selfsup2mmdet.py
1.21 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
from collections import OrderedDict
import torch
def moco_convert(src, dst):
"""Convert keys in pycls pretrained moco models to mmdet style."""
# load caffe model
moco_model = torch.load(src)
blobs = moco_model['state_dict']
# convert to pytorch style
state_dict = OrderedDict()
for k, v in blobs.items():
if not k.startswith('module.encoder_q.'):
continue
old_k = k
k = k.replace('module.encoder_q.', '')
state_dict[k] = v
print(old_k, '->', k)
# save checkpoint
checkpoint = dict()
checkpoint['state_dict'] = state_dict
torch.save(checkpoint, dst)
def main():
parser = argparse.ArgumentParser(description='Convert model keys')
parser.add_argument('src', help='src detectron model path')
parser.add_argument('dst', help='save path')
parser.add_argument(
'--selfsup', type=str, choices=['moco', 'swav'], help='save path')
args = parser.parse_args()
if args.selfsup == 'moco':
moco_convert(args.src, args.dst)
elif args.selfsup == 'swav':
print('SWAV does not need to convert the keys')
if __name__ == '__main__':
main()