tridentnet_r50_caffe_1x_coco.py 1.82 KB
_base_ = [
    '../_base_/models/faster_rcnn_r50_caffe_c4.py',
    '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]

model = dict(
    type='TridentFasterRCNN',
    backbone=dict(
        type='TridentResNet',
        trident_dilations=(1, 2, 3),
        num_branch=3,
        test_branch_idx=1,
        init_cfg=dict(
            type='Pretrained',
            checkpoint='open-mmlab://detectron2/resnet50_caffe')),
    roi_head=dict(type='TridentRoIHead', num_branch=3, test_branch_idx=1),
    train_cfg=dict(
        rpn_proposal=dict(max_per_img=500),
        rcnn=dict(
            sampler=dict(num=128, pos_fraction=0.5,
                         add_gt_as_proposals=False))))

# use caffe img_norm
img_norm_cfg = dict(
    mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img'])
        ])
]
data = dict(
    train=dict(pipeline=train_pipeline),
    val=dict(pipeline=test_pipeline),
    test=dict(pipeline=test_pipeline))