tridentnet_r50_caffe_mstrain_1x_coco.py 756 Bytes
_base_ = 'tridentnet_r50_caffe_1x_coco.py'

# use caffe img_norm
img_norm_cfg = dict(
    mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='Resize',
        img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
                   (1333, 768), (1333, 800)],
        multiscale_mode='value',
        keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]

data = dict(train=dict(pipeline=train_pipeline))