task_aligned_assigner.py
6.55 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from ..builder import BBOX_ASSIGNERS
from ..iou_calculators import build_iou_calculator
from .assign_result import AssignResult
from .base_assigner import BaseAssigner
INF = 100000000
@BBOX_ASSIGNERS.register_module()
class TaskAlignedAssigner(BaseAssigner):
    """Task aligned assigner used in the paper:
    `TOOD: Task-aligned One-stage Object Detection.
    <https://arxiv.org/abs/2108.07755>`_.
    Assign a corresponding gt bbox or background to each predicted bbox.
    Each bbox will be assigned with `0` or a positive integer
    indicating the ground truth index.
    - 0: negative sample, no assigned gt
    - positive integer: positive sample, index (1-based) of assigned gt
    Args:
        topk (int): number of bbox selected in each level
        iou_calculator (dict): Config dict for iou calculator.
            Default: dict(type='BboxOverlaps2D')
    """
    def __init__(self, topk, iou_calculator=dict(type='BboxOverlaps2D')):
        assert topk >= 1
        self.topk = topk
        self.iou_calculator = build_iou_calculator(iou_calculator)
    def assign(self,
               pred_scores,
               decode_bboxes,
               anchors,
               gt_bboxes,
               gt_bboxes_ignore=None,
               gt_labels=None,
               alpha=1,
               beta=6):
        """Assign gt to bboxes.
        The assignment is done in following steps
        1. compute alignment metric between all bbox (bbox of all pyramid
           levels) and gt
        2. select top-k bbox as candidates for each gt
        3. limit the positive sample's center in gt (because the anchor-free
           detector only can predict positive distance)
        Args:
            pred_scores (Tensor): predicted class probability,
                shape(n, num_classes)
            decode_bboxes (Tensor): predicted bounding boxes, shape(n, 4)
            anchors (Tensor): pre-defined anchors, shape(n, 4).
            gt_bboxes (Tensor): Groundtruth boxes, shape (k, 4).
            gt_bboxes_ignore (Tensor, optional): Ground truth bboxes that are
                labelled as `ignored`, e.g., crowd boxes in COCO.
            gt_labels (Tensor, optional): Label of gt_bboxes, shape (k, ).
        Returns:
            :obj:`TaskAlignedAssignResult`: The assign result.
        """
        anchors = anchors[:, :4]
        num_gt, num_bboxes = gt_bboxes.size(0), anchors.size(0)
        # compute alignment metric between all bbox and gt
        overlaps = self.iou_calculator(decode_bboxes, gt_bboxes).detach()
        bbox_scores = pred_scores[:, gt_labels].detach()
        # assign 0 by default
        assigned_gt_inds = anchors.new_full((num_bboxes, ),
                                            0,
                                            dtype=torch.long)
        assign_metrics = anchors.new_zeros((num_bboxes, ))
        if num_gt == 0 or num_bboxes == 0:
            # No ground truth or boxes, return empty assignment
            max_overlaps = anchors.new_zeros((num_bboxes, ))
            if num_gt == 0:
                # No gt boxes, assign everything to background
                assigned_gt_inds[:] = 0
            if gt_labels is None:
                assigned_labels = None
            else:
                assigned_labels = anchors.new_full((num_bboxes, ),
                                                   -1,
                                                   dtype=torch.long)
            assign_result = AssignResult(
                num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)
            assign_result.assign_metrics = assign_metrics
            return assign_result
        # select top-k bboxes as candidates for each gt
        alignment_metrics = bbox_scores**alpha * overlaps**beta
        topk = min(self.topk, alignment_metrics.size(0))
        _, candidate_idxs = alignment_metrics.topk(topk, dim=0, largest=True)
        candidate_metrics = alignment_metrics[candidate_idxs,
                                              torch.arange(num_gt)]
        is_pos = candidate_metrics > 0
        # limit the positive sample's center in gt
        anchors_cx = (anchors[:, 0] + anchors[:, 2]) / 2.0
        anchors_cy = (anchors[:, 1] + anchors[:, 3]) / 2.0
        for gt_idx in range(num_gt):
            candidate_idxs[:, gt_idx] += gt_idx * num_bboxes
        ep_anchors_cx = anchors_cx.view(1, -1).expand(
            num_gt, num_bboxes).contiguous().view(-1)
        ep_anchors_cy = anchors_cy.view(1, -1).expand(
            num_gt, num_bboxes).contiguous().view(-1)
        candidate_idxs = candidate_idxs.view(-1)
        # calculate the left, top, right, bottom distance between positive
        # bbox center and gt side
        l_ = ep_anchors_cx[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 0]
        t_ = ep_anchors_cy[candidate_idxs].view(-1, num_gt) - gt_bboxes[:, 1]
        r_ = gt_bboxes[:, 2] - ep_anchors_cx[candidate_idxs].view(-1, num_gt)
        b_ = gt_bboxes[:, 3] - ep_anchors_cy[candidate_idxs].view(-1, num_gt)
        is_in_gts = torch.stack([l_, t_, r_, b_], dim=1).min(dim=1)[0] > 0.01
        is_pos = is_pos & is_in_gts
        # if an anchor box is assigned to multiple gts,
        # the one with the highest iou will be selected.
        overlaps_inf = torch.full_like(overlaps,
                                       -INF).t().contiguous().view(-1)
        index = candidate_idxs.view(-1)[is_pos.view(-1)]
        overlaps_inf[index] = overlaps.t().contiguous().view(-1)[index]
        overlaps_inf = overlaps_inf.view(num_gt, -1).t()
        max_overlaps, argmax_overlaps = overlaps_inf.max(dim=1)
        assigned_gt_inds[
            max_overlaps != -INF] = argmax_overlaps[max_overlaps != -INF] + 1
        assign_metrics[max_overlaps != -INF] = alignment_metrics[
            max_overlaps != -INF, argmax_overlaps[max_overlaps != -INF]]
        if gt_labels is not None:
            assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1)
            pos_inds = torch.nonzero(
                assigned_gt_inds > 0, as_tuple=False).squeeze()
            if pos_inds.numel() > 0:
                assigned_labels[pos_inds] = gt_labels[
                    assigned_gt_inds[pos_inds] - 1]
        else:
            assigned_labels = None
        assign_result = AssignResult(
            num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)
        assign_result.assign_metrics = assign_metrics
        return assign_result