yolov3_mobilenetv2_320_300e_coco.py 1.71 KB
_base_ = ['./yolov3_mobilenetv2_mstrain-416_300e_coco.py']

# yapf:disable
model = dict(
    bbox_head=dict(
        anchor_generator=dict(
            base_sizes=[[(220, 125), (128, 222), (264, 266)],
                        [(35, 87), (102, 96), (60, 170)],
                        [(10, 15), (24, 36), (72, 42)]])))
# yapf:enable

# dataset settings
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='Expand',
        mean=img_norm_cfg['mean'],
        to_rgb=img_norm_cfg['to_rgb'],
        ratio_range=(1, 2)),
    dict(
        type='MinIoURandomCrop',
        min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
        min_crop_size=0.3),
    dict(type='Resize', img_scale=(320, 320), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(320, 320),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='DefaultFormatBundle'),
            dict(type='Collect', keys=['img'])
        ])
]
data = dict(
    train=dict(dataset=dict(pipeline=train_pipeline)),
    val=dict(pipeline=test_pipeline),
    test=dict(pipeline=test_pipeline))