """Check if detected bboxes are true positive or false positive.

    Args:
        det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5).
        gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).
        gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,
            of shape (k, 4). Default: None
        default_iou_thr (float): IoU threshold to be considered as matched for
            medium and large bboxes (small ones have special rules).
            Default: 0.5.
        area_ranges (list[tuple] | None): Range of bbox areas to be evaluated,
            in the format [(min1, max1), (min2, max2), ...]. Default: None.
        use_legacy_coordinate (bool): Whether to use coordinate system in
            mmdet v1.x. which means width, height should be
            calculated as 'x2 - x1 + 1` and 'y2 - y1 + 1' respectively.
            Default: False.

    Returns:
        tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of
        each array is (num_scales, m).
    """

    if not use_legacy_coordinate:
        extra_length = 0.
    else:
        extra_length = 1.

    # an indicator of ignored gts
    gt_ignore_inds = np.concatenate(
        (np.zeros(gt_bboxes.shape[0], dtype=np.bool),
         np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool)))
    # stack gt_bboxes and gt_bboxes_ignore for convenience
    gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))

    num_dets = det_bboxes.shape[0]
    num_gts = gt_bboxes.shape[0]
    if area_ranges is None:
        area_ranges = [(None, None)]
    num_scales = len(area_ranges)
    # tp and fp are of shape (num_scales, num_gts), each row is tp or fp
    # of a certain scale.
    tp = np.zeros((num_scales, num_dets), dtype=np.float32)
    fp = np.zeros((num_scales, num_dets), dtype=np.float32)
    if gt_bboxes.shape[0] == 0:
        if area_ranges == [(None, None)]:
            fp[...] = 1
        else:
            det_areas = (
                det_bboxes[:, 2] - det_bboxes[:, 0] + extra_length) * (
                    det_bboxes[:, 3] - det_bboxes[:, 1] + extra_length)
            for i, (min_area, max_area) in enumerate(area_ranges):
                fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1
        return tp, fp
    ious = bbox_overlaps(
        det_bboxes, gt_bboxes - 1, use_legacy_coordinate=use_legacy_coordinate)
    gt_w = gt_bboxes[:, 2] - gt_bboxes[:, 0] + extra_length
    gt_h = gt_bboxes[:, 3] - gt_bboxes[:, 1] + extra_length
    iou_thrs = np.minimum((gt_w * gt_h) / ((gt_w + 10.0) * (gt_h + 10.0)),
                          default_iou_thr)
    # sort all detections by scores in descending order
    sort_inds = np.argsort(-det_bboxes[:, -1])
    for k, (min_area, max_area) in enumerate(area_ranges):
        gt_covered = np.zeros(num_gts, dtype=bool)
        # if no area range is specified, gt_area_ignore is all False
        if min_area is None:
            gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
        else:
            gt_areas = gt_w * gt_h
            gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)
        for i in sort_inds:
            max_iou = -1
            matched_gt = -1
            # find best overlapped available gt
            for j in range(num_gts):
                # different from PASCAL VOC: allow finding other gts if the
                # best overlapped ones are already matched by other det bboxes
                if gt_covered[j]:
                    continue
                elif ious[i, j] >= iou_thrs[j] and ious[i, j] > max_iou:
                    max_iou = ious[i, j]
                    matched_gt = j
            # there are 4 cases for a det bbox:
            # 1. it matches a gt, tp = 1, fp = 0
            # 2. it matches an ignored gt, tp = 0, fp = 0
            # 3. it matches no gt and within area range, tp = 0, fp = 1
            # 4. it matches no gt but is beyond area range, tp = 0, fp = 0
            if matched_gt >= 0:
                gt_covered[matched_gt] = 1
                if not (gt_ignore_inds[matched_gt]
                        or gt_area_ignore[matched_gt]):
                    tp[k, i] = 1
            elif min_area is None:
                fp[k, i] = 1
            else:
                bbox = det_bboxes[i, :4]
                area = (bbox[2] - bbox[0] + extra_length) * (
                    bbox[3] - bbox[1] + extra_length)
                if area >= min_area and area < max_area:
                    fp[k, i] = 1
    return tp, fp


def tpfp_default(det_bboxes,
                 gt_bboxes,
                 gt_bboxes_ignore=None,
                 iou_thr=0.5,
                 area_ranges=None,
                 use_legacy_coordinate=False):
    """Check if detected bboxes are true positive or false positive.

    Args:
        det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5).
        gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).
        gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,
            of shape (k, 4). Default: None
        iou_thr (float): IoU threshold to be considered as matched.
            Default: 0.5.
        area_ranges (list[tuple] | None): Range of bbox areas to be
            evaluated, in the format [(min1, max1), (min2, max2), ...].
            Default: None.
        use_legacy_coordinate (bool): Whether to use coordinate system in
            mmdet v1.x. which means width, height should be
            calculated as 'x2 - x1 + 1` and 'y2 - y1 + 1' respectively.
            Default: False.

    Returns:
        tuple[np.ndarray]: (tp, fp) whose elements are 0 and 1. The shape of
        each array is (num_scales, m).
    """

    if not use_legacy_coordinate:
        extra_length = 0.
    else:
        extra_length = 1.

    # an indicator of ignored gts
    gt_ignore_inds = np.concatenate(
        (np.zeros(gt_bboxes.shape[0], dtype=np.bool),
         np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool)))
    # stack gt_bboxes and gt_bboxes_ignore for convenience
    gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))

    num_dets = det_bboxes.shape[0]
    num_gts = gt_bboxes.shape[0]
    if area_ranges is None:
        area_ranges = [(None, None)]
    num_scales = len(area_ranges)
    # tp and fp are of shape (num_scales, num_gts), each row is tp or fp of
    # a certain scale
    tp = np.zeros((num_scales, num_dets), dtype=np.float32)
    fp = np.zeros((num_scales, num_dets), dtype=np.float32)

    # if there is no gt bboxes in this image, then all det bboxes
    # within area range are false positives
    if gt_bboxes.shape[0] == 0:
        if area_ranges == [(None, None)]:
            fp[...] = 1
        else:
            det_areas = (
                det_bboxes[:, 2] - det_bboxes[:, 0] + extra_length) * (
                    det_bboxes[:, 3] - det_bboxes[:, 1] + extra_length)
            for i, (min_area, max_area) in enumerate(area_ranges):
                fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1
        return tp, fp

    ious = bbox_overlaps(
        det_bboxes, gt_bboxes, use_legacy_coordinate=use_legacy_coordinate)
    # for each det, the max iou with all gts
    ious_max = ious.max(axis=1)
    # for each det, which gt overlaps most with it
    ious_argmax = ious.argmax(axis=1)
    # sort all dets in descending order by scores
    sort_inds = np.argsort(-det_bboxes[:, -1])
    for k, (min_area, max_area) in enumerate(area_ranges):
        gt_covered = np.zeros(num_gts, dtype=bool)
        # if no area range is specified, gt_area_ignore is all False
        if min_area is None:
            gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
        else:
            gt_areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0] + extra_length) * (
                gt_bboxes[:, 3] - gt_bboxes[:, 1] + extra_length)
            gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)
        for i in sort_inds:
            if ious_max[i] >= iou_thr:
                matched_gt = ious_argmax[i]
                if not (gt_ignore_inds[matched_gt]
                        or gt_area_ignore[matched_gt]):
                    if not gt_covered[matched_gt]:
                        gt_covered[matched_gt] = True
                        tp[k, i] = 1
                    else:
                        fp[k, i] = 1
                # otherwise ignore this detected bbox, tp = 0, fp = 0
            elif min_area is None:
                fp[k, i] = 1
            else:
                bbox = det_bboxes[i, :4]
                area = (bbox[2] - bbox[0] + extra_length) * (
                    bbox[3] - bbox[1] + extra_length)
                if area >= min_area and area < max_area:
                    fp[k, i] = 1
    return tp, fp


def tpfp_openimages(det_bboxes,
                    gt_bboxes,
                    gt_bboxes_ignore=None,
                    iou_thr=0.5,
                    area_ranges=None,
                    use_legacy_coordinate=False,
                    gt_bboxes_group_of=None,
                    use_group_of=True,
                    ioa_thr=0.5):
    """Check if detected bboxes are true positive or false positive.

    Args:
        det_bbox (ndarray): Detected bboxes of this image, of shape (m, 5).
        gt_bboxes (ndarray): GT bboxes of this image, of shape (n, 4).
        gt_bboxes_ignore (ndarray): Ignored gt bboxes of this image,
            of shape (k, 4). Default: None
        iou_thr (float): IoU threshold to be considered as matched.
            Default: 0.5.
        area_ranges (list[tuple] | None): Range of bbox areas to be
            evaluated, in the format [(min1, max1), (min2, max2), ...].
            Default: None.
        use_legacy_coordinate (bool): Whether to use coordinate system in
            mmdet v1.x. which means width, height should be
            calculated as 'x2 - x1 + 1` and 'y2 - y1 + 1' respectively.
            Default: False.
        gt_bboxes_group_of (ndarray): GT group_of of this image, of shape
            (k, 1). Default: None
        use_group_of (bool): Whether to use group of when calculate TP and FP,
            which only used in OpenImages evaluation. Default: True.
        ioa_thr (float | None): IoA threshold to be considered as matched,
            which only used in OpenImages evaluation. Default: 0.5.

    Returns:
        tuple[np.ndarray]: Returns a tuple (tp, fp, det_bboxes), where
        (tp, fp) whose elements are 0 and 1. The shape of each array is
        (num_scales, m). (det_bboxes) whose will filter those are not
        matched by group of gts when processing Open Images evaluation.
        The shape is (num_scales, m).
    """

    if not use_legacy_coordinate:
        extra_length = 0.
    else:
        extra_length = 1.

    # an indicator of ignored gts
    gt_ignore_inds = np.concatenate(
        (np.zeros(gt_bboxes.shape[0], dtype=np.bool),
         np.ones(gt_bboxes_ignore.shape[0], dtype=np.bool)))
    # stack gt_bboxes and gt_bboxes_ignore for convenience
    gt_bboxes = np.vstack((gt_bboxes, gt_bboxes_ignore))

    num_dets = det_bboxes.shape[0]
    num_gts = gt_bboxes.shape[0]
    if area_ranges is None:
        area_ranges = [(None, None)]
    num_scales = len(area_ranges)
    # tp and fp are of shape (num_scales, num_gts), each row is tp or fp of
    # a certain scale
    tp = np.zeros((num_scales, num_dets), dtype=np.float32)
    fp = np.zeros((num_scales, num_dets), dtype=np.float32)

    # if there is no gt bboxes in this image, then all det bboxes
    # within area range are false positives
    if gt_bboxes.shape[0] == 0:
        if area_ranges == [(None, None)]:
            fp[...] = 1
        else:
            det_areas = (
                det_bboxes[:, 2] - det_bboxes[:, 0] + extra_length) * (
                    det_bboxes[:, 3] - det_bboxes[:, 1] + extra_length)
            for i, (min_area, max_area) in enumerate(area_ranges):
                fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1
        return tp, fp, det_bboxes

    if gt_bboxes_group_of is not None and use_group_of:
        # if handle group-of boxes, divided gt boxes into two parts:
        # non-group-of and group-of.Then calculate ious and ioas through
        # non-group-of group-of gts respectively. This only used in
        # OpenImages evaluation.
        assert gt_bboxes_group_of.shape[0] == gt_bboxes.shape[0]
        non_group_gt_bboxes = gt_bboxes[~gt_bboxes_group_of]
        group_gt_bboxes = gt_bboxes[gt_bboxes_group_of]
        num_gts_group = group_gt_bboxes.shape[0]
        ious = bbox_overlaps(det_bboxes, non_group_gt_bboxes)
        ioas = bbox_overlaps(det_bboxes, group_gt_bboxes, mode='iof')
    else:
        # if not consider group-of boxes, only calculate ious through gt boxes
        ious = bbox_overlaps(
            det_bboxes, gt_bboxes, use_legacy_coordinate=use_legacy_coordinate)
        ioas = None

    if ious.shape[1] > 0:
        # for each det, the max iou with all gts
        ious_max = ious.max(axis=1)
        # for each det, which gt overlaps most with it
        ious_argmax = ious.argmax(axis=1)
        # sort all dets in descending order by scores
        sort_inds = np.argsort(-det_bboxes[:, -1])
        for k, (min_area, max_area) in enumerate(area_ranges):
            gt_covered = np.zeros(num_gts, dtype=bool)
            # if no area range is specified, gt_area_ignore is all False
            if min_area is None:
                gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
            else:
                gt_areas = (
                    gt_bboxes[:, 2] - gt_bboxes[:, 0] + extra_length) * (
                        gt_bboxes[:, 3] - gt_bboxes[:, 1] + extra_length)
                gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)
            for i in sort_inds:
                if ious_max[i] >= iou_thr:
                    matched_gt = ious_argmax[i]
                    if not (gt_ignore_inds[matched_gt]
                            or gt_area_ignore[matched_gt]):
                        if not gt_covered[matched_gt]:
                            gt_covered[matched_gt] = True
                            tp[k, i] = 1
                        else:
                            fp[k, i] = 1
                    # otherwise ignore this detected bbox, tp = 0, fp = 0
                elif min_area is None:
                    fp[k, i] = 1
                else:
                    bbox = det_bboxes[i, :4]
                    area = (bbox[2] - bbox[0] + extra_length) * (
                        bbox[3] - bbox[1] + extra_length)
                    if area >= min_area and area < max_area:
                        fp[k, i] = 1
    else:
        # if there is no no-group-of gt bboxes in this image,
        # then all det bboxes within area range are false positives.
        # Only used in OpenImages evaluation.
        if area_ranges == [(None, None)]:
            fp[...] = 1
        else:
            det_areas = (
                det_bboxes[:, 2] - det_bboxes[:, 0] + extra_length) * (
                    det_bboxes[:, 3] - det_bboxes[:, 1] + extra_length)
            for i, (min_area, max_area) in enumerate(area_ranges):
                fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1

    if ioas is None or ioas.shape[1] <= 0:
        return tp, fp, det_bboxes
    else:
        # The evaluation of group-of TP and FP are done in two stages:
        # 1. All detections are first matched to non group-of boxes; true
        #    positives are determined.
        # 2. Detections that are determined as false positives are matched
        #    against group-of boxes and calculated group-of TP and FP.
        # Only used in OpenImages evaluation.
        det_bboxes_group = np.zeros(
            (num_scales, ioas.shape[1], det_bboxes.shape[1]), dtype=float)
        match_group_of = np.zeros((num_scales, num_dets), dtype=bool)
        tp_group = np.zeros((num_scales, num_gts_group), dtype=np.float32)
        ioas_max = ioas.max(axis=1)
        # for each det, which gt overlaps most with it
        ioas_argmax = ioas.argmax(axis=1)
        # sort all dets in descending order by scores
        sort_inds = np.argsort(-det_bboxes[:, -1])
        for k, (min_area, max_area) in enumerate(area_ranges):
            box_is_covered = tp[k]
            # if no area range is specified, gt_area_ignore is all False
            if min_area is None:
                gt_area_ignore = np.zeros_like(gt_ignore_inds, dtype=bool)
            else:
                gt_areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
                    gt_bboxes[:, 3] - gt_bboxes[:, 1])
                gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area)
            for i in sort_inds:
                matched_gt = ioas_argmax[i]
                if not box_is_covered[i]:
                    if ioas_max[i] >= ioa_thr:
                        if not (gt_ignore_inds[matched_gt]
                                or gt_area_ignore[matched_gt]):
                            if not tp_group[k, matched_gt]:
                                tp_group[k, matched_gt] = 1
                                match_group_of[k, i] = True
                            else:
                                match_group_of[k, i] = True

                            if det_bboxes_group[k, matched_gt, -1] < \
                                    det_bboxes[i, -1]:
                                det_bboxes_group[k, matched_gt] = \
                                    det_bboxes[i]

        fp_group = (tp_group <= 0).astype(float)
        tps = []
        fps = []
        # concatenate tp, fp, and det-boxes which not matched group of
        # gt boxes and tp_group, fp_group, and det_bboxes_group which
        # matched group of boxes respectively.
        for i in range(num_scales):
            tps.append(
                np.concatenate((tp[i][~match_group_of[i]], tp_group[i])))
            fps.append(
                np.concatenate((fp[i][~match_group_of[i]], fp_group[i])))
            det_bboxes = np.concatenate(
                (det_bboxes[~match_group_of[i]], det_bboxes_group[i]))

        tp = np.vstack(tps)
        fp = np.vstack(fps)
        return tp, fp, det_bboxes


def get_cls_results(det_results, annotations, class_id):
    """Get det results and gt information of a certain class.

    Args:
        det_results (list[list]): Same as `eval_map()`.
        annotations (list[dict]): Same as `eval_map()`.
        class_id (int): ID of a specific class.

    Returns:
        tuple[list[np.ndarray]]: detected bboxes, gt bboxes, ignored gt bboxes
    """
    cls_dets = [img_res[class_id] for img_res in det_results]
    cls_gts = []
    cls_gts_ignore = []
    for ann in annotations:
        gt_inds = ann['labels'] == class_id
        cls_gts.append(ann['bboxes'][gt_inds, :])

        if ann.get('labels_ignore', None) is not None:
            ignore_inds = ann['labels_ignore'] == class_id
            cls_gts_ignore.append(ann['bboxes_ignore'][ignore_inds, :])
        else:
            cls_gts_ignore.append(np.empty((0, 4), dtype=np.float32))

    return cls_dets, cls_gts, cls_gts_ignore


def get_cls_group_ofs(annotations, class_id):
    """Get `gt_group_of` of a certain class, which is used in Open Images.

    Args:
        annotations (list[dict]): Same as `eval_map()`.
        class_id (int): ID of a specific class.

    Returns:
        list[np.ndarray]: `gt_group_of` of a certain class.
    """
    gt_group_ofs = []
    for ann in annotations:
        gt_inds = ann['labels'] == class_id
        if ann.get('gt_is_group_ofs', None) is not None:
            gt_group_ofs.append(ann['gt_is_group_ofs'][gt_inds])
        else:
            gt_group_ofs.append(np.empty((0, 1), dtype=np.bool))

    return gt_group_ofs


def eval_map(det_results,
             annotations,
             scale_ranges=None,
             iou_thr=0.5,
             ioa_thr=None,
             dataset=None,
             logger=None,
             tpfp_fn=None,
             nproc=4,
             use_legacy_coordinate=False,
             use_group_of=False):
    """Evaluate mAP of a dataset.

    Args:
        det_results (list[list]): [[cls1_det, cls2_det, ...], ...].
            The outer list indicates images, and the inner list indicates
            per-class detected bboxes.
        annotations (list[dict]): Ground truth annotations where each item of
            the list indicates an image. Keys of annotations are:

            - `bboxes`: numpy array of shape (n, 4)
            - `labels`: numpy array of shape (n, )
            - `bboxes_ignore` (optional): numpy array of shape (k, 4)
            - `labels_ignore` (optional): numpy array of shape (k, )
        scale_ranges (list[tuple] | None): Range of scales to be evaluated,
            in the format [(min1, max1), (min2, max2), ...]. A range of
            (32, 64) means the area range between (32**2, 64**2).
            Default: None.
        iou_thr (float): IoU threshold to be considered as matched.
            Default: 0.5.
        ioa_thr (float | None): IoA threshold to be considered as matched,
            which only used in OpenImages evaluation. Default: None.
        dataset (list[str] | str | None): Dataset name or dataset classes,
            there are minor differences in metrics for different datasets, e.g.
            "voc07", "imagenet_det", etc. Default: None.
        logger (logging.Logger | str | None): The way to print the mAP
            summary. See `mmcv.utils.print_log()` for details. Default: None.
        tpfp_fn (callable | None): The function used to determine true/
            false positives. If None, :func:`tpfp_default` is used as default
            unless dataset is 'det' or 'vid' (:func:`tpfp_imagenet` in this
            case). If it is given as a function, then this function is used
            to evaluate tp & fp. Default None.
        nproc (int): Processes used for computing TP and FP.
            Default: 4.
        use_legacy_coordinate (bool): Whether to use coordinate system in
            mmdet v1.x. which means width, height should be
            calculated as 'x2 - x1 + 1` and 'y2 - y1 + 1' respectively.
            Default: False.
        use_group_of (bool): Whether to use group of when calculate TP and FP,
            which only used in OpenImages evaluation. Default: False.

    Returns:
        tuple: (mAP, [dict, dict, ...])
    """
    assert len(det_results) == len(annotations)
    if not use_legacy_coordinate:
        extra_length = 0.
    else:
        extra_length = 1.

    num_imgs = len(det_results)
    num_scales = len(scale_ranges) if scale_ranges is not None else 1
    num_classes = len(det_results[0])  # positive class num
    area_ranges = ([(rg[0]**2, rg[1]**2) for rg in scale_ranges]
                   if scale_ranges is not None else None)

    pool = Pool(nproc)
    eval_results = []
    for i in range(num_classes):
        # get gt and det bboxes of this class
        cls_dets, cls_gts, cls_gts_ignore = get_cls_results(
            det_results, annotations, i)
        # choose proper function according to datasets to compute tp and fp
        if tpfp_fn is None:
            if dataset in ['det', 'vid']:
                tpfp_fn = tpfp_imagenet
            elif dataset in ['oid_challenge', 'oid_v6'] \
                    or use_group_of is True:
                tpfp_fn = tpfp_openimages
            else:
                tpfp_fn = tpfp_default
        if not callable(tpfp_fn):
            raise ValueError(
                f'tpfp_fn has to be a function or None, but got {tpfp_fn}')
        args = []
        if use_group_of:
            # used in Open Images Dataset evaluation
            gt_group_ofs = get_cls_group_ofs(annotations, i)
            args.append(gt_group_ofs)
            args.append([use_group_of for _ in range(num_imgs)])
        if ioa_thr is not None:
            args.append([ioa_thr for _ in range(num_imgs)])
        # compute tp and fp for each image with multiple processes
        tpfp = pool.starmap(
            tpfp_fn,
            zip(cls_dets, cls_gts, cls_gts_ignore,
                [iou_thr for _ in range(num_imgs)],
                [area_ranges for _ in range(num_imgs)],
                [use_legacy_coordinate for _ in range(num_imgs)], *args))
        if use_group_of:
            tp, fp, cls_dets = tuple(zip(*tpfp))
        else:
            tp, fp = tuple(zip(*tpfp))
        # calculate gt number of each scale
        # ignored gts or gts beyond the specific scale are not counted
        num_gts = np.zeros(num_scales, dtype=int)
        for j, bbox in enumerate(cls_gts):
            if area_ranges is None:
                num_gts[0] += bbox.shape[0]
            else:
                gt_areas = (bbox[:, 2] - bbox[:, 0] + extra_length) * (
                    bbox[:, 3] - bbox[:, 1] + extra_length)
                for k, (min_area, max_area) in enumerate(area_ranges):
                    num_gts[k] += np.sum((gt_areas >= min_area)
                                         & (gt_areas < max_area))
        # sort all det bboxes by score, also sort tp and fp
        cls_dets = np.vstack(cls_dets)
        num_dets = cls_dets.shape[0]
        sort_inds = np.argsort(-cls_dets[:, -1])
        tp = np.hstack(tp)[:, sort_inds]
        fp = np.hstack(fp)[:, sort_inds]
        # calculate recall and precision with tp and fp
        tp = np.cumsum(tp, axis=1)
        fp = np.cumsum(fp, axis=1)
        eps = np.finfo(np.float32).eps
        recalls = tp / np.maximum(num_gts[:, np.newaxis], eps)
        precisions = tp / np.maximum((tp + fp), eps)
        # calculate AP
        if scale_ranges is None:
            recalls = recalls[0, :]
            precisions = precisions[0, :]
            num_gts = num_gts.item()
        mode = 'area' if dataset != 'voc07' else '11points'
        ap = average_precision(recalls, precisions, mode)
        eval_results.append({
            'num_gts': num_gts,
            'num_dets': num_dets,
            'recall': recalls,
            'precision': precisions,
            'ap': ap
        })
    pool.close()
    if scale_ranges is not None:
        # shape (num_classes, num_scales)
        all_ap = np.vstack([cls_result['ap'] for cls_result in eval_results])
        all_num_gts = np.vstack(
            [cls_result['num_gts'] for cls_result in eval_results])
        mean_ap = []
        for i in range(num_scales):
            if np.any(all_num_gts[:, i] > 0):
                mean_ap.append(all_ap[all_num_gts[:, i] > 0, i].mean())
            else:
                mean_ap.append(0.0)
    else:
        aps = []
        for cls_result in eval_results:
            if cls_result['num_gts'] > 0:
                aps.append(cls_result['ap'])
        mean_ap = np.array(aps).mean().item() if aps else 0.0

    print_map_summary(
        mean_ap, eval_results, dataset, area_ranges, logger=logger)

    return mean_ap, eval_results


def print_map_summary(mean_ap,
                      results,
                      dataset=None,
                      scale_ranges=None,
                      logger=None):
    """Print mAP and results of each class.

    A table will be printed to show the gts/dets/recall/AP of each class and
    the mAP.

    Args:
        mean_ap (float): Calculated from `eval_map()`.
        results (list[dict]): Calculated from `eval_map()`.
        dataset (list[str] | str | None): Dataset name or dataset classes.
        scale_ranges (list[tuple] | None): Range of scales to be evaluated.
        logger (logging.Logger | str | None): The way to print the mAP
            summary. See `mmcv.utils.print_log()` for details. Default: None.
    """

    if logger == 'silent':
        return

    if isinstance(results[0]['ap'], np.ndarray):
        num_scales = len(results[0]['ap'])
    else:
        num_scales = 1

    if scale_ranges is not None:
        assert len(scale_ranges) == num_scales

    num_classes = len(results)

    recalls = np.zeros((num_scales, num_classes), dtype=np.float32)
    aps = np.zeros((num_scales, num_classes), dtype=np.float32)
    num_gts = np.zeros((num_scales, num_classes), dtype=int)
    for i, cls_result in enumerate(results):
        if cls_result['recall'].size > 0:
            recalls[:, i] = np.array(cls_result['recall'], ndmin=2)[:, -1]
        aps[:, i] = cls_result['ap']
        num_gts[:, i] = cls_result['num_gts']

    if dataset is None:
        label_names = [str(i) for i in range(num_classes)]
    elif mmcv.is_str(dataset):
        label_names = get_classes(dataset)
    else:
        label_names = dataset

    if not isinstance(mean_ap, list):
        mean_ap = [mean_ap]

    header = ['class', 'gts', 'dets', 'recall', 'ap']
    for i in range(num_scales):
        if scale_ranges is not None:
            print_log(f'Scale range {scale_ranges[i]}', logger=logger)
        table_data = [header]
        for j in range(num_classes):
            row_data = [
                label_names[j], num_gts[i, j], results[j]['num_dets'],
                f'{recalls[i, j]:.3f}', f'{aps[i, j]:.3f}'
            ]
            table_data.append(row_data)
        table_data.append(['mAP', '', '', '', f'{mean_ap[i]:.3f}'])
        table = AsciiTable(table_data)
        table.inner_footing_row_border = True
        print_log('\n' + table.table, logger=logger)