instance_data.py
6.95 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright (c) OpenMMLab. All rights reserved.
import itertools
import numpy as np
import torch
from .general_data import GeneralData
class InstanceData(GeneralData):
"""Data structure for instance-level annnotations or predictions.
Subclass of :class:`GeneralData`. All value in `data_fields`
should have the same length. This design refer to
https://github.com/facebookresearch/detectron2/blob/master/detectron2/structures/instances.py # noqa E501
Examples:
>>> from mmdet.core import InstanceData
>>> import numpy as np
>>> img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
>>> results = InstanceData(img_meta)
>>> img_shape in results
True
>>> results.det_labels = torch.LongTensor([0, 1, 2, 3])
>>> results["det_scores"] = torch.Tensor([0.01, 0.7, 0.6, 0.3])
>>> results["det_masks"] = np.ndarray(4, 2, 2)
>>> len(results)
4
>>> print(resutls)
<InstanceData(
META INFORMATION
pad_shape: (800, 1216, 3)
img_shape: (800, 1196, 3)
PREDICTIONS
shape of det_labels: torch.Size([4])
shape of det_masks: (4, 2, 2)
shape of det_scores: torch.Size([4])
) at 0x7fe26b5ca990>
>>> sorted_results = results[results.det_scores.sort().indices]
>>> sorted_results.det_scores
tensor([0.0100, 0.3000, 0.6000, 0.7000])
>>> sorted_results.det_labels
tensor([0, 3, 2, 1])
>>> print(results[results.scores > 0.5])
<InstanceData(
META INFORMATION
pad_shape: (800, 1216, 3)
img_shape: (800, 1196, 3)
PREDICTIONS
shape of det_labels: torch.Size([2])
shape of det_masks: (2, 2, 2)
shape of det_scores: torch.Size([2])
) at 0x7fe26b6d7790>
>>> results[results.det_scores > 0.5].det_labels
tensor([1, 2])
>>> results[results.det_scores > 0.5].det_scores
tensor([0.7000, 0.6000])
"""
def __setattr__(self, name, value):
if name in ('_meta_info_fields', '_data_fields'):
if not hasattr(self, name):
super().__setattr__(name, value)
else:
raise AttributeError(
f'{name} has been used as a '
f'private attribute, which is immutable. ')
else:
assert isinstance(value, (torch.Tensor, np.ndarray, list)), \
f'Can set {type(value)}, only support' \
f' {(torch.Tensor, np.ndarray, list)}'
if self._data_fields:
assert len(value) == len(self), f'the length of ' \
f'values {len(value)} is ' \
f'not consistent with' \
f' the length ' \
f'of this :obj:`InstanceData` ' \
f'{len(self)} '
super().__setattr__(name, value)
def __getitem__(self, item):
"""
Args:
item (str, obj:`slice`,
obj`torch.LongTensor`, obj:`torch.BoolTensor`):
get the corresponding values according to item.
Returns:
obj:`InstanceData`: Corresponding values.
"""
assert len(self), ' This is a empty instance'
assert isinstance(
item, (str, slice, int, torch.LongTensor, torch.BoolTensor))
if isinstance(item, str):
return getattr(self, item)
if type(item) == int:
if item >= len(self) or item < -len(self):
raise IndexError(f'Index {item} out of range!')
else:
# keep the dimension
item = slice(item, None, len(self))
new_data = self.new()
if isinstance(item, (torch.Tensor)):
assert item.dim() == 1, 'Only support to get the' \
' values along the first dimension.'
if isinstance(item, torch.BoolTensor):
assert len(item) == len(self), f'The shape of the' \
f' input(BoolTensor)) ' \
f'{len(item)} ' \
f' does not match the shape ' \
f'of the indexed tensor ' \
f'in results_filed ' \
f'{len(self)} at ' \
f'first dimension. '
for k, v in self.items():
if isinstance(v, torch.Tensor):
new_data[k] = v[item]
elif isinstance(v, np.ndarray):
new_data[k] = v[item.cpu().numpy()]
elif isinstance(v, list):
r_list = []
# convert to indexes from boolTensor
if isinstance(item, torch.BoolTensor):
indexes = torch.nonzero(item).view(-1)
else:
indexes = item
for index in indexes:
r_list.append(v[index])
new_data[k] = r_list
else:
# item is a slice
for k, v in self.items():
new_data[k] = v[item]
return new_data
@staticmethod
def cat(instances_list):
"""Concat the predictions of all :obj:`InstanceData` in the list.
Args:
instances_list (list[:obj:`InstanceData`]): A list
of :obj:`InstanceData`.
Returns:
obj:`InstanceData`
"""
assert all(
isinstance(results, InstanceData) for results in instances_list)
assert len(instances_list) > 0
if len(instances_list) == 1:
return instances_list[0]
new_data = instances_list[0].new()
for k in instances_list[0]._data_fields:
values = [results[k] for results in instances_list]
v0 = values[0]
if isinstance(v0, torch.Tensor):
values = torch.cat(values, dim=0)
elif isinstance(v0, np.ndarray):
values = np.concatenate(values, axis=0)
elif isinstance(v0, list):
values = list(itertools.chain(*values))
else:
raise ValueError(
f'Can not concat the {k} which is a {type(v0)}')
new_data[k] = values
return new_data
def __len__(self):
if len(self._data_fields):
for v in self.values():
return len(v)
else:
raise AssertionError('This is an empty `InstanceData`.')