update
Showing
59 changed files
with
11705 additions
and
1 deletions
ocr_engine/README.md
0 → 100644
1 | # turnsole | ||
2 | A series of convenience functions make your machine learning project easier | ||
3 | |||
4 | ## 安装方法 | ||
5 | |||
6 | ### Latest release | ||
7 | `pip install turnsole` | ||
8 | > 项目暂不开源,因此该安装方法暂时不保证能用 | ||
9 | |||
10 | ### Developer mode | ||
11 | |||
12 | `pip install -e .` | ||
13 | |||
14 | ## 快速上手 | ||
15 | ### PDF 操作 | ||
16 | #### 智能 PDF 文件转图片 | ||
17 | 智能的把 PDF 文件里面的插图找出来,例如没有插图就将整页 PDF 截图下来,也能智能的将碎图拼接在一起 | ||
18 | |||
19 | ##### Example: | ||
20 | <pre># pdf_path 表示 PDF 文件的路径,输出 images 按页码进行汇总输出 | ||
21 | images = turnsole.pdf_to_images(pdf_path)</pre> | ||
22 | |||
23 | ### 图像操作工具箱 | ||
24 | #### base64_to_bgr / bgr_to_base64 | ||
25 | 图像和 base64 互相转换 | ||
26 | |||
27 | ##### Example: | ||
28 | <pre>image = turnsole.base64_to_bgr(img64) | ||
29 | img64 = turnsole.bgr_to_base64(image)</pre> | ||
30 | |||
31 | ### image_crop | ||
32 | 根据 bbox 在 image 上进行切片,如果指定 perspective 为 True 则切片方式为透视变换(可以切旋转目标) | ||
33 | |||
34 | ##### Example: | ||
35 | <pre>im_slice_no_perspective = turnsole.image_crop(image, bbox) | ||
36 | im_slice = turnsole.image_crop(image, bbox, perspective=True)</pre> | ||
37 | |||
38 | ##### Output: | ||
39 | |||
40 | <img src="docs/images/image_crop.png?raw=true" alt="image crop example" style="max-width: 200px;"> | ||
41 | |||
42 | ### OCR 引擎模块 | ||
43 | OCR 引擎指的是一系列跟 OCR 相关的底层模型,我们提供了这些模型的函数式调用接口和标准 API | ||
44 | |||
45 | - [x] ADC :tada: | ||
46 | - [x] DBNet :tada: | ||
47 | - [x] CRNN :tada: | ||
48 | - [x] Object Detector :tada: | ||
49 | - [x] Signature Detector :tada: | ||
50 | |||
51 | #### 免费试用 | ||
52 | ```python | ||
53 | import requests | ||
54 | |||
55 | results = requests.post(url=r'http://139.196.149.46:9001/gen_ocr', files={'file': open(file_path, 'rb')}).json() | ||
56 | ocr_results = results['ocr_results'] | ||
57 | ``` | ||
58 | |||
59 | #### Prerequisites | ||
60 | 由于 OCR 引擎模块依赖于底层神经网络模型,因此需要先用 Docker 挂载底层神经网络模型 | ||
61 | |||
62 | 首先把 ./model_repository 文件夹和里面的模型放到项目根目录下再启动,如果没有相关模型找 [lvkui](lvkui@situdata.com) 要 | ||
63 | |||
64 | 使用起来非常简单,你只需要启动对应的 Docker 容器即可 | ||
65 | |||
66 | ```bash | ||
67 | docker run --gpus="device=0" --rm -p 8000:8000 -p 8001:8001 -p 8002:8002 -v $PWD/model_repository:/models nvcr.io/nvidia/tritonserver:21.10-py3 tritonserver --model-repository=/models | ||
68 | ``` | ||
69 | |||
70 | #### ADC | ||
71 | 通用文件摆正算法 | ||
72 | |||
73 | ``` | ||
74 | from turnsole.ocr_engine import angle_detector | ||
75 | |||
76 | image_rotated, direction = angle_detector.ADC(image, fine_degree=False) | ||
77 | ``` | ||
78 | |||
79 | #### DBNet | ||
80 | 通用文字检测算法 | ||
81 | |||
82 | ``` | ||
83 | from turnsole.ocr_engine import text_detector | ||
84 | |||
85 | boxes = text_detector.predict(image) | ||
86 | ``` | ||
87 | |||
88 | #### CRNN | ||
89 | 通用文字识别算法 | ||
90 | |||
91 | ``` | ||
92 | from turnsole.ocr_engine import text_recognizer | ||
93 | |||
94 | ocr_result, ocr_time = text_recognizer.predict_batch(image, boxes) | ||
95 | ``` | ||
96 | |||
97 | #### Object Detector | ||
98 | 通用文件检测算法 | ||
99 | |||
100 | ``` | ||
101 | from turnsole.ocr_engine import object_detector | ||
102 | |||
103 | object_list = object_detector.process(image) | ||
104 | ``` | ||
105 | |||
106 | #### Signature Detector | ||
107 | 签字盖章二维码检测算法 | ||
108 | |||
109 | ``` | ||
110 | from turnsole.ocr_engine import signature_detector | ||
111 | |||
112 | signature_list = signature_detector.process(image) | ||
113 | ``` | ||
114 | |||
115 | #### 标准 API | ||
116 | ``` | ||
117 | python api/ocr_engine_server.py | ||
118 | ``` | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/api/nohup.out
0 → 100644
1 | [2022-10-21 14:12:17 +0800] [8546] [INFO] Goin' Fast @ http://192.168.10.11:9001 | ||
2 | [2022-10-21 14:12:17 +0800] [8567] [INFO] Starting worker [8567] | ||
3 | [2022-10-21 14:12:17 +0800] [8568] [INFO] Starting worker [8568] | ||
4 | [2022-10-21 14:12:17 +0800] [8569] [INFO] Starting worker [8569] | ||
5 | [2022-10-21 14:12:17 +0800] [8570] [INFO] Starting worker [8570] | ||
6 | [2022-10-21 14:12:17 +0800] [8571] [INFO] Starting worker [8571] | ||
7 | [2022-10-21 14:12:17 +0800] [8572] [INFO] Starting worker [8572] | ||
8 | [2022-10-21 14:12:17 +0800] [8573] [INFO] Starting worker [8573] | ||
9 | [2022-10-21 14:12:17 +0800] [8576] [INFO] Starting worker [8576] | ||
10 | [2022-10-21 14:12:17 +0800] [8574] [INFO] Starting worker [8574] | ||
11 | [2022-10-21 14:12:17 +0800] [8575] [INFO] Starting worker [8575] | ||
12 | [2022-10-21 14:13:51 +0800] [8575] [ERROR] Exception occurred while handling uri: 'http://192.168.10.11:9001/gen_ocr' | ||
13 | Traceback (most recent call last): | ||
14 | File "/home/situ/miniconda3/envs/workenv/lib/python3.6/site-packages/sanic/app.py", line 944, in handle_request | ||
15 | response = await response | ||
16 | File "ocr_engine_server.py", line 37, in ocr_engine | ||
17 | boxes = text_detector.predict(image) | ||
18 | File "/home/situ/qfs/invoice_tamper/09_project/project/bank_bill_ocr/OCR_Engine/turnsole/ocr_engine/DBNet/text_detector.py", line 113, in predict | ||
19 | outputs=outputs | ||
20 | File "/home/situ/miniconda3/envs/workenv/lib/python3.6/site-packages/tritonclient/grpc/__init__.py", line 1431, in infer | ||
21 | raise_error_grpc(rpc_error) | ||
22 | File "/home/situ/miniconda3/envs/workenv/lib/python3.6/site-packages/tritonclient/grpc/__init__.py", line 62, in raise_error_grpc | ||
23 | raise get_error_grpc(rpc_error) from None | ||
24 | tritonclient.utils.InferenceServerException: [StatusCode.UNAVAILABLE] Request for unknown model: 'dbnet_model' is not found | ||
25 | [2022-10-21 14:13:51 +0800] - (sanic.access)[INFO][192.168.10.11:57260]: POST http://192.168.10.11:9001/gen_ocr 500 735 |
ocr_engine/api/ocr_engine_server.py
0 → 100644
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : Lyu Kui | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Create Date : 2022-06-05 20:49:51 | ||
5 | # @Last Modified : 2022-08-19 17:24:55 | ||
6 | # @Description : | ||
7 | |||
8 | import os | ||
9 | |||
10 | os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | ||
11 | |||
12 | from sanic import Sanic | ||
13 | from sanic.response import json | ||
14 | |||
15 | from turnsole.ocr_engine import angle_detector | ||
16 | from turnsole.ocr_engine import text_detector | ||
17 | from turnsole.ocr_engine import text_recognizer | ||
18 | from turnsole.ocr_engine import object_detector | ||
19 | from turnsole.ocr_engine import signature_detector | ||
20 | |||
21 | from turnsole import bytes_to_bgr | ||
22 | |||
23 | app = Sanic("OCR_ENGINE") | ||
24 | app.config.REQUEST_MAX_SIZE = 1000000000 # 请求的大小(字节)/ 1GB | ||
25 | app.config.REQUEST_BUFFER_QUEUE_SIZE = 1000 # 请求流缓冲区队列大小 | ||
26 | app.config.REQUEST_TIMEOUT = 600 # 请求到达需要多长时间(秒) | ||
27 | app.config.RESPONSE_TIMEOUT = 600 # 处理响应需要多长时间(秒) | ||
28 | |||
29 | |||
30 | @app.post('/gen_ocr') | ||
31 | async def ocr_engine(request): | ||
32 | # request.files.get() 具有 type/body/name 三个属性 | ||
33 | file = request.files.get('file').body | ||
34 | # 将 bytes 转成 bgr 图片 | ||
35 | image = bytes_to_bgr(file) | ||
36 | # 文字检测 | ||
37 | boxes = text_detector.predict(image) | ||
38 | # 文字识别 | ||
39 | res, _ = text_recognizer.predict_batch(image[..., ::-1], boxes) | ||
40 | resp = {} | ||
41 | resp["ocr_results"] = res | ||
42 | return json(resp) | ||
43 | |||
44 | |||
45 | @app.post('/gen_ocr_with_rotation', ) | ||
46 | async def ocr_engine_with_rotation(request): | ||
47 | # request.files.get() 具有 type/body/name 三个属性 | ||
48 | file = request.files.get('file').body | ||
49 | # 将 bytes 转成 bgr 图片 | ||
50 | image = bytes_to_bgr(file) | ||
51 | # 方向检测 | ||
52 | image, direction = angle_detector.ADC(image.copy(), fine_degree=False) | ||
53 | # 文字检测 | ||
54 | boxes = text_detector.predict(image) | ||
55 | # 文字识别 | ||
56 | res, _ = text_recognizer.predict_batch(image[..., ::-1], boxes) | ||
57 | |||
58 | resp = {} | ||
59 | resp["ocr_results"] = res | ||
60 | resp["direction"] = direction | ||
61 | return json(resp) | ||
62 | |||
63 | |||
64 | @app.post("/object_detect") | ||
65 | async def object_detect(request): | ||
66 | # request.files.get() 具有 type/body/name 三个属性 | ||
67 | file = request.files.get('file').body | ||
68 | # 将 bytes 转成 bgr 图片 | ||
69 | image = bytes_to_bgr(file) | ||
70 | # 通用文件检测 | ||
71 | object_list = object_detector.process(image) | ||
72 | return json(object_list) | ||
73 | |||
74 | |||
75 | @app.post("/signature_detect") | ||
76 | async def signature_detect(request): | ||
77 | # request.files.get() 具有 type/body/name 三个属性 | ||
78 | file = request.files.get('file').body | ||
79 | # 将 bytes 转成 bgr 图片 | ||
80 | image = bytes_to_bgr(file) | ||
81 | # 签字盖章二维码条形码检测 | ||
82 | signature_list = signature_detector.process(image) | ||
83 | return json(signature_list) | ||
84 | |||
85 | |||
86 | if __name__ == "__main__": | ||
87 | # app.run(host="0.0.0.0", port=9001) | ||
88 | app.run(host="192.168.10.11", port=9002, workers=10) | ||
89 | # uvicorn server:app --port 9001 --workers 10 |
ocr_engine/demos/images/sunflower.bmp
0 → 100644
No preview for this file type
ocr_engine/demos/images/sunflower.gif
0 → 100644

9.68 KB
ocr_engine/demos/images/sunflower.jpg
0 → 100644

405 KB
ocr_engine/demos/images/sunflower.png
0 → 100644

461 KB
ocr_engine/demos/images/sunflower.tif
0 → 100644
No preview for this file type
ocr_engine/demos/img_ocr/001.jpg
0 → 100644

1.62 MB
ocr_engine/demos/img_ocr/002.jpg
0 → 100644

97.7 KB
ocr_engine/demos/img_ocr/003.jpg
0 → 100644

112 KB
ocr_engine/demos/img_ocr/004.jpg
0 → 100644

24.4 KB
ocr_engine/demos/img_ocr/005.jpg
0 → 100644

77.5 KB
ocr_engine/demos/read_frames_fast.py
0 → 100644
1 | # Modified from: | ||
2 | # https://www.pyimagesearch.com/2017/02/06/faster-video-file-fps-with-cv2-videocapture-and-opencv/ | ||
3 | |||
4 | # Performance: | ||
5 | # Python 2.7: 105.78 --> 131.75 | ||
6 | # Python 3.7: 15.36 --> 50.13 | ||
7 | |||
8 | # USAGE | ||
9 | # python read_frames_fast.py --video videos/jurassic_park_intro.mp4 | ||
10 | |||
11 | # import the necessary packages | ||
12 | from turnsole.video import FileVideoStream | ||
13 | from turnsole.video import FPS | ||
14 | import numpy as np | ||
15 | import argparse | ||
16 | import imutils | ||
17 | import time | ||
18 | import cv2 | ||
19 | |||
20 | def filterFrame(frame): | ||
21 | frame = imutils.resize(frame, width=450) | ||
22 | frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | ||
23 | frame = np.dstack([frame, frame, frame]) | ||
24 | return frame | ||
25 | |||
26 | # construct the argument parse and parse the arguments | ||
27 | ap = argparse.ArgumentParser() | ||
28 | ap.add_argument("-v", "--video", required=True, | ||
29 | help="path to input video file") | ||
30 | args = vars(ap.parse_args()) | ||
31 | |||
32 | # start the file video stream thread and allow the buffer to | ||
33 | # start to fill | ||
34 | print("[INFO] starting video file thread...") | ||
35 | fvs = FileVideoStream(args["video"], transform=filterFrame).start() | ||
36 | time.sleep(1.0) | ||
37 | |||
38 | # start the FPS timer | ||
39 | fps = FPS().start() | ||
40 | |||
41 | # loop over frames from the video file stream | ||
42 | while fvs.running(): | ||
43 | # grab the frame from the threaded video file stream, resize | ||
44 | # it, and convert it to grayscale (while still retaining 3 | ||
45 | # channels) | ||
46 | frame = fvs.read() | ||
47 | |||
48 | # Relocated filtering into producer thread with transform=filterFrame | ||
49 | # Python 2.7: FPS 92.11 -> 131.36 | ||
50 | # Python 3.7: FPS 41.44 -> 50.11 | ||
51 | #frame = filterFrame(frame) | ||
52 | |||
53 | # display the size of the queue on the frame | ||
54 | cv2.putText(frame, "Queue Size: {}".format(fvs.Q.qsize()), | ||
55 | (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2) | ||
56 | |||
57 | # show the frame and update the FPS counter | ||
58 | cv2.imshow("Frame", frame) | ||
59 | |||
60 | cv2.waitKey(1) | ||
61 | if fvs.Q.qsize() < 2: # If we are low on frames, give time to producer | ||
62 | time.sleep(0.001) # Ensures producer runs now, so 2 is sufficient | ||
63 | fps.update() | ||
64 | |||
65 | # stop the timer and display FPS information | ||
66 | fps.stop() | ||
67 | print("[INFO] elasped time: {:.2f}".format(fps.elapsed())) | ||
68 | print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) | ||
69 | |||
70 | # do a bit of cleanup | ||
71 | cv2.destroyAllWindows() | ||
72 | fvs.stop() | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/demos/test_convenience.py
0 → 100644
ocr_engine/demos/test_model.py
0 → 100644
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : Lyu Kui | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Created Date : 2021-03-05 16:51:22 | ||
5 | # @Last Modified : 2021-03-05 18:15:53 | ||
6 | # @Description : | ||
7 | |||
8 | from turnsole.model import EasyDet | ||
9 | |||
10 | if __name__ == '__main__': | ||
11 | model = EasyDet(phi=0) | ||
12 | model.summary() | ||
13 | |||
14 | import time | ||
15 | import numpy as np | ||
16 | |||
17 | x = np.random.random_sample((1, 640, 640, 3)) | ||
18 | # warm up | ||
19 | output = model.predict(x) | ||
20 | |||
21 | print('\n[INFO] Test start') | ||
22 | time_start = time.time() | ||
23 | for i in range(1000): | ||
24 | output = model.predict(x) | ||
25 | |||
26 | time_end = time.time() | ||
27 | print('[INFO] Time used: {:.2f} ms'.format((time_end - time_start)*1000/(i+1))) | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/demos/test_ocr_function.py
0 → 100644
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : Lyu Kui | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Create Date : 2022-07-22 13:10:47 | ||
5 | # @Last Modified : 2022-09-08 19:03:24 | ||
6 | # @Description : | ||
7 | |||
8 | import os | ||
9 | os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | ||
10 | |||
11 | import cv2 | ||
12 | # from turnsole.ocr_engine import angle_detector | ||
13 | from turnsole.ocr_engine import object_detector | ||
14 | import matplotlib.pyplot as plt | ||
15 | |||
16 | |||
17 | if __name__ == "__main__": | ||
18 | |||
19 | base_dir = '/home/lk/MyProject/BMW/数据集/文件分类/身份证' | ||
20 | |||
21 | for (rootDir, dirNames, filenames) in os.walk(base_dir): | ||
22 | |||
23 | for filename in filenames: | ||
24 | |||
25 | if not filename.endswith('.jpg'): | ||
26 | continue | ||
27 | |||
28 | img_path = os.path.join(rootDir, filename) | ||
29 | print(img_path) | ||
30 | |||
31 | image = cv2.imread(img_path) | ||
32 | |||
33 | results = object_detector.process(image) | ||
34 | |||
35 | print(results) | ||
36 | |||
37 | for item in results: | ||
38 | xmin = item['location']['xmin'] | ||
39 | ymin = item['location']['ymin'] | ||
40 | xmax = item['location']['xmax'] | ||
41 | ymax = item['location']['ymax'] | ||
42 | cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2) | ||
43 | |||
44 | plt.imshow(image[...,::-1]) | ||
45 | plt.show() | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/demos/test_pdf_tools.py
0 → 100644
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : Lyu Kui | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Create Date : 2022-07-22 13:10:47 | ||
5 | # @Last Modified : 2022-08-24 15:39:55 | ||
6 | # @Description : | ||
7 | |||
8 | |||
9 | import os | ||
10 | import cv2 | ||
11 | import fitz | ||
12 | from turnsole import pdf_to_images # pip install turnsole PyMuPDF opencv-python==4.4.0.44 | ||
13 | |||
14 | if __name__ == "__main__": | ||
15 | |||
16 | base_dir = '/PATH/TO/YOUR/WORKDIR' | ||
17 | |||
18 | for (rootDir, dirNames, filenames) in os.walk(base_dir): | ||
19 | |||
20 | for filename in filenames: | ||
21 | |||
22 | if not filename.endswith('.pdf'): | ||
23 | continue | ||
24 | |||
25 | pdf_path = os.path.join(rootDir, filename) | ||
26 | print(pdf_path) | ||
27 | |||
28 | images = pdf_to_images(pdf_path) | ||
29 | images = sum(images, []) | ||
30 | |||
31 | image_dir = os.path.join(rootDir, filename.replace('.pdf', '')) | ||
32 | if not os.path.exists(image_dir): | ||
33 | os.makedirs(image_dir) | ||
34 | |||
35 | for index, image in enumerate(images): | ||
36 | |||
37 | save_path = os.path.join(image_dir, filename.replace('.pdf', '')+'-'+str(index)+'.jpg') | ||
38 | cv2.imwrite(save_path, image) |
ocr_engine/docs/images/image_crop.png
0 → 100644

193 KB
ocr_engine/scripts/api_test.py
0 → 100644
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : Lyu Kui | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Create Date : 2022-05-06 22:02:01 | ||
5 | # @Last Modified : 2022-08-03 14:59:51 | ||
6 | # @Description : | ||
7 | |||
8 | |||
9 | import os | ||
10 | import time | ||
11 | import random | ||
12 | import requests | ||
13 | import numpy as np | ||
14 | from threading import Thread | ||
15 | |||
16 | |||
17 | class API_test: | ||
18 | def __init__(self, file_dir, test_time, num_request): | ||
19 | |||
20 | self.file_paths = [] | ||
21 | for fn in os.listdir(file_dir): | ||
22 | file_path = os.path.join(file_dir, fn) | ||
23 | self.file_paths.append(file_path) | ||
24 | |||
25 | self.time_start = time.time() | ||
26 | self.test_time = test_time * 60 # 单位:秒 | ||
27 | threads = [] | ||
28 | for i in range(num_request): | ||
29 | t = Thread(target=self.update, args=()) | ||
30 | threads.append(t) | ||
31 | for t in threads: | ||
32 | print(f'[INFO] {t} is running') | ||
33 | t.start() | ||
34 | self.results = list() | ||
35 | self.index = 0 | ||
36 | |||
37 | def update(self): | ||
38 | while True: | ||
39 | file_path = random.choice(self.file_paths) | ||
40 | |||
41 | # 二进制方式打开图片文件 | ||
42 | data = open(file_path, 'rb') | ||
43 | |||
44 | t0 = time.time() | ||
45 | response = requests.post(url=r'http://localhost:9001/gen_ocr_with_rotation', files={'file': data}) | ||
46 | |||
47 | # 失败请求统计 | ||
48 | if response.status_code != 200: | ||
49 | print(response) | ||
50 | |||
51 | t1 = time.time() | ||
52 | self.results.append((t1-t0)) | ||
53 | |||
54 | time_cost = (time.time() - self.time_start) | ||
55 | time_remaining = self.test_time - time_cost | ||
56 | |||
57 | self.index += 1 | ||
58 | |||
59 | if time_remaining > 0: | ||
60 | print(f'\r[INFO] 剩余时间 {time_remaining} 秒, 平均响应时间 {np.mean(self.results)} 秒, TPS {len(self.results)/time_cost}, 吞吐量 {self.index}', end=' ', flush=True) | ||
61 | else: | ||
62 | break | ||
63 | |||
64 | |||
65 | if __name__ == '__main__': | ||
66 | |||
67 | imageDir = './demos/img_ocr' # 测试数据路径 | ||
68 | testTime = 10 # 加压时间, 单位:分钟 | ||
69 | numRequest = 10 # 并发数,单位:个 | ||
70 | |||
71 | API_test(imageDir, testTime, numRequest) |
ocr_engine/setup.cfg
0 → 100644
1 | [metadata] | ||
2 | name = turnsole | ||
3 | version = 0.0.27 | ||
4 | author = Kui Lyu | ||
5 | author_email = 9428.al@gmail.com | ||
6 | description = A series of convenience functions make your machine learning project easier | ||
7 | long_description = file: README.md | ||
8 | long_description_content_type = text/markdown | ||
9 | url = https://github.com/Antonio-hi/turnsole | ||
10 | project_urls = | ||
11 | Bug Tracker = https://github.com/Antonio-hi/turnsole/issues | ||
12 | classifiers = | ||
13 | Programming Language :: Python :: 3 | ||
14 | License :: OSI Approved :: MIT License | ||
15 | Operating System :: OS Independent | ||
16 | |||
17 | [options] | ||
18 | packages = find: | ||
19 | python_requires = >=3.6 | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/setup.py
0 → 100644
ocr_engine/turnsole.egg-info/PKG-INFO
0 → 100644
1 | Metadata-Version: 2.1 | ||
2 | Name: turnsole | ||
3 | Version: 0.0.27 | ||
4 | Summary: A series of convenience functions make your machine learning project easier | ||
5 | Home-page: https://github.com/Antonio-hi/turnsole | ||
6 | Author: Kui Lyu | ||
7 | Author-email: 9428.al@gmail.com | ||
8 | License: UNKNOWN | ||
9 | Project-URL: Bug Tracker, https://github.com/Antonio-hi/turnsole/issues | ||
10 | Platform: UNKNOWN | ||
11 | Classifier: Programming Language :: Python :: 3 | ||
12 | Classifier: License :: OSI Approved :: MIT License | ||
13 | Classifier: Operating System :: OS Independent | ||
14 | Requires-Python: >=3.6 | ||
15 | Description-Content-Type: text/markdown | ||
16 | License-File: LICENSE | ||
17 | |||
18 | # turnsole | ||
19 | A series of convenience functions make your machine learning project easier | ||
20 | |||
21 | ## 安装方法 | ||
22 | |||
23 | ### Latest release | ||
24 | `pip install turnsole` | ||
25 | > 项目暂不开源,因此该安装方法暂时不保证能用 | ||
26 | |||
27 | ### Developer mode | ||
28 | |||
29 | `pip install -e .` | ||
30 | |||
31 | ## 快速上手 | ||
32 | ### PDF 操作 | ||
33 | #### 智能 PDF 文件转图片 | ||
34 | 智能的把 PDF 文件里面的插图找出来,例如没有插图就将整页 PDF 截图下来,也能智能的将碎图拼接在一起 | ||
35 | |||
36 | ##### Example: | ||
37 | <pre># pdf_path 表示 PDF 文件的路径,输出 images 按页码进行汇总输出 | ||
38 | images = turnsole.pdf_to_images(pdf_path)</pre> | ||
39 | |||
40 | ### 图像操作工具箱 | ||
41 | #### base64_to_bgr / bgr_to_base64 | ||
42 | 图像和 base64 互相转换 | ||
43 | |||
44 | ##### Example: | ||
45 | <pre>image = turnsole.base64_to_bgr(img64) | ||
46 | img64 = turnsole.bgr_to_base64(image)</pre> | ||
47 | |||
48 | ### image_crop | ||
49 | 根据 bbox 在 image 上进行切片,如果指定 perspective 为 True 则切片方式为透视变换(可以切旋转目标) | ||
50 | |||
51 | ##### Example: | ||
52 | <pre>im_slice_no_perspective = turnsole.image_crop(image, bbox) | ||
53 | im_slice = turnsole.image_crop(image, bbox, perspective=True)</pre> | ||
54 | |||
55 | ##### Output: | ||
56 | |||
57 | <img src="docs/images/image_crop.png?raw=true" alt="image crop example" style="max-width: 200px;"> | ||
58 | |||
59 | ### OCR 引擎模块 | ||
60 | OCR 引擎指的是一系列跟 OCR 相关的底层模型,我们提供了这些模型的函数式调用接口和标准 API | ||
61 | |||
62 | - [x] ADC :tada: | ||
63 | - [x] DBNet :tada: | ||
64 | - [x] CRNN :tada: | ||
65 | - [x] Object Detector :tada: | ||
66 | - [x] Signature Detector :tada: | ||
67 | |||
68 | #### 免费试用 | ||
69 | ```python | ||
70 | import requests | ||
71 | |||
72 | results = requests.post(url=r'http://139.196.149.46:9001/gen_ocr', files={'file': open(file_path, 'rb')}).json() | ||
73 | ocr_results = results['ocr_results'] | ||
74 | ``` | ||
75 | |||
76 | #### Prerequisites | ||
77 | 由于 OCR 引擎模块依赖于底层神经网络模型,因此需要先用 Docker 挂载底层神经网络模型 | ||
78 | |||
79 | 首先把 ./model_repository 文件夹和里面的模型放到项目根目录下再启动,如果没有相关模型找 [lvkui](lvkui@situdata.com) 要 | ||
80 | |||
81 | 使用起来非常简单,你只需要启动对应的 Docker 容器即可 | ||
82 | |||
83 | ```bash | ||
84 | docker run --gpus="device=0" --rm -p 8000:8000 -p 8001:8001 -p 8002:8002 -v $PWD/model_repository:/models nvcr.io/nvidia/tritonserver:21.10-py3 tritonserver --model-repository=/models | ||
85 | ``` | ||
86 | |||
87 | #### ADC | ||
88 | 通用文件摆正算法 | ||
89 | |||
90 | ``` | ||
91 | from turnsole.ocr_engine import angle_detector | ||
92 | |||
93 | image_rotated, direction = angle_detector.ADC(image, fine_degree=False) | ||
94 | ``` | ||
95 | |||
96 | #### DBNet | ||
97 | 通用文字检测算法 | ||
98 | |||
99 | ``` | ||
100 | from turnsole.ocr_engine import text_detector | ||
101 | |||
102 | boxes = text_detector.predict(image) | ||
103 | ``` | ||
104 | |||
105 | #### CRNN | ||
106 | 通用文字识别算法 | ||
107 | |||
108 | ``` | ||
109 | from turnsole.ocr_engine import text_recognizer | ||
110 | |||
111 | ocr_result, ocr_time = text_recognizer.predict_batch(image, boxes) | ||
112 | ``` | ||
113 | |||
114 | #### Object Detector | ||
115 | 通用文件检测算法 | ||
116 | |||
117 | ``` | ||
118 | from turnsole.ocr_engine import object_detector | ||
119 | |||
120 | object_list = object_detector.process(image) | ||
121 | ``` | ||
122 | |||
123 | #### Signature Detector | ||
124 | 签字盖章二维码检测算法 | ||
125 | |||
126 | ``` | ||
127 | from turnsole.ocr_engine import signature_detector | ||
128 | |||
129 | signature_list = signature_detector.process(image) | ||
130 | ``` | ||
131 | |||
132 | #### 标准 API | ||
133 | ``` | ||
134 | python api/ocr_engine_server.py | ||
135 | ``` | ||
136 |
ocr_engine/turnsole.egg-info/SOURCES.txt
0 → 100644
1 | LICENSE | ||
2 | README.md | ||
3 | setup.cfg | ||
4 | setup.py | ||
5 | turnsole/__init__.py | ||
6 | turnsole/convenience.py | ||
7 | turnsole/encodings.py | ||
8 | turnsole/model.py | ||
9 | turnsole/paths.py | ||
10 | turnsole/pdf_tools.py | ||
11 | turnsole.egg-info/PKG-INFO | ||
12 | turnsole.egg-info/SOURCES.txt | ||
13 | turnsole.egg-info/dependency_links.txt | ||
14 | turnsole.egg-info/top_level.txt | ||
15 | turnsole/face_utils/__init__.py | ||
16 | turnsole/face_utils/agedetector.py | ||
17 | turnsole/face_utils/facedetector.py | ||
18 | turnsole/nets/__init__.py | ||
19 | turnsole/nets/efficientnet.py | ||
20 | turnsole/ocr_engine/__init__.py | ||
21 | turnsole/ocr_engine/ADC/__init__.py | ||
22 | turnsole/ocr_engine/ADC/angle_detector.py | ||
23 | turnsole/ocr_engine/CRNN/__init__.py | ||
24 | turnsole/ocr_engine/CRNN/alphabets.py | ||
25 | turnsole/ocr_engine/CRNN/text_rec.py | ||
26 | turnsole/ocr_engine/DBNet/__init__.py | ||
27 | turnsole/ocr_engine/DBNet/text_detector.py | ||
28 | turnsole/ocr_engine/object_det/__init__.py | ||
29 | turnsole/ocr_engine/object_det/utils.py | ||
30 | turnsole/ocr_engine/signature_det/__init__.py | ||
31 | turnsole/ocr_engine/signature_det/utils.py | ||
32 | turnsole/ocr_engine/utils/__init__.py | ||
33 | turnsole/ocr_engine/utils/read_data.py | ||
34 | turnsole/video/__init__.py | ||
35 | turnsole/video/count_frames.py | ||
36 | turnsole/video/filevideostream.py | ||
37 | turnsole/video/fps.py | ||
38 | turnsole/video/pivideostream.py | ||
39 | turnsole/video/videostream.py | ||
40 | turnsole/video/webcamvideostream.py | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/turnsole.egg-info/top_level.txt
0 → 100644
1 | turnsole |
ocr_engine/turnsole/__init__.py
0 → 100644
1 | try: | ||
2 | from . import ocr_engine | ||
3 | except: | ||
4 | # print('[INFO] OCR engine can not import successful') | ||
5 | pass | ||
6 | from .convenience import resize | ||
7 | from .convenience import resize_with_pad | ||
8 | from .convenience import image_crop | ||
9 | from .encodings import bytes_to_bgr | ||
10 | from .encodings import base64_to_image | ||
11 | from .encodings import base64_encode_file | ||
12 | from .encodings import base64_encode_image | ||
13 | from .encodings import base64_decode_image | ||
14 | from .encodings import base64_to_bgr | ||
15 | from .encodings import bgr_to_base64 | ||
16 | from .pdf_tools import pdf_to_images | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/turnsole/convenience.py
0 → 100644
1 | import cv2 | ||
2 | import numpy as np | ||
3 | |||
4 | def resize(image, width=None, height=None, inter=cv2.INTER_AREA): | ||
5 | # initialize the dimensions of the image to be resized and grab the image size | ||
6 | dim = None | ||
7 | (h, w) = image.shape[:2] | ||
8 | |||
9 | # if both the width and height are None, then return the original image | ||
10 | if width is None and height is None: | ||
11 | return image | ||
12 | |||
13 | # check to see if the width is None | ||
14 | if width is None: | ||
15 | # calculate the ratio of the height and construct the dimensions | ||
16 | r = height / float(h) | ||
17 | dim = (int(w * r), height) | ||
18 | |||
19 | # otherwise, the height is None | ||
20 | else: | ||
21 | # calculate the ratio of the width and construct the dimensions | ||
22 | r = width / float(w) | ||
23 | dim = (width, int(h * r)) | ||
24 | |||
25 | # resize the image | ||
26 | resized = cv2.resize(image, dim, interpolation=inter) | ||
27 | |||
28 | # return the resized image | ||
29 | return resized | ||
30 | |||
31 | def resize_with_pad(image, target_width, target_height): | ||
32 | """Resuzes and pads an image to a target width and height. | ||
33 | |||
34 | Resizes an image to a target width and height by keeping the aspect ratio the same | ||
35 | without distortion. | ||
36 | ratio must be less than 1.0. | ||
37 | width and height will pad with zeroes. | ||
38 | |||
39 | Args: | ||
40 | image (Array): RGB/BGR | ||
41 | target_width (Int): Target width. | ||
42 | target_height (Int): Target height. | ||
43 | |||
44 | Returns: | ||
45 | Array: Resized and padded image. The image paded with zeroes. | ||
46 | Float: Image resized ratio. The ratio must be less than 1.0. | ||
47 | """ | ||
48 | height, width, _ = image.shape | ||
49 | |||
50 | min_ratio = min(target_height/height, target_width/width) | ||
51 | ratio = min_ratio if min_ratio < 1.0 else 1.0 | ||
52 | |||
53 | # To shrink an image, it will generally look best with INTER_AREA interpolation. | ||
54 | resized = cv2.resize(image, None, fx=ratio, fy=ratio, interpolation=cv2.INTER_AREA) | ||
55 | h, w, _ = resized.shape | ||
56 | canvas = np.zeros((target_height, target_width, 3), image.dtype) | ||
57 | canvas[:h, :w, :] = resized | ||
58 | return canvas, ratio | ||
59 | |||
60 | def image_crop(image, bbox, perspective=False): | ||
61 | """根据 Bbox 在 image 上进行切片,如果指定 perspective 为 True 则切片方式为透视变换(可以切旋转目标) | ||
62 | |||
63 | Args: | ||
64 | image (array): 三通道图片,切片结果保持原图颜色通道 | ||
65 | bbox (array/list): 支持两点矩形框和四点旋转矩形框 | ||
66 | 支持以下两种格式: | ||
67 | 1. bbox = [xmin, ymin, xmax, ymax] | ||
68 | 2. bbox = [x0, y0, x1, y1, x2, y2, x3, y3] | ||
69 | perspective (bool, optional): 是否切出旋转目标. Defaults to False. | ||
70 | |||
71 | Returns: | ||
72 | array: 小切图,和原图颜色通道一致 | ||
73 | """ | ||
74 | # 按照 bbox 的正外接矩形切图 | ||
75 | bbox = np.array(bbox, dtype=np.int32).reshape((-1, 2)) | ||
76 | xmin, ymin, xmax, ymax = [min(bbox[:, 0]), | ||
77 | min(bbox[:, 1]), | ||
78 | max(bbox[:, 0]), | ||
79 | max(bbox[:, 1])] | ||
80 | xmin, ymin = max(0, xmin), max(0, ymin) | ||
81 | im_slice = image[ymin:ymax, xmin:xmax, :] | ||
82 | |||
83 | if perspective and bbox.shape[0] == 4: | ||
84 | # 获得旋转矩形的宽和高 | ||
85 | w, h = [int(np.linalg.norm(bbox[0] - bbox[1])), | ||
86 | int(np.linalg.norm(bbox[3] - bbox[0]))] | ||
87 | # 把 bbox 平移到正切图的对应位置上 | ||
88 | bbox[:, 0] -= xmin | ||
89 | bbox[:, 1] -= ymin | ||
90 | # 执行透视切图 | ||
91 | pts1 = np.float32(bbox) | ||
92 | pts2 = np.float32([[0, 0], [w, 0], [w, h], [0, h]]) | ||
93 | M = cv2.getPerspectiveTransform(pts1, pts2) | ||
94 | im_slice = cv2.warpPerspective(im_slice, M, (w, h)) | ||
95 | |||
96 | return im_slice |
ocr_engine/turnsole/encodings.py
0 → 100644
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : Antonio-hi | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Create Date : 2021-08-09 19:08:49 | ||
5 | # @Last Modified : 2021-08-10 10:11:06 | ||
6 | # @Description : | ||
7 | |||
8 | # import the necessary packages | ||
9 | import numpy as np | ||
10 | import base64 | ||
11 | import json | ||
12 | import sys | ||
13 | import cv2 | ||
14 | import os | ||
15 | |||
16 | def base64_encode_image(a): | ||
17 | # return a JSON-encoded list of the base64 encoded image, image data type, and image shape | ||
18 | # return json.dumps([base64_encode_array(a), str(a.dtype), a.shape]) | ||
19 | return json.dumps([base64_encode_array(a).decode("utf-8"), str(a.dtype), | ||
20 | a.shape]) | ||
21 | |||
22 | def base64_decode_image(a): | ||
23 | # grab the array, data type, and shape from the JSON-decoded object | ||
24 | (a, dtype, shape) = json.loads(a) | ||
25 | |||
26 | # set the correct data type and reshape the matrix into an image | ||
27 | a = base64_decode_array(a, dtype).reshape(shape) | ||
28 | |||
29 | # return the loaded image | ||
30 | return a | ||
31 | |||
32 | def base64_encode_array(a): | ||
33 | # return the base64 encoded array | ||
34 | return base64.b64encode(a) | ||
35 | |||
36 | def base64_decode_array(a, dtype): | ||
37 | # decode and return the array | ||
38 | return np.frombuffer(base64.b64decode(a), dtype=dtype) | ||
39 | |||
40 | def base64_encode_file(image_path): | ||
41 | filename = os.path.basename(image_path) | ||
42 | # encode image file to base64 string | ||
43 | with open(image_path, 'rb') as f: | ||
44 | buffer = f.read() | ||
45 | # convert bytes buffer string then encode to base64 string | ||
46 | img64_bytes = base64.b64encode(buffer) | ||
47 | img64_str = img64_bytes.decode('utf-8') # bytes to str | ||
48 | return json.dumps({"filename" : filename, "img64": img64_str}) | ||
49 | |||
50 | def base64_to_image(img64): | ||
51 | image_buffer = base64_decode_array(img64, dtype=np.uint8) | ||
52 | # In the case of color images, the decoded images will have the channels stored in B G R order. | ||
53 | image = cv2.imdecode(image_buffer, cv2.IMREAD_COLOR) | ||
54 | return image | ||
55 | |||
56 | def bytes_to_bgr(buffer: bytes): | ||
57 | """Read a byte stream as a OpenCV image | ||
58 | |||
59 | Args: | ||
60 | buffer (TYPE): bytes of a decoded image | ||
61 | """ | ||
62 | img_array = np.frombuffer(buffer, np.uint8) | ||
63 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
64 | return image | ||
65 | |||
66 | def base64_to_bgr(img64): | ||
67 | """把 base64 转换成图片 | ||
68 | 单通道的灰度图或四通道的透明图都将自动转换成三通道的 BGR 图 | ||
69 | |||
70 | Args: | ||
71 | img64 (TYPE): Description | ||
72 | |||
73 | Returns: | ||
74 | TYPE: image is a 3-D uint8 Tensor of shape [height, width, channels] where channels is BGR | ||
75 | """ | ||
76 | encoded_image = base64.b64decode(img64) | ||
77 | img_array = np.frombuffer(encoded_image, np.uint8) | ||
78 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
79 | return image | ||
80 | |||
81 | def bgr_to_base64(image): | ||
82 | """ 把图片转换成 base64 格式,过程中把图片以 JPEG 格式进行了压缩,通常这会导致图像质量变差 | ||
83 | |||
84 | Args: | ||
85 | image (TYPE): image is a 3-D uint8 or uint16 Tensor of shape [height, width, channels] where channels is BGR | ||
86 | |||
87 | Returns: | ||
88 | TYPE: base64 格式的图片 | ||
89 | """ | ||
90 | retval, encoded_image = cv2.imencode('.jpg', image) # Encodes an image(BGR) into a memory buffer. | ||
91 | img64 = base64.b64encode(encoded_image) | ||
92 | return img64.decode('utf-8') | ||
93 | |||
94 | |||
95 | if __name__ == '__main__': | ||
96 | |||
97 | image_path = '/home/lk/Repository/Project/turnsole/demos/images/sunflower.jpg' | ||
98 | |||
99 | # 1)将图片文件转换成 base64 base64编码的字符串(理论上支持任意文件) | ||
100 | json_str = base64_encode_file(image_path) | ||
101 | |||
102 | img64_dict = json.loads(json_str) | ||
103 | |||
104 | suffix = os.path.splitext(img64_dict['filename'])[-1].lower() | ||
105 | if suffix not in ['.jpg', '.jpeg', '.png', '.bmp']: | ||
106 | print(f'[INFO] 暂不支持格式为 {suffix} 的文件!') | ||
107 | |||
108 | # 2)将 base64 编码的字符串转成图片 | ||
109 | image = base64_to_image(img64_dict['img64']) | ||
110 | |||
111 | inputs = image/255. | ||
112 | |||
113 | # 3)自创的, 将 array 转 base64 编码再转回array, 中间不经历图片操作, 还能保持 array 的数据类型 | ||
114 | base64_encode_json_string = base64_encode_image(inputs) | ||
115 | |||
116 | inputs = base64_decode_image(base64_encode_json_string) | ||
117 | |||
118 | print(inputs) | ||
119 | |||
120 | # 3、字符串前加 b | ||
121 | # 例: response = b'<h1>Hello World!</h1>' # b' ' 表示这是一个 bytes 对象 | ||
122 | |||
123 | # 作用: | ||
124 | |||
125 | # b" "前缀表示:后面字符串是bytes 类型。 | ||
126 | |||
127 | # 用处: | ||
128 | |||
129 | # 网络编程中,服务器和浏览器只认bytes 类型数据。 | ||
130 | |||
131 | # 如:send 函数的参数和 recv 函数的返回值都是 bytes 类型 | ||
132 | |||
133 | # 附: | ||
134 | |||
135 | # 在 Python3 中,bytes 和 str 的互相转换方式是 | ||
136 | # str.encode('utf-8') | ||
137 | # bytes.decode('utf-8') |
ocr_engine/turnsole/face_utils/__init__.py
0 → 100644
File mode changed
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : lk | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Create Date : 2021-08-11 17:10:16 | ||
5 | # @Last Modified : 2021-08-12 16:14:53 | ||
6 | # @Description : | ||
7 | |||
8 | import os | ||
9 | import tensorflow as tf | ||
10 | |||
11 | class AgeDetector: | ||
12 | def __init__(self, model_path): | ||
13 | self.age_map = { | ||
14 | 0: '0-2', | ||
15 | 1: '4-6', | ||
16 | 2: '8-13', | ||
17 | 3: '15-20', | ||
18 | 4: '25-32', | ||
19 | 5: '38-43', | ||
20 | 6: '48-53', | ||
21 | 7: '60+' | ||
22 | } | ||
23 | |||
24 | self.model = tf.keras.models.load_model(filepath=model_path, | ||
25 | compile=False) | ||
26 | self.inference_model = self.build_inference_model() | ||
27 | |||
28 | def build_inference_model(self): | ||
29 | image = self.model.input | ||
30 | x = tf.keras.applications.mobilenet_v2.preprocess_input(image) | ||
31 | predictions = self.model(x, training=False) | ||
32 | inference_model = tf.keras.Model(inputs=image, outputs=predictions) | ||
33 | return inference_model | ||
34 | |||
35 | def predict_batch(self, images): | ||
36 | # 输入一个人脸图片列表,列表不应为空 | ||
37 | images = tf.stack([tf.image.resize(image, [96, 96]) for image in images], axis=0) | ||
38 | preds = self.inference_model.predict(images) | ||
39 | indexes = tf.argmax(preds, axis=-1) | ||
40 | classes = [self.age_map[index.numpy()] for index in indexes] | ||
41 | return classes | ||
42 | |||
43 | if __name__ == '__main__': | ||
44 | |||
45 | import cv2 | ||
46 | from turnsole import paths | ||
47 | |||
48 | age_det = AGE_DETECTION(model_path='./ckpt/age_detector.h5') | ||
49 | |||
50 | data_dir = '/home/lk/Project/Face_Age_Gender/data/Emotion/emotion/010003_female_yellow_22' | ||
51 | |||
52 | for image_path in paths.list_images(data_dir): | ||
53 | image = cv2.imread(image_path) | ||
54 | classes = age_det.predict_batch([image]) | ||
55 | |||
56 | print(classes) | ||
57 |
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : Antonio-hi | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Create Date : 2021-08-11 18:28:36 | ||
5 | # @Last Modified : 2021-08-12 19:27:59 | ||
6 | # @Description : | ||
7 | |||
8 | import os | ||
9 | import time | ||
10 | import numpy as np | ||
11 | import tensorflow as tf | ||
12 | |||
13 | def convert_to_corners(boxes): | ||
14 | """Changes the box format to corner coordinates | ||
15 | |||
16 | Arguments: | ||
17 | boxes: A tensor of rank 2 or higher with a shape of `(..., num_boxes, 4)` | ||
18 | representing bounding boxes where each box is of the format | ||
19 | `[x, y, width, height]`. | ||
20 | |||
21 | Returns: | ||
22 | converted boxes with shape same as that of boxes. | ||
23 | """ | ||
24 | return tf.concat( | ||
25 | [boxes[..., :2] - boxes[..., 2:] / 2.0, boxes[..., :2] + boxes[..., 2:] / 2.0], | ||
26 | axis=-1, | ||
27 | ) | ||
28 | |||
29 | class AnchorBox: | ||
30 | """Generates anchor boxes. | ||
31 | |||
32 | This class has operations to generate anchor boxes for feature maps at | ||
33 | strides `[8, 16, 32, 64, 128]`. Where each anchor each box is of the | ||
34 | format `[x, y, width, height]`. | ||
35 | |||
36 | Attributes: | ||
37 | aspect_ratios: A list of float values representing the aspect ratios of | ||
38 | the anchor boxes at each location on the feature map | ||
39 | scales: A list of float values representing the scale of the anchor boxes | ||
40 | at each location on the feature map. | ||
41 | num_anchors: The number of anchor boxes at each location on feature map | ||
42 | areas: A list of float values representing the areas of the anchor | ||
43 | boxes for each feature map in the feature pyramid. | ||
44 | strides: A list of float value representing the strides for each feature | ||
45 | map in the feature pyramid. | ||
46 | """ | ||
47 | |||
48 | def __init__(self): | ||
49 | self.aspect_ratios = [0.5, 1.0, 2.0] | ||
50 | self.scales = [2 ** x for x in [0, 1 / 3, 2 / 3]] | ||
51 | |||
52 | self._num_anchors = len(self.aspect_ratios) * len(self.scales) | ||
53 | self._strides = [2 ** i for i in range(3, 8)] | ||
54 | self._areas = [x ** 2 for x in [32.0, 64.0, 128.0, 256.0, 512.0]] | ||
55 | self._anchor_dims = self._compute_dims() | ||
56 | |||
57 | def _compute_dims(self): | ||
58 | """Computes anchor box dimensions for all ratios and scales at all levels | ||
59 | of the feature pyramid. | ||
60 | """ | ||
61 | anchor_dims_all = [] | ||
62 | for area in self._areas: | ||
63 | anchor_dims = [] | ||
64 | for ratio in self.aspect_ratios: | ||
65 | anchor_height = tf.math.sqrt(area / ratio) | ||
66 | anchor_width = area / anchor_height | ||
67 | dims = tf.reshape( | ||
68 | tf.stack([anchor_width, anchor_height], axis=-1), [1, 1, 2] | ||
69 | ) | ||
70 | for scale in self.scales: | ||
71 | anchor_dims.append(scale * dims) | ||
72 | anchor_dims_all.append(tf.stack(anchor_dims, axis=-2)) | ||
73 | return anchor_dims_all | ||
74 | |||
75 | def _get_anchors(self, feature_height, feature_width, level): | ||
76 | """Generates anchor boxes for a given feature map size and level | ||
77 | |||
78 | Arguments: | ||
79 | feature_height: An integer representing the height of the feature map. | ||
80 | feature_width: An integer representing the width of the feature map. | ||
81 | level: An integer representing the level of the feature map in the | ||
82 | feature pyramid. | ||
83 | |||
84 | Returns: | ||
85 | anchor boxes with the shape | ||
86 | `(feature_height * feature_width * num_anchors, 4)` | ||
87 | """ | ||
88 | rx = tf.range(feature_width, dtype=tf.float32) + 0.5 | ||
89 | ry = tf.range(feature_height, dtype=tf.float32) + 0.5 | ||
90 | centers = tf.stack(tf.meshgrid(rx, ry), axis=-1) * self._strides[level - 3] | ||
91 | centers = tf.expand_dims(centers, axis=-2) | ||
92 | centers = tf.tile(centers, [1, 1, self._num_anchors, 1]) | ||
93 | dims = tf.tile( | ||
94 | self._anchor_dims[level - 3], [feature_height, feature_width, 1, 1] | ||
95 | ) | ||
96 | anchors = tf.concat([centers, dims], axis=-1) | ||
97 | return tf.reshape( | ||
98 | anchors, [feature_height * feature_width * self._num_anchors, 4] | ||
99 | ) | ||
100 | |||
101 | def get_anchors(self, image_height, image_width): | ||
102 | """Generates anchor boxes for all the feature maps of the feature pyramid. | ||
103 | |||
104 | Arguments: | ||
105 | image_height: Height of the input image. | ||
106 | image_width: Width of the input image. | ||
107 | |||
108 | Returns: | ||
109 | anchor boxes for all the feature maps, stacked as a single tensor | ||
110 | with shape `(total_anchors, 4)` | ||
111 | """ | ||
112 | anchors = [ | ||
113 | self._get_anchors( | ||
114 | tf.math.ceil(image_height / 2 ** i), | ||
115 | tf.math.ceil(image_width / 2 ** i), | ||
116 | i, | ||
117 | ) | ||
118 | for i in range(3, 8) | ||
119 | ] | ||
120 | return tf.concat(anchors, axis=0) | ||
121 | |||
122 | class DecodePredictions(tf.keras.layers.Layer): | ||
123 | """A Keras layer that decodes predictions of the RetinaNet model. | ||
124 | |||
125 | Attributes: | ||
126 | num_classes: Number of classes in the dataset | ||
127 | confidence_threshold: Minimum class probability, below which detections | ||
128 | are pruned. | ||
129 | nms_iou_threshold: IOU threshold for the NMS operation | ||
130 | max_detections_per_class: Maximum number of detections to retain per | ||
131 | class. | ||
132 | max_detections: Maximum number of detections to retain across all | ||
133 | classes. | ||
134 | box_variance: The scaling factors used to scale the bounding box | ||
135 | predictions. | ||
136 | """ | ||
137 | |||
138 | def __init__( | ||
139 | self, | ||
140 | num_classes=80, | ||
141 | confidence_threshold=0.05, | ||
142 | nms_iou_threshold=0.5, | ||
143 | max_detections_per_class=100, | ||
144 | max_detections=100, | ||
145 | box_variance=[0.1, 0.1, 0.2, 0.2], | ||
146 | **kwargs | ||
147 | ): | ||
148 | super(DecodePredictions, self).__init__(**kwargs) | ||
149 | self.num_classes = num_classes | ||
150 | self.confidence_threshold = confidence_threshold | ||
151 | self.nms_iou_threshold = nms_iou_threshold | ||
152 | self.max_detections_per_class = max_detections_per_class | ||
153 | self.max_detections = max_detections | ||
154 | |||
155 | self._anchor_box = AnchorBox() | ||
156 | self._box_variance = tf.convert_to_tensor( | ||
157 | [0.1, 0.1, 0.2, 0.2], dtype=tf.float32 | ||
158 | ) | ||
159 | |||
160 | def _decode_box_predictions(self, anchor_boxes, box_predictions): | ||
161 | boxes = box_predictions * self._box_variance | ||
162 | boxes = tf.concat( | ||
163 | [ | ||
164 | boxes[:, :, :2] * anchor_boxes[:, :, 2:] + anchor_boxes[:, :, :2], | ||
165 | tf.math.exp(boxes[:, :, 2:]) * anchor_boxes[:, :, 2:], | ||
166 | ], | ||
167 | axis=-1, | ||
168 | ) | ||
169 | boxes_transformed = convert_to_corners(boxes) | ||
170 | return boxes_transformed | ||
171 | |||
172 | def _decode_landm_predictions(self, anchor_boxes, landm_predictions): # anchor_boxes shape=(1, 138105, 4) | ||
173 | landmarks = tf.reshape(landm_predictions, | ||
174 | [tf.shape(landm_predictions)[0], tf.shape(anchor_boxes)[1], 5, 2]) | ||
175 | anchor_boxes = tf.broadcast_to( | ||
176 | input=tf.expand_dims(anchor_boxes, 2), | ||
177 | shape=[tf.shape(landm_predictions)[0], tf.shape(anchor_boxes)[1], 5, 4]) | ||
178 | landmarks *= (self._box_variance[:2] * anchor_boxes[:, :, :, 2:]) | ||
179 | landmarks += anchor_boxes[:, :, :, :2] | ||
180 | return landmarks | ||
181 | |||
182 | def call(self, images, predictions): | ||
183 | image_shape = tf.cast(tf.shape(images), dtype=tf.float32) | ||
184 | anchor_boxes = self._anchor_box.get_anchors(image_shape[1], image_shape[2]) | ||
185 | |||
186 | box_predictions = predictions[:, :, :4] | ||
187 | cls_predictions = tf.nn.sigmoid(predictions[:, :, 4]) | ||
188 | landm_predictions = predictions[:, :, 5:15] | ||
189 | |||
190 | boxes = self._decode_box_predictions(anchor_boxes[None, ...], box_predictions) | ||
191 | landmarks = self._decode_landm_predictions(anchor_boxes[None, ...], landm_predictions) | ||
192 | |||
193 | selected_indices = tf.image.non_max_suppression( | ||
194 | boxes=boxes[0], | ||
195 | scores=cls_predictions[0], | ||
196 | max_output_size=self.max_detections, | ||
197 | iou_threshold=0.5, | ||
198 | score_threshold=self.confidence_threshold | ||
199 | ) | ||
200 | selected_boxes = tf.gather(boxes[0], selected_indices) | ||
201 | selected_landmarks = tf.gather(landmarks[0], selected_indices) | ||
202 | |||
203 | return selected_boxes, selected_landmarks | ||
204 | |||
205 | class FaceDetector: | ||
206 | def __init__(self, model_path, confidence_threshold=0.5): | ||
207 | self.confidence_threshold = confidence_threshold | ||
208 | self.model = tf.keras.models.load_model(filepath=model_path, | ||
209 | compile=False) | ||
210 | self.inference_model = self.build_inference_model() | ||
211 | |||
212 | def build_inference_model(self): | ||
213 | image = self.model.input | ||
214 | x = tf.keras.applications.mobilenet_v2.preprocess_input(image) | ||
215 | predictions = self.model(x, training=False) | ||
216 | detections = DecodePredictions(confidence_threshold=self.confidence_threshold)(image, predictions) | ||
217 | inference_model = tf.keras.Model(inputs=image, outputs=detections) | ||
218 | return inference_model | ||
219 | |||
220 | def resize_and_pad_image( | ||
221 | self, image, min_side=128.0, max_side=1333.0, jitter=[256, 960], stride=128.0 | ||
222 | ): | ||
223 | """Resizes and pads image while preserving aspect ratio. | ||
224 | |||
225 | Returns: | ||
226 | image: Resized and padded image. | ||
227 | image_shape: Shape of the image before padding. | ||
228 | ratio: The scaling factor used to resize the image | ||
229 | """ | ||
230 | image_shape = tf.cast(tf.shape(image)[:2], dtype=tf.float32) | ||
231 | if jitter is not None: | ||
232 | min_side = tf.random.uniform((), jitter[0], jitter[1], dtype=tf.float32) | ||
233 | ratio = min_side / tf.reduce_min(image_shape) | ||
234 | if ratio * tf.reduce_max(image_shape) > max_side: | ||
235 | ratio = max_side / tf.reduce_max(image_shape) | ||
236 | image_shape = ratio * image_shape # tf.float32 | ||
237 | image = tf.image.resize(image, tf.cast(image_shape, dtype=tf.int32)) | ||
238 | padded_image_shape = tf.cast( | ||
239 | tf.math.ceil(image_shape / stride) * stride, dtype=tf.int32 | ||
240 | ) | ||
241 | image = tf.image.pad_to_bounding_box( | ||
242 | image, 0, 0, padded_image_shape[0], padded_image_shape[1] | ||
243 | ) | ||
244 | return image, image_shape, ratio | ||
245 | |||
246 | def predict(self, image, min_side=128): | ||
247 | |||
248 | # input a image return boxes and landmarks | ||
249 | image, _, ratio = self.resize_and_pad_image(image, min_side=min_side, jitter=None) | ||
250 | |||
251 | detections = self.inference_model.predict(tf.expand_dims(image, axis=0)) | ||
252 | boxes, landmarks = detections | ||
253 | |||
254 | boxes = np.array(boxes/ratio, dtype=np.int32) | ||
255 | landmarks = np.array(landmarks/ratio, dtype=np.int32) | ||
256 | return boxes, landmarks | ||
257 | |||
258 | # 格式转换 | ||
259 | results = { | ||
260 | 'boxes': boxes.tolist(), | ||
261 | 'landmarks': landmarks.tolist(), | ||
262 | } | ||
263 | return results | ||
264 | |||
265 | if __name__ == '__main__': | ||
266 | import cv2 | ||
267 | |||
268 | facedetector = FaceDetector(model_path='./model/facedetector.h5') | ||
269 | |||
270 | image_path = '/home/lk/Project/Face_Age_Gender/data/WIDER/WIDER_train/images/28--Sports_Fan/28_Sports_Fan_Sports_Fan_28_615.jpg' | ||
271 | # image_path = '/home/lk/Project/Face_Age_Gender/data/Emotion/emotion/010021_female_yellow_22/angry.jpg' | ||
272 | |||
273 | image = cv2.imread(image_path) | ||
274 | |||
275 | x = facedetector.predict(image, min_side=256) | ||
276 | |||
277 | print(x) | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/turnsole/model.py
0 → 100644
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : Lyu Kui | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Created Date : 2021-02-24 13:58:46 | ||
5 | # @Last Modified : 2021-03-05 18:14:17 | ||
6 | # @Description : | ||
7 | |||
8 | import tensorflow as tf | ||
9 | |||
10 | from .nets.efficientnet import EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3 | ||
11 | from .nets.efficientnet import EfficientNetB4, EfficientNetB5, EfficientNetB6, EfficientNetB7 | ||
12 | |||
13 | def load_backbone(phi, input_tensor, weights='imagenet'): | ||
14 | if phi == 0: | ||
15 | model = EfficientNetB0(include_top=False, | ||
16 | weights=weights, | ||
17 | input_tensor=input_tensor) | ||
18 | # 从这些层提取特征 | ||
19 | layer_names = [ | ||
20 | 'block2b_add', # 1/4 | ||
21 | 'block3b_add', # 1/8 | ||
22 | 'block5c_add', # 1/16 | ||
23 | 'block7a_project_bn', # 1/32 | ||
24 | ] | ||
25 | elif phi == 1: | ||
26 | model = EfficientNetB1(include_top=False, | ||
27 | weights=weights, | ||
28 | input_tensor=input_tensor) | ||
29 | layer_names = [ | ||
30 | 'block2c_add', # 1/4 | ||
31 | 'block3c_add', # 1/8 | ||
32 | 'block5d_add', # 1/16 | ||
33 | 'block7b_add', # 1/32 | ||
34 | ] | ||
35 | elif phi == 2: | ||
36 | model = EfficientNetB2(include_top=False, | ||
37 | weights=weights, | ||
38 | input_tensor=input_tensor) | ||
39 | layer_names = [ | ||
40 | 'block2c_add', # 1/4 | ||
41 | 'block3c_add', # 1/8 | ||
42 | 'block5d_add', # 1/16 | ||
43 | 'block7b_add', # 1/32 | ||
44 | ] | ||
45 | elif phi == 3: | ||
46 | model = EfficientNetB3(include_top=False, | ||
47 | weights=weights, | ||
48 | input_tensor=input_tensor) | ||
49 | layer_names = [ | ||
50 | 'block2c_add', # 1/4 | ||
51 | 'block3c_add', # 1/8 | ||
52 | 'block5e_add', # 1/16 | ||
53 | 'block7b_add', # 1/32 | ||
54 | ] | ||
55 | elif phi == 4: | ||
56 | model = EfficientNetB4(include_top=False, | ||
57 | weights=weights, | ||
58 | input_tensor=input_tensor) | ||
59 | layer_names = [ | ||
60 | 'block2c_add', # 1/4 | ||
61 | 'block3d_add', # 1/8 | ||
62 | 'block5f_add', # 1/16 | ||
63 | 'block7b_add', # 1/32 | ||
64 | ] | ||
65 | elif phi == 5: | ||
66 | model = EfficientNetB5(include_top=False, | ||
67 | weights=weights, | ||
68 | input_tensor=input_tensor) | ||
69 | layer_names = [ | ||
70 | 'block2e_add', # 1/4 | ||
71 | 'block3e_add', # 1/8 | ||
72 | 'block5g_add', # 1/16 | ||
73 | 'block7c_add', # 1/32 | ||
74 | ] | ||
75 | elif phi == 6: | ||
76 | model = EfficientNetB6(include_top=False, | ||
77 | weights=weights, | ||
78 | input_tensor=input_tensor) | ||
79 | layer_names = [ | ||
80 | 'block2f_add', # 1/4 | ||
81 | 'block3f_add', # 1/8 | ||
82 | 'block5h_add', # 1/16 | ||
83 | 'block7c_add', # 1/32 | ||
84 | ] | ||
85 | elif phi == 7: | ||
86 | model = EfficientNetB7(include_top=False, | ||
87 | weights=weights, | ||
88 | input_tensor=input_tensor) | ||
89 | layer_names = [ | ||
90 | 'block2g_add', # 1/4 | ||
91 | 'block3g_add', # 1/8 | ||
92 | 'block5j_add', # 1/16 | ||
93 | 'block7d_add', # 1/32 | ||
94 | ] | ||
95 | |||
96 | skips = [model.get_layer(name).output for name in layer_names] | ||
97 | return model, skips | ||
98 | |||
99 | def EasyDet(phi=0, input_size=(None, None, 3), weights='imagenet'): | ||
100 | image_input = tf.keras.layers.Input(shape=input_size) | ||
101 | |||
102 | backbone, skips = load_backbone(phi=phi, input_tensor=image_input, weights=weights) | ||
103 | C2, C3, C4, C5 = skips | ||
104 | |||
105 | in2 = tf.keras.layers.Conv2D(256, (1, 1), padding='same', kernel_initializer='he_normal', name='in2')(C2) | ||
106 | in3 = tf.keras.layers.Conv2D(256, (1, 1), padding='same', kernel_initializer='he_normal', name='in3')(C3) | ||
107 | in4 = tf.keras.layers.Conv2D(256, (1, 1), padding='same', kernel_initializer='he_normal', name='in4')(C4) | ||
108 | in5 = tf.keras.layers.Conv2D(256, (1, 1), padding='same', kernel_initializer='he_normal', name='in5')(C5) | ||
109 | |||
110 | # 1 / 32 * 8 = 1 / 4 | ||
111 | P5 = tf.keras.layers.UpSampling2D(size=(8, 8))( | ||
112 | tf.keras.layers.Conv2D(64, (3, 3), padding='same', kernel_initializer='he_normal')(in5)) | ||
113 | # 1 / 16 * 4 = 1 / 4 | ||
114 | out4 = tf.keras.layers.Add()([in4, tf.keras.layers.UpSampling2D(size=(2, 2))(in5)]) | ||
115 | P4 = tf.keras.layers.UpSampling2D(size=(4, 4))( | ||
116 | tf.keras.layers.Conv2D(64, (3, 3), padding='same', kernel_initializer='he_normal')(out4)) | ||
117 | # 1 / 8 * 2 = 1 / 4 | ||
118 | out3 = tf.keras.layers.Add()([in3, tf.keras.layers.UpSampling2D(size=(2, 2))(out4)]) | ||
119 | P3 = tf.keras.layers.UpSampling2D(size=(2, 2))( | ||
120 | tf.keras.layers.Conv2D(64, (3, 3), padding='same', kernel_initializer='he_normal')(out3)) | ||
121 | # 1 / 4 | ||
122 | P2 = tf.keras.layers.Conv2D(64, (3, 3), padding='same', kernel_initializer='he_normal')( | ||
123 | tf.keras.layers.Add()([in2, tf.keras.layers.UpSampling2D(size=(2, 2))(out3)])) | ||
124 | # (b, 1/4, 1/4, 256) | ||
125 | fuse = tf.keras.layers.Concatenate()([P2, P3, P4, P5]) | ||
126 | |||
127 | model = tf.keras.models.Model(inputs=image_input, outputs=fuse) | ||
128 | return model | ||
129 | |||
130 | |||
131 | if __name__ == '__main__': | ||
132 | model = EasyDet(phi=0) | ||
133 | model.summary() | ||
134 | |||
135 | import time | ||
136 | import numpy as np | ||
137 | |||
138 | x = np.random.random_sample((1, 640, 640, 3)) | ||
139 | # warm up | ||
140 | output = model.predict(x) | ||
141 | |||
142 | print('\n[INFO] Test start') | ||
143 | time_start = time.time() | ||
144 | for i in range(1000): | ||
145 | output = model.predict(x) | ||
146 | |||
147 | time_end = time.time() | ||
148 | print('[INFO] Time used: {:.2f} ms'.format((time_end - time_start)*1000/(i+1))) |
ocr_engine/turnsole/nets/__init__.py
0 → 100644
File mode changed
ocr_engine/turnsole/nets/efficientnet.py
0 → 100644
1 | # Copyright 2019 The TensorFlow Authors. All Rights Reserved. | ||
2 | # | ||
3 | # Licensed under the Apache License, Version 2.0 (the "License"); | ||
4 | # you may not use this file except in compliance with the License. | ||
5 | # You may obtain a copy of the License at | ||
6 | # | ||
7 | # http://www.apache.org/licenses/LICENSE-2.0 | ||
8 | # | ||
9 | # Unless required by applicable law or agreed to in writing, software | ||
10 | # distributed under the License is distributed on an "AS IS" BASIS, | ||
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
12 | # See the License for the specific language governing permissions and | ||
13 | # limitations under the License. | ||
14 | # ============================================================================== | ||
15 | # pylint: disable=invalid-name | ||
16 | # pylint: disable=missing-docstring | ||
17 | """EfficientNet models for Keras. | ||
18 | Reference: | ||
19 | - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]( | ||
20 | https://arxiv.org/abs/1905.11946) (ICML 2019) | ||
21 | """ | ||
22 | from __future__ import absolute_import | ||
23 | from __future__ import division | ||
24 | from __future__ import print_function | ||
25 | |||
26 | import copy | ||
27 | import math | ||
28 | |||
29 | from tensorflow.keras import layers | ||
30 | |||
31 | from tensorflow.python.keras import backend | ||
32 | from tensorflow.python.keras.applications import imagenet_utils | ||
33 | from tensorflow.python.keras.engine import training | ||
34 | # from tensorflow.python.keras.layers import VersionAwareLayers | ||
35 | from tensorflow.python.keras.utils import data_utils | ||
36 | from tensorflow.python.keras.utils import layer_utils | ||
37 | from tensorflow.python.lib.io import file_io | ||
38 | from tensorflow.python.util.tf_export import keras_export | ||
39 | |||
40 | |||
41 | BASE_WEIGHTS_PATH = 'https://storage.googleapis.com/keras-applications/' | ||
42 | |||
43 | WEIGHTS_HASHES = { | ||
44 | 'b0': ('902e53a9f72be733fc0bcb005b3ebbac', | ||
45 | '50bc09e76180e00e4465e1a485ddc09d'), | ||
46 | 'b1': ('1d254153d4ab51201f1646940f018540', | ||
47 | '74c4e6b3e1f6a1eea24c589628592432'), | ||
48 | 'b2': ('b15cce36ff4dcbd00b6dd88e7857a6ad', | ||
49 | '111f8e2ac8aa800a7a99e3239f7bfb39'), | ||
50 | 'b3': ('ffd1fdc53d0ce67064dc6a9c7960ede0', | ||
51 | 'af6d107764bb5b1abb91932881670226'), | ||
52 | 'b4': ('18c95ad55216b8f92d7e70b3a046e2fc', | ||
53 | 'ebc24e6d6c33eaebbd558eafbeedf1ba'), | ||
54 | 'b5': ('ace28f2a6363774853a83a0b21b9421a', | ||
55 | '38879255a25d3c92d5e44e04ae6cec6f'), | ||
56 | 'b6': ('165f6e37dce68623721b423839de8be5', | ||
57 | '9ecce42647a20130c1f39a5d4cb75743'), | ||
58 | 'b7': ('8c03f828fec3ef71311cd463b6759d99', | ||
59 | 'cbcfe4450ddf6f3ad90b1b398090fe4a'), | ||
60 | } | ||
61 | |||
62 | DEFAULT_BLOCKS_ARGS = [{ | ||
63 | 'kernel_size': 3, | ||
64 | 'repeats': 1, | ||
65 | 'filters_in': 32, | ||
66 | 'filters_out': 16, | ||
67 | 'expand_ratio': 1, | ||
68 | 'id_skip': True, | ||
69 | 'strides': 1, | ||
70 | 'se_ratio': 0.25 | ||
71 | }, { | ||
72 | 'kernel_size': 3, | ||
73 | 'repeats': 2, | ||
74 | 'filters_in': 16, | ||
75 | 'filters_out': 24, | ||
76 | 'expand_ratio': 6, | ||
77 | 'id_skip': True, | ||
78 | 'strides': 2, | ||
79 | 'se_ratio': 0.25 | ||
80 | }, { | ||
81 | 'kernel_size': 5, | ||
82 | 'repeats': 2, | ||
83 | 'filters_in': 24, | ||
84 | 'filters_out': 40, | ||
85 | 'expand_ratio': 6, | ||
86 | 'id_skip': True, | ||
87 | 'strides': 2, | ||
88 | 'se_ratio': 0.25 | ||
89 | }, { | ||
90 | 'kernel_size': 3, | ||
91 | 'repeats': 3, | ||
92 | 'filters_in': 40, | ||
93 | 'filters_out': 80, | ||
94 | 'expand_ratio': 6, | ||
95 | 'id_skip': True, | ||
96 | 'strides': 2, | ||
97 | 'se_ratio': 0.25 | ||
98 | }, { | ||
99 | 'kernel_size': 5, | ||
100 | 'repeats': 3, | ||
101 | 'filters_in': 80, | ||
102 | 'filters_out': 112, | ||
103 | 'expand_ratio': 6, | ||
104 | 'id_skip': True, | ||
105 | 'strides': 1, | ||
106 | 'se_ratio': 0.25 | ||
107 | }, { | ||
108 | 'kernel_size': 5, | ||
109 | 'repeats': 4, | ||
110 | 'filters_in': 112, | ||
111 | 'filters_out': 192, | ||
112 | 'expand_ratio': 6, | ||
113 | 'id_skip': True, | ||
114 | 'strides': 2, | ||
115 | 'se_ratio': 0.25 | ||
116 | }, { | ||
117 | 'kernel_size': 3, | ||
118 | 'repeats': 1, | ||
119 | 'filters_in': 192, | ||
120 | 'filters_out': 320, | ||
121 | 'expand_ratio': 6, | ||
122 | 'id_skip': True, | ||
123 | 'strides': 1, | ||
124 | 'se_ratio': 0.25 | ||
125 | }] | ||
126 | |||
127 | CONV_KERNEL_INITIALIZER = { | ||
128 | 'class_name': 'VarianceScaling', | ||
129 | 'config': { | ||
130 | 'scale': 2.0, | ||
131 | 'mode': 'fan_out', | ||
132 | 'distribution': 'truncated_normal' | ||
133 | } | ||
134 | } | ||
135 | |||
136 | DENSE_KERNEL_INITIALIZER = { | ||
137 | 'class_name': 'VarianceScaling', | ||
138 | 'config': { | ||
139 | 'scale': 1. / 3., | ||
140 | 'mode': 'fan_out', | ||
141 | 'distribution': 'uniform' | ||
142 | } | ||
143 | } | ||
144 | |||
145 | # layers = VersionAwareLayers() | ||
146 | |||
147 | BASE_DOCSTRING = """Instantiates the {name} architecture. | ||
148 | Reference: | ||
149 | - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]( | ||
150 | https://arxiv.org/abs/1905.11946) (ICML 2019) | ||
151 | Optionally loads weights pre-trained on ImageNet. | ||
152 | Note that the data format convention used by the model is | ||
153 | the one specified in your Keras config at `~/.keras/keras.json`. | ||
154 | If you have never configured it, it defaults to `"channels_last"`. | ||
155 | Arguments: | ||
156 | include_top: Whether to include the fully-connected | ||
157 | layer at the top of the network. Defaults to True. | ||
158 | weights: One of `None` (random initialization), | ||
159 | 'imagenet' (pre-training on ImageNet), | ||
160 | or the path to the weights file to be loaded. Defaults to 'imagenet'. | ||
161 | input_tensor: Optional Keras tensor | ||
162 | (i.e. output of `layers.Input()`) | ||
163 | to use as image input for the model. | ||
164 | input_shape: Optional shape tuple, only to be specified | ||
165 | if `include_top` is False. | ||
166 | It should have exactly 3 inputs channels. | ||
167 | pooling: Optional pooling mode for feature extraction | ||
168 | when `include_top` is `False`. Defaults to None. | ||
169 | - `None` means that the output of the model will be | ||
170 | the 4D tensor output of the | ||
171 | last convolutional layer. | ||
172 | - `avg` means that global average pooling | ||
173 | will be applied to the output of the | ||
174 | last convolutional layer, and thus | ||
175 | the output of the model will be a 2D tensor. | ||
176 | - `max` means that global max pooling will | ||
177 | be applied. | ||
178 | classes: Optional number of classes to classify images | ||
179 | into, only to be specified if `include_top` is True, and | ||
180 | if no `weights` argument is specified. Defaults to 1000 (number of | ||
181 | ImageNet classes). | ||
182 | classifier_activation: A `str` or callable. The activation function to use | ||
183 | on the "top" layer. Ignored unless `include_top=True`. Set | ||
184 | `classifier_activation=None` to return the logits of the "top" layer. | ||
185 | Defaults to 'softmax'. | ||
186 | Returns: | ||
187 | A `keras.Model` instance. | ||
188 | """ | ||
189 | |||
190 | |||
191 | def EfficientNet( | ||
192 | width_coefficient, | ||
193 | depth_coefficient, | ||
194 | default_size, | ||
195 | dropout_rate=0.2, | ||
196 | drop_connect_rate=0.2, | ||
197 | depth_divisor=8, | ||
198 | activation='swish', | ||
199 | blocks_args='default', | ||
200 | model_name='efficientnet', | ||
201 | include_top=True, | ||
202 | weights='imagenet', | ||
203 | input_tensor=None, | ||
204 | input_shape=None, | ||
205 | pooling=None, | ||
206 | classes=1000, | ||
207 | classifier_activation='softmax'): | ||
208 | """Instantiates the EfficientNet architecture using given scaling coefficients. | ||
209 | Reference: | ||
210 | - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]( | ||
211 | https://arxiv.org/abs/1905.11946) (ICML 2019) | ||
212 | Optionally loads weights pre-trained on ImageNet. | ||
213 | Note that the data format convention used by the model is | ||
214 | the one specified in your Keras config at `~/.keras/keras.json`. | ||
215 | Arguments: | ||
216 | width_coefficient: float, scaling coefficient for network width. | ||
217 | depth_coefficient: float, scaling coefficient for network depth. | ||
218 | default_size: integer, default input image size. | ||
219 | dropout_rate: float, dropout rate before final classifier layer. | ||
220 | drop_connect_rate: float, dropout rate at skip connections. | ||
221 | depth_divisor: integer, a unit of network width. | ||
222 | activation: activation function. | ||
223 | blocks_args: list of dicts, parameters to construct block modules. | ||
224 | model_name: string, model name. | ||
225 | include_top: whether to include the fully-connected | ||
226 | layer at the top of the network. | ||
227 | weights: one of `None` (random initialization), | ||
228 | 'imagenet' (pre-training on ImageNet), | ||
229 | or the path to the weights file to be loaded. | ||
230 | input_tensor: optional Keras tensor | ||
231 | (i.e. output of `layers.Input()`) | ||
232 | to use as image input for the model. | ||
233 | input_shape: optional shape tuple, only to be specified | ||
234 | if `include_top` is False. | ||
235 | It should have exactly 3 inputs channels. | ||
236 | pooling: optional pooling mode for feature extraction | ||
237 | when `include_top` is `False`. | ||
238 | - `None` means that the output of the model will be | ||
239 | the 4D tensor output of the | ||
240 | last convolutional layer. | ||
241 | - `avg` means that global average pooling | ||
242 | will be applied to the output of the | ||
243 | last convolutional layer, and thus | ||
244 | the output of the model will be a 2D tensor. | ||
245 | - `max` means that global max pooling will | ||
246 | be applied. | ||
247 | classes: optional number of classes to classify images | ||
248 | into, only to be specified if `include_top` is True, and | ||
249 | if no `weights` argument is specified. | ||
250 | classifier_activation: A `str` or callable. The activation function to use | ||
251 | on the "top" layer. Ignored unless `include_top=True`. Set | ||
252 | `classifier_activation=None` to return the logits of the "top" layer. | ||
253 | Returns: | ||
254 | A `keras.Model` instance. | ||
255 | Raises: | ||
256 | ValueError: in case of invalid argument for `weights`, | ||
257 | or invalid input shape. | ||
258 | ValueError: if `classifier_activation` is not `softmax` or `None` when | ||
259 | using a pretrained top layer. | ||
260 | """ | ||
261 | if blocks_args == 'default': | ||
262 | blocks_args = DEFAULT_BLOCKS_ARGS | ||
263 | |||
264 | if not (weights in {'imagenet', None} or file_io.file_exists_v2(weights)): | ||
265 | raise ValueError('The `weights` argument should be either ' | ||
266 | '`None` (random initialization), `imagenet` ' | ||
267 | '(pre-training on ImageNet), ' | ||
268 | 'or the path to the weights file to be loaded.') | ||
269 | |||
270 | if weights == 'imagenet' and include_top and classes != 1000: | ||
271 | raise ValueError('If using `weights` as `"imagenet"` with `include_top`' | ||
272 | ' as true, `classes` should be 1000') | ||
273 | |||
274 | # Determine proper input shape | ||
275 | input_shape = imagenet_utils.obtain_input_shape( | ||
276 | input_shape, | ||
277 | default_size=default_size, | ||
278 | min_size=32, | ||
279 | data_format=backend.image_data_format(), | ||
280 | require_flatten=include_top, | ||
281 | weights=weights) | ||
282 | |||
283 | if input_tensor is None: | ||
284 | img_input = layers.Input(shape=input_shape) | ||
285 | else: | ||
286 | if not backend.is_keras_tensor(input_tensor): | ||
287 | img_input = layers.Input(tensor=input_tensor, shape=input_shape) | ||
288 | else: | ||
289 | img_input = input_tensor | ||
290 | |||
291 | bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1 | ||
292 | |||
293 | def round_filters(filters, divisor=depth_divisor): | ||
294 | """Round number of filters based on depth multiplier.""" | ||
295 | filters *= width_coefficient | ||
296 | new_filters = max(divisor, int(filters + divisor / 2) // divisor * divisor) | ||
297 | # Make sure that round down does not go down by more than 10%. | ||
298 | if new_filters < 0.9 * filters: | ||
299 | new_filters += divisor | ||
300 | return int(new_filters) | ||
301 | |||
302 | def round_repeats(repeats): | ||
303 | """Round number of repeats based on depth multiplier.""" | ||
304 | return int(math.ceil(depth_coefficient * repeats)) | ||
305 | |||
306 | # Build stem | ||
307 | x = img_input | ||
308 | x = layers.experimental.preprocessing.Rescaling(1. / 255.)(x) | ||
309 | x = layers.experimental.preprocessing.Normalization(axis=bn_axis)(x) | ||
310 | |||
311 | x = layers.ZeroPadding2D( | ||
312 | padding=imagenet_utils.correct_pad(x, 3), | ||
313 | name='stem_conv_pad')(x) | ||
314 | x = layers.Conv2D( | ||
315 | round_filters(32), | ||
316 | 3, | ||
317 | strides=2, | ||
318 | padding='valid', | ||
319 | use_bias=False, | ||
320 | kernel_initializer=CONV_KERNEL_INITIALIZER, | ||
321 | name='stem_conv')(x) | ||
322 | x = layers.BatchNormalization(axis=bn_axis, name='stem_bn')(x) | ||
323 | x = layers.Activation(activation, name='stem_activation')(x) | ||
324 | |||
325 | # Build blocks | ||
326 | blocks_args = copy.deepcopy(blocks_args) | ||
327 | |||
328 | b = 0 | ||
329 | blocks = float(sum(round_repeats(args['repeats']) for args in blocks_args)) | ||
330 | for (i, args) in enumerate(blocks_args): | ||
331 | assert args['repeats'] > 0 | ||
332 | # Update block input and output filters based on depth multiplier. | ||
333 | args['filters_in'] = round_filters(args['filters_in']) | ||
334 | args['filters_out'] = round_filters(args['filters_out']) | ||
335 | |||
336 | for j in range(round_repeats(args.pop('repeats'))): | ||
337 | # The first block needs to take care of stride and filter size increase. | ||
338 | if j > 0: | ||
339 | args['strides'] = 1 | ||
340 | args['filters_in'] = args['filters_out'] | ||
341 | x = block( | ||
342 | x, | ||
343 | activation, | ||
344 | drop_connect_rate * b / blocks, | ||
345 | name='block{}{}_'.format(i + 1, chr(j + 97)), | ||
346 | **args) | ||
347 | b += 1 | ||
348 | |||
349 | # Build top | ||
350 | x = layers.Conv2D( | ||
351 | round_filters(1280), | ||
352 | 1, | ||
353 | padding='same', | ||
354 | use_bias=False, | ||
355 | kernel_initializer=CONV_KERNEL_INITIALIZER, | ||
356 | name='top_conv')(x) | ||
357 | x = layers.BatchNormalization(axis=bn_axis, name='top_bn')(x) | ||
358 | x = layers.Activation(activation, name='top_activation')(x) | ||
359 | if include_top: | ||
360 | x = layers.GlobalAveragePooling2D(name='avg_pool')(x) | ||
361 | if dropout_rate > 0: | ||
362 | x = layers.Dropout(dropout_rate, name='top_dropout')(x) | ||
363 | imagenet_utils.validate_activation(classifier_activation, weights) | ||
364 | x = layers.Dense( | ||
365 | classes, | ||
366 | activation=classifier_activation, | ||
367 | kernel_initializer=DENSE_KERNEL_INITIALIZER, | ||
368 | name='predictions')(x) | ||
369 | else: | ||
370 | if pooling == 'avg': | ||
371 | x = layers.GlobalAveragePooling2D(name='avg_pool')(x) | ||
372 | elif pooling == 'max': | ||
373 | x = layers.GlobalMaxPooling2D(name='max_pool')(x) | ||
374 | |||
375 | # Ensure that the model takes into account | ||
376 | # any potential predecessors of `input_tensor`. | ||
377 | if input_tensor is not None: | ||
378 | inputs = layer_utils.get_source_inputs(input_tensor) | ||
379 | else: | ||
380 | inputs = img_input | ||
381 | |||
382 | # Create model. | ||
383 | model = training.Model(inputs, x, name=model_name) | ||
384 | |||
385 | # Load weights. | ||
386 | if weights == 'imagenet': | ||
387 | if include_top: | ||
388 | file_suffix = '.h5' | ||
389 | file_hash = WEIGHTS_HASHES[model_name[-2:]][0] | ||
390 | else: | ||
391 | file_suffix = '_notop.h5' | ||
392 | file_hash = WEIGHTS_HASHES[model_name[-2:]][1] | ||
393 | file_name = model_name + file_suffix | ||
394 | weights_path = data_utils.get_file( | ||
395 | file_name, | ||
396 | BASE_WEIGHTS_PATH + file_name, | ||
397 | cache_subdir='models', | ||
398 | file_hash=file_hash) | ||
399 | model.load_weights(weights_path) | ||
400 | elif weights is not None: | ||
401 | model.load_weights(weights) | ||
402 | return model | ||
403 | |||
404 | |||
405 | def block(inputs, | ||
406 | activation='swish', | ||
407 | drop_rate=0., | ||
408 | name='', | ||
409 | filters_in=32, | ||
410 | filters_out=16, | ||
411 | kernel_size=3, | ||
412 | strides=1, | ||
413 | expand_ratio=1, | ||
414 | se_ratio=0., | ||
415 | id_skip=True): | ||
416 | """An inverted residual block. | ||
417 | Arguments: | ||
418 | inputs: input tensor. | ||
419 | activation: activation function. | ||
420 | drop_rate: float between 0 and 1, fraction of the input units to drop. | ||
421 | name: string, block label. | ||
422 | filters_in: integer, the number of input filters. | ||
423 | filters_out: integer, the number of output filters. | ||
424 | kernel_size: integer, the dimension of the convolution window. | ||
425 | strides: integer, the stride of the convolution. | ||
426 | expand_ratio: integer, scaling coefficient for the input filters. | ||
427 | se_ratio: float between 0 and 1, fraction to squeeze the input filters. | ||
428 | id_skip: boolean. | ||
429 | Returns: | ||
430 | output tensor for the block. | ||
431 | """ | ||
432 | bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1 | ||
433 | |||
434 | # Expansion phase | ||
435 | filters = filters_in * expand_ratio | ||
436 | if expand_ratio != 1: | ||
437 | x = layers.Conv2D( | ||
438 | filters, | ||
439 | 1, | ||
440 | padding='same', | ||
441 | use_bias=False, | ||
442 | kernel_initializer=CONV_KERNEL_INITIALIZER, | ||
443 | name=name + 'expand_conv')( | ||
444 | inputs) | ||
445 | x = layers.BatchNormalization(axis=bn_axis, name=name + 'expand_bn')(x) | ||
446 | x = layers.Activation(activation, name=name + 'expand_activation')(x) | ||
447 | else: | ||
448 | x = inputs | ||
449 | |||
450 | # Depthwise Convolution | ||
451 | if strides == 2: | ||
452 | x = layers.ZeroPadding2D( | ||
453 | padding=imagenet_utils.correct_pad(x, kernel_size), | ||
454 | name=name + 'dwconv_pad')(x) | ||
455 | conv_pad = 'valid' | ||
456 | else: | ||
457 | conv_pad = 'same' | ||
458 | x = layers.DepthwiseConv2D( | ||
459 | kernel_size, | ||
460 | strides=strides, | ||
461 | padding=conv_pad, | ||
462 | use_bias=False, | ||
463 | depthwise_initializer=CONV_KERNEL_INITIALIZER, | ||
464 | name=name + 'dwconv')(x) | ||
465 | x = layers.BatchNormalization(axis=bn_axis, name=name + 'bn')(x) | ||
466 | x = layers.Activation(activation, name=name + 'activation')(x) | ||
467 | |||
468 | # Squeeze and Excitation phase | ||
469 | if 0 < se_ratio <= 1: | ||
470 | filters_se = max(1, int(filters_in * se_ratio)) | ||
471 | se = layers.GlobalAveragePooling2D(name=name + 'se_squeeze')(x) | ||
472 | se = layers.Reshape((1, 1, filters), name=name + 'se_reshape')(se) | ||
473 | se = layers.Conv2D( | ||
474 | filters_se, | ||
475 | 1, | ||
476 | padding='same', | ||
477 | activation=activation, | ||
478 | kernel_initializer=CONV_KERNEL_INITIALIZER, | ||
479 | name=name + 'se_reduce')( | ||
480 | se) | ||
481 | se = layers.Conv2D( | ||
482 | filters, | ||
483 | 1, | ||
484 | padding='same', | ||
485 | activation='sigmoid', | ||
486 | kernel_initializer=CONV_KERNEL_INITIALIZER, | ||
487 | name=name + 'se_expand')(se) | ||
488 | x = layers.multiply([x, se], name=name + 'se_excite') | ||
489 | |||
490 | # Output phase | ||
491 | x = layers.Conv2D( | ||
492 | filters_out, | ||
493 | 1, | ||
494 | padding='same', | ||
495 | use_bias=False, | ||
496 | kernel_initializer=CONV_KERNEL_INITIALIZER, | ||
497 | name=name + 'project_conv')(x) | ||
498 | x = layers.BatchNormalization(axis=bn_axis, name=name + 'project_bn')(x) | ||
499 | if id_skip and strides == 1 and filters_in == filters_out: | ||
500 | if drop_rate > 0: | ||
501 | x = layers.Dropout( | ||
502 | drop_rate, noise_shape=(None, 1, 1, 1), name=name + 'drop')(x) | ||
503 | x = layers.add([x, inputs], name=name + 'add') | ||
504 | return x | ||
505 | |||
506 | |||
507 | @keras_export('keras.applications.efficientnet.EfficientNetB0', | ||
508 | 'keras.applications.EfficientNetB0') | ||
509 | def EfficientNetB0(include_top=True, | ||
510 | weights='imagenet', | ||
511 | input_tensor=None, | ||
512 | input_shape=None, | ||
513 | pooling=None, | ||
514 | classes=1000, | ||
515 | classifier_activation='softmax', | ||
516 | **kwargs): | ||
517 | return EfficientNet( | ||
518 | 1.0, | ||
519 | 1.0, | ||
520 | 224, | ||
521 | 0.2, | ||
522 | model_name='efficientnetb0', | ||
523 | include_top=include_top, | ||
524 | weights=weights, | ||
525 | input_tensor=input_tensor, | ||
526 | input_shape=input_shape, | ||
527 | pooling=pooling, | ||
528 | classes=classes, | ||
529 | classifier_activation=classifier_activation, | ||
530 | **kwargs) | ||
531 | |||
532 | |||
533 | @keras_export('keras.applications.efficientnet.EfficientNetB1', | ||
534 | 'keras.applications.EfficientNetB1') | ||
535 | def EfficientNetB1(include_top=True, | ||
536 | weights='imagenet', | ||
537 | input_tensor=None, | ||
538 | input_shape=None, | ||
539 | pooling=None, | ||
540 | classes=1000, | ||
541 | classifier_activation='softmax', | ||
542 | **kwargs): | ||
543 | return EfficientNet( | ||
544 | 1.0, | ||
545 | 1.1, | ||
546 | 240, | ||
547 | 0.2, | ||
548 | model_name='efficientnetb1', | ||
549 | include_top=include_top, | ||
550 | weights=weights, | ||
551 | input_tensor=input_tensor, | ||
552 | input_shape=input_shape, | ||
553 | pooling=pooling, | ||
554 | classes=classes, | ||
555 | classifier_activation=classifier_activation, | ||
556 | **kwargs) | ||
557 | |||
558 | |||
559 | @keras_export('keras.applications.efficientnet.EfficientNetB2', | ||
560 | 'keras.applications.EfficientNetB2') | ||
561 | def EfficientNetB2(include_top=True, | ||
562 | weights='imagenet', | ||
563 | input_tensor=None, | ||
564 | input_shape=None, | ||
565 | pooling=None, | ||
566 | classes=1000, | ||
567 | classifier_activation='softmax', | ||
568 | **kwargs): | ||
569 | return EfficientNet( | ||
570 | 1.1, | ||
571 | 1.2, | ||
572 | 260, | ||
573 | 0.3, | ||
574 | model_name='efficientnetb2', | ||
575 | include_top=include_top, | ||
576 | weights=weights, | ||
577 | input_tensor=input_tensor, | ||
578 | input_shape=input_shape, | ||
579 | pooling=pooling, | ||
580 | classes=classes, | ||
581 | classifier_activation=classifier_activation, | ||
582 | **kwargs) | ||
583 | |||
584 | |||
585 | @keras_export('keras.applications.efficientnet.EfficientNetB3', | ||
586 | 'keras.applications.EfficientNetB3') | ||
587 | def EfficientNetB3(include_top=True, | ||
588 | weights='imagenet', | ||
589 | input_tensor=None, | ||
590 | input_shape=None, | ||
591 | pooling=None, | ||
592 | classes=1000, | ||
593 | classifier_activation='softmax', | ||
594 | **kwargs): | ||
595 | return EfficientNet( | ||
596 | 1.2, | ||
597 | 1.4, | ||
598 | 300, | ||
599 | 0.3, | ||
600 | model_name='efficientnetb3', | ||
601 | include_top=include_top, | ||
602 | weights=weights, | ||
603 | input_tensor=input_tensor, | ||
604 | input_shape=input_shape, | ||
605 | pooling=pooling, | ||
606 | classes=classes, | ||
607 | classifier_activation=classifier_activation, | ||
608 | **kwargs) | ||
609 | |||
610 | |||
611 | @keras_export('keras.applications.efficientnet.EfficientNetB4', | ||
612 | 'keras.applications.EfficientNetB4') | ||
613 | def EfficientNetB4(include_top=True, | ||
614 | weights='imagenet', | ||
615 | input_tensor=None, | ||
616 | input_shape=None, | ||
617 | pooling=None, | ||
618 | classes=1000, | ||
619 | classifier_activation='softmax', | ||
620 | **kwargs): | ||
621 | return EfficientNet( | ||
622 | 1.4, | ||
623 | 1.8, | ||
624 | 380, | ||
625 | 0.4, | ||
626 | model_name='efficientnetb4', | ||
627 | include_top=include_top, | ||
628 | weights=weights, | ||
629 | input_tensor=input_tensor, | ||
630 | input_shape=input_shape, | ||
631 | pooling=pooling, | ||
632 | classes=classes, | ||
633 | classifier_activation=classifier_activation, | ||
634 | **kwargs) | ||
635 | |||
636 | |||
637 | @keras_export('keras.applications.efficientnet.EfficientNetB5', | ||
638 | 'keras.applications.EfficientNetB5') | ||
639 | def EfficientNetB5(include_top=True, | ||
640 | weights='imagenet', | ||
641 | input_tensor=None, | ||
642 | input_shape=None, | ||
643 | pooling=None, | ||
644 | classes=1000, | ||
645 | classifier_activation='softmax', | ||
646 | **kwargs): | ||
647 | return EfficientNet( | ||
648 | 1.6, | ||
649 | 2.2, | ||
650 | 456, | ||
651 | 0.4, | ||
652 | model_name='efficientnetb5', | ||
653 | include_top=include_top, | ||
654 | weights=weights, | ||
655 | input_tensor=input_tensor, | ||
656 | input_shape=input_shape, | ||
657 | pooling=pooling, | ||
658 | classes=classes, | ||
659 | classifier_activation=classifier_activation, | ||
660 | **kwargs) | ||
661 | |||
662 | |||
663 | @keras_export('keras.applications.efficientnet.EfficientNetB6', | ||
664 | 'keras.applications.EfficientNetB6') | ||
665 | def EfficientNetB6(include_top=True, | ||
666 | weights='imagenet', | ||
667 | input_tensor=None, | ||
668 | input_shape=None, | ||
669 | pooling=None, | ||
670 | classes=1000, | ||
671 | classifier_activation='softmax', | ||
672 | **kwargs): | ||
673 | return EfficientNet( | ||
674 | 1.8, | ||
675 | 2.6, | ||
676 | 528, | ||
677 | 0.5, | ||
678 | model_name='efficientnetb6', | ||
679 | include_top=include_top, | ||
680 | weights=weights, | ||
681 | input_tensor=input_tensor, | ||
682 | input_shape=input_shape, | ||
683 | pooling=pooling, | ||
684 | classes=classes, | ||
685 | classifier_activation=classifier_activation, | ||
686 | **kwargs) | ||
687 | |||
688 | |||
689 | @keras_export('keras.applications.efficientnet.EfficientNetB7', | ||
690 | 'keras.applications.EfficientNetB7') | ||
691 | def EfficientNetB7(include_top=True, | ||
692 | weights='imagenet', | ||
693 | input_tensor=None, | ||
694 | input_shape=None, | ||
695 | pooling=None, | ||
696 | classes=1000, | ||
697 | classifier_activation='softmax', | ||
698 | **kwargs): | ||
699 | return EfficientNet( | ||
700 | 2.0, | ||
701 | 3.1, | ||
702 | 600, | ||
703 | 0.5, | ||
704 | model_name='efficientnetb7', | ||
705 | include_top=include_top, | ||
706 | weights=weights, | ||
707 | input_tensor=input_tensor, | ||
708 | input_shape=input_shape, | ||
709 | pooling=pooling, | ||
710 | classes=classes, | ||
711 | classifier_activation=classifier_activation, | ||
712 | **kwargs) | ||
713 | |||
714 | |||
715 | EfficientNetB0.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB0') | ||
716 | EfficientNetB1.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB1') | ||
717 | EfficientNetB2.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB2') | ||
718 | EfficientNetB3.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB3') | ||
719 | EfficientNetB4.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB4') | ||
720 | EfficientNetB5.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB5') | ||
721 | EfficientNetB6.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB6') | ||
722 | EfficientNetB7.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB7') | ||
723 | |||
724 | |||
725 | @keras_export('keras.applications.efficientnet.preprocess_input') | ||
726 | def preprocess_input(x, data_format=None): # pylint: disable=unused-argument | ||
727 | return x | ||
728 | |||
729 | |||
730 | @keras_export('keras.applications.efficientnet.decode_predictions') | ||
731 | def decode_predictions(preds, top=5): | ||
732 | return imagenet_utils.decode_predictions(preds, top=top) | ||
733 | |||
734 | |||
735 | decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
1 | from . import angle_detector | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : lk | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Created Date : 2019-09-03 15:40:54 | ||
5 | # @Last Modified : 2022-07-18 16:10:36 | ||
6 | # @Description : | ||
7 | |||
8 | import os | ||
9 | import cv2 | ||
10 | import time | ||
11 | import numpy as np | ||
12 | # import tensorflow as tf | ||
13 | |||
14 | # import grpc | ||
15 | # from tensorflow_serving.apis import predict_pb2 | ||
16 | # from tensorflow_serving.apis import prediction_service_pb2_grpc | ||
17 | |||
18 | import tritonclient.grpc as grpcclient | ||
19 | |||
20 | |||
21 | def resize(image, width=None, height=None, inter=cv2.INTER_AREA): | ||
22 | ''' | ||
23 | Resize the input image according to the dimensions and keep aspect ratio of this image | ||
24 | ''' | ||
25 | dim = None | ||
26 | (h, w) = image.shape[:2] | ||
27 | |||
28 | # if both the width and height are None, then return the original image | ||
29 | if width is None and height is None: | ||
30 | return image | ||
31 | |||
32 | # check to see if the width is None | ||
33 | if width is None: | ||
34 | # calculate the ratio of the height and construct the dimensions | ||
35 | r = height / float(h) | ||
36 | dim = (int(w * r), height) | ||
37 | |||
38 | # otherwise, the height is None | ||
39 | else: | ||
40 | # calculate the ratio of the width and construct the dimensions | ||
41 | r = width / float(w) | ||
42 | dim = (width, int(h * r)) | ||
43 | |||
44 | # resize the image | ||
45 | resized = cv2.resize(image, dim, interpolation=inter) | ||
46 | |||
47 | return resized | ||
48 | |||
49 | def predict(image): | ||
50 | |||
51 | ROTATE = [0, 90, 180, 270] | ||
52 | |||
53 | # pre-process the image for classification | ||
54 | # Test 1: 直接resize到目标尺寸 | ||
55 | # image = cv2.resize(image, (512, 512)) | ||
56 | |||
57 | # Test 2: 按照短边resize到目标尺寸,长边按比例缩放 | ||
58 | short_side = 768 | ||
59 | if min(image.shape[:2]) > short_side: | ||
60 | image = resize(image, width=short_side) if image.shape[0] > image.shape[1] else resize(image, height=short_side) | ||
61 | |||
62 | # Test 3: 带padding的resize策略 | ||
63 | # image = resize_image_with_pad(image, 1024, 1024) | ||
64 | |||
65 | # Test 4: 直接使用原图 | ||
66 | # image = image | ||
67 | |||
68 | image = np.array(image, dtype="float32") | ||
69 | image = 2 * (image / 255.0) - 1 # Let data input to be normalized to the [-1,1] range | ||
70 | input_data = np.expand_dims(image, 0) | ||
71 | |||
72 | # options = [('grpc.max_send_message_length', 1000 * 1024 * 1024), | ||
73 | # ('grpc.max_receive_message_length', 1000 * 1024 * 1024)] | ||
74 | # channel = grpc.insecure_channel('localhost:8500', options=options) | ||
75 | # stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) | ||
76 | |||
77 | # request = predict_pb2.PredictRequest() | ||
78 | # request.model_spec.name = 'adc_model' | ||
79 | # request.model_spec.signature_name = 'serving_default' | ||
80 | # request.inputs['input_1'].CopyFrom(tf.make_tensor_proto(inputs)) | ||
81 | |||
82 | # result = stub.Predict(request, 100.0) # 100 secs timeout | ||
83 | |||
84 | # preds = tf.make_ndarray(result.outputs['dense']) | ||
85 | |||
86 | triton_client = grpcclient.InferenceServerClient("localhost:8001") | ||
87 | |||
88 | # Initialize the data | ||
89 | inputs = [grpcclient.InferInput('input_1', input_data.shape, "FP32")] # [InferInput 类的一个对象用于描述推理请求的输入张量。] | ||
90 | inputs[0].set_data_from_numpy(input_data) # 从指定的numpy数组中获取张量数据与此对象关联的输入 | ||
91 | outputs = [grpcclient.InferRequestedOutput("dense")] | ||
92 | |||
93 | # Inference | ||
94 | results = triton_client.infer( | ||
95 | model_name="adc_model", | ||
96 | inputs=inputs, | ||
97 | outputs=outputs | ||
98 | ) | ||
99 | # Get the output arrays from the results | ||
100 | preds = results.as_numpy("dense") | ||
101 | |||
102 | index = np.argmax(preds, axis=-1)[0] | ||
103 | |||
104 | return index | ||
105 | # return ROTATE[index] | ||
106 | |||
107 | def DegreeTrans(theta): | ||
108 | ''' | ||
109 | Convert radians to angles | ||
110 | ''' | ||
111 | res = theta / np.pi * 180 | ||
112 | return res | ||
113 | |||
114 | def rotateImage(src, degree): | ||
115 | ''' | ||
116 | Calculate the rotation matrix and rotate the image | ||
117 | param src:image after rot90 | ||
118 | param degree:the Hough degree | ||
119 | ''' | ||
120 | h, w = src.shape[:2] | ||
121 | RotateMatrix = cv2.getRotationMatrix2D((w/2.0, h/2.0), degree, 1) | ||
122 | # affine transformation, background color fills white | ||
123 | rotate = cv2.warpAffine(src, RotateMatrix, (w, h), borderValue=(255, 255, 255)) | ||
124 | return rotate | ||
125 | |||
126 | def CalcDegree(srcImage): | ||
127 | ''' | ||
128 | Calculating angles by Hough transform | ||
129 | param srcImage:image after rot90 | ||
130 | ''' | ||
131 | midImage = cv2.cvtColor(srcImage, cv2.COLOR_BGR2GRAY) | ||
132 | dstImage = cv2.Canny(midImage, 100, 300, 3) | ||
133 | lineimage = srcImage.copy() | ||
134 | |||
135 | # 通过霍夫变换检测直线 | ||
136 | # 第4个参数(th)就是阈值,阈值越大,检测精度越高 | ||
137 | th = 500 | ||
138 | while True: | ||
139 | if th > 0: | ||
140 | lines = cv2.HoughLines(dstImage, 1, np.pi/180, th) | ||
141 | else: | ||
142 | lines = None | ||
143 | break | ||
144 | if lines is not None: | ||
145 | if len(lines) > 10: | ||
146 | break | ||
147 | else: | ||
148 | th -= 50 | ||
149 | # print ('阈值是:', th) | ||
150 | else: | ||
151 | th -= 100 | ||
152 | # print ('阈值是:', th) | ||
153 | continue | ||
154 | |||
155 | sum_theta = 0 | ||
156 | num_theta = 0 | ||
157 | if lines is not None: | ||
158 | for i in range(len(lines)): | ||
159 | for rho, theta in lines[i]: | ||
160 | # control the angle of line between -30 to +30 | ||
161 | if theta > 1 and theta < 2.1: | ||
162 | sum_theta += theta | ||
163 | num_theta += 1 | ||
164 | # Average all angles | ||
165 | if num_theta == 0: | ||
166 | average = np.pi/2 | ||
167 | else: | ||
168 | average = sum_theta / num_theta | ||
169 | |||
170 | return DegreeTrans(average) - 90 | ||
171 | |||
172 | def ADC(image, fine_degree=False): | ||
173 | ''' | ||
174 | return param rotate: Corrected image | ||
175 | return param angle_degree:image offset image | ||
176 | ''' | ||
177 | |||
178 | # Return a wide angle index | ||
179 | img = np.copy(image) | ||
180 | angle_index = predict(img) | ||
181 | img_rot = np.rot90(img, -angle_index) | ||
182 | |||
183 | # if fine_degree then the image will be corrected more accurately based on character line features. | ||
184 | if fine_degree: | ||
185 | degree = CalcDegree(img_rot) | ||
186 | angle_degree = (angle_index * 90 - degree) % 360 | ||
187 | rotate = rotateImage(img_rot, degree) | ||
188 | return rotate, angle_degree | ||
189 | |||
190 | return img_rot, int(angle_index*90) |
1 | alphabet = """ \ | ||
2 | 一\ | ||
3 | 乙\ | ||
4 | 二\ | ||
5 | 十\ | ||
6 | 丁\ | ||
7 | 厂\ | ||
8 | 七\ | ||
9 | 卜\ | ||
10 | 八\ | ||
11 | 人\ | ||
12 | 入\ | ||
13 | 儿\ | ||
14 | 匕\ | ||
15 | 几\ | ||
16 | 九\ | ||
17 | 刁\ | ||
18 | 了\ | ||
19 | 刀\ | ||
20 | 力\ | ||
21 | 乃\ | ||
22 | 又\ | ||
23 | 三\ | ||
24 | 干\ | ||
25 | 于\ | ||
26 | 亏\ | ||
27 | 工\ | ||
28 | 土\ | ||
29 | 士\ | ||
30 | 才\ | ||
31 | 下\ | ||
32 | 寸\ | ||
33 | 大\ | ||
34 | 丈\ | ||
35 | 与\ | ||
36 | 万\ | ||
37 | 上\ | ||
38 | 小\ | ||
39 | 口\ | ||
40 | 山\ | ||
41 | 巾\ | ||
42 | 千\ | ||
43 | 乞\ | ||
44 | 川\ | ||
45 | 亿\ | ||
46 | 个\ | ||
47 | 夕\ | ||
48 | 久\ | ||
49 | 么\ | ||
50 | 勺\ | ||
51 | 凡\ | ||
52 | 丸\ | ||
53 | 及\ | ||
54 | 广\ | ||
55 | 亡\ | ||
56 | 门\ | ||
57 | 丫\ | ||
58 | 义\ | ||
59 | 之\ | ||
60 | 尸\ | ||
61 | 己\ | ||
62 | 已\ | ||
63 | 巳\ | ||
64 | 弓\ | ||
65 | 子\ | ||
66 | 卫\ | ||
67 | 也\ | ||
68 | 女\ | ||
69 | 刃\ | ||
70 | 飞\ | ||
71 | 习\ | ||
72 | 叉\ | ||
73 | 马\ | ||
74 | 乡\ | ||
75 | 丰\ | ||
76 | 王\ | ||
77 | 开\ | ||
78 | 井\ | ||
79 | 天\ | ||
80 | 夫\ | ||
81 | 元\ | ||
82 | 无\ | ||
83 | 云\ | ||
84 | 专\ | ||
85 | 丐\ | ||
86 | 扎\ | ||
87 | 艺\ | ||
88 | 木\ | ||
89 | 五\ | ||
90 | 支\ | ||
91 | 厅\ | ||
92 | 不\ | ||
93 | 犬\ | ||
94 | 太\ | ||
95 | 区\ | ||
96 | 历\ | ||
97 | 歹\ | ||
98 | 友\ | ||
99 | 尤\ | ||
100 | 匹\ | ||
101 | 车\ | ||
102 | 巨\ | ||
103 | 牙\ | ||
104 | 屯\ | ||
105 | 戈\ | ||
106 | 比\ | ||
107 | 互\ | ||
108 | 切\ | ||
109 | 瓦\ | ||
110 | 止\ | ||
111 | 少\ | ||
112 | 曰\ | ||
113 | 日\ | ||
114 | 中\ | ||
115 | 贝\ | ||
116 | 冈\ | ||
117 | 内\ | ||
118 | 水\ | ||
119 | 见\ | ||
120 | 午\ | ||
121 | 牛\ | ||
122 | 手\ | ||
123 | 气\ | ||
124 | 毛\ | ||
125 | 壬\ | ||
126 | 升\ | ||
127 | 夭\ | ||
128 | 长\ | ||
129 | 仁\ | ||
130 | 什\ | ||
131 | 片\ | ||
132 | 仆\ | ||
133 | 化\ | ||
134 | 仇\ | ||
135 | 币\ | ||
136 | 仍\ | ||
137 | 仅\ | ||
138 | 斤\ | ||
139 | 爪\ | ||
140 | 反\ | ||
141 | 介\ | ||
142 | 父\ | ||
143 | 从\ | ||
144 | 仑\ | ||
145 | 今\ | ||
146 | 凶\ | ||
147 | 分\ | ||
148 | 乏\ | ||
149 | 公\ | ||
150 | 仓\ | ||
151 | 月\ | ||
152 | 氏\ | ||
153 | 勿\ | ||
154 | 欠\ | ||
155 | 风\ | ||
156 | 丹\ | ||
157 | 匀\ | ||
158 | 乌\ | ||
159 | 勾\ | ||
160 | 凤\ | ||
161 | 六\ | ||
162 | 文\ | ||
163 | 亢\ | ||
164 | 方\ | ||
165 | 火\ | ||
166 | 为\ | ||
167 | 斗\ | ||
168 | 忆\ | ||
169 | 计\ | ||
170 | 订\ | ||
171 | 户\ | ||
172 | 认\ | ||
173 | 冗\ | ||
174 | 讥\ | ||
175 | 心\ | ||
176 | 尺\ | ||
177 | 引\ | ||
178 | 丑\ | ||
179 | 巴\ | ||
180 | 孔\ | ||
181 | 队\ | ||
182 | 办\ | ||
183 | 以\ | ||
184 | 允\ | ||
185 | 予\ | ||
186 | 邓\ | ||
187 | 劝\ | ||
188 | 双\ | ||
189 | 书\ | ||
190 | 幻\ | ||
191 | 玉\ | ||
192 | 刊\ | ||
193 | 未\ | ||
194 | 末\ | ||
195 | 示\ | ||
196 | 击\ | ||
197 | 打\ | ||
198 | 巧\ | ||
199 | 正\ | ||
200 | 扑\ | ||
201 | 卉\ | ||
202 | 扒\ | ||
203 | 功\ | ||
204 | 扔\ | ||
205 | 去\ | ||
206 | 甘\ | ||
207 | 世\ | ||
208 | 艾\ | ||
209 | 古\ | ||
210 | 节\ | ||
211 | 本\ | ||
212 | 术\ | ||
213 | 可\ | ||
214 | 丙\ | ||
215 | 左\ | ||
216 | 厉\ | ||
217 | 石\ | ||
218 | 右\ | ||
219 | 布\ | ||
220 | 夯\ | ||
221 | 戊\ | ||
222 | 龙\ | ||
223 | 平\ | ||
224 | 灭\ | ||
225 | 轧\ | ||
226 | 东\ | ||
227 | 卡\ | ||
228 | 北\ | ||
229 | 占\ | ||
230 | 凸\ | ||
231 | 卢\ | ||
232 | 业\ | ||
233 | 旧\ | ||
234 | 帅\ | ||
235 | 归\ | ||
236 | 旦\ | ||
237 | 目\ | ||
238 | 且\ | ||
239 | 叶\ | ||
240 | 甲\ | ||
241 | 申\ | ||
242 | 叮\ | ||
243 | 电\ | ||
244 | 号\ | ||
245 | 田\ | ||
246 | 由\ | ||
247 | 只\ | ||
248 | 叭\ | ||
249 | 史\ | ||
250 | 央\ | ||
251 | 兄\ | ||
252 | 叽\ | ||
253 | 叼\ | ||
254 | 叫\ | ||
255 | 叩\ | ||
256 | 叨\ | ||
257 | 另\ | ||
258 | 叹\ | ||
259 | 冉\ | ||
260 | 皿\ | ||
261 | 凹\ | ||
262 | 囚\ | ||
263 | 四\ | ||
264 | 生\ | ||
265 | 矢\ | ||
266 | 失\ | ||
267 | 乍\ | ||
268 | 禾\ | ||
269 | 丘\ | ||
270 | 付\ | ||
271 | 仗\ | ||
272 | 代\ | ||
273 | 仙\ | ||
274 | 们\ | ||
275 | 仪\ | ||
276 | 白\ | ||
277 | 仔\ | ||
278 | 他\ | ||
279 | 斥\ | ||
280 | 瓜\ | ||
281 | 乎\ | ||
282 | 丛\ | ||
283 | 令\ | ||
284 | 用\ | ||
285 | 甩\ | ||
286 | 印\ | ||
287 | 尔\ | ||
288 | 乐\ | ||
289 | 句\ | ||
290 | 匆\ | ||
291 | 册\ | ||
292 | 卯\ | ||
293 | 犯\ | ||
294 | 外\ | ||
295 | 处\ | ||
296 | 冬\ | ||
297 | 鸟\ | ||
298 | 务\ | ||
299 | 包\ | ||
300 | 饥\ | ||
301 | 主\ | ||
302 | 市\ | ||
303 | 立\ | ||
304 | 冯\ | ||
305 | 玄\ | ||
306 | 闪\ | ||
307 | 兰\ | ||
308 | 半\ | ||
309 | 汁\ | ||
310 | 汇\ | ||
311 | 头\ | ||
312 | 汉\ | ||
313 | 宁\ | ||
314 | 穴\ | ||
315 | 它\ | ||
316 | 讨\ | ||
317 | 写\ | ||
318 | 让\ | ||
319 | 礼\ | ||
320 | 训\ | ||
321 | 议\ | ||
322 | 必\ | ||
323 | 讯\ | ||
324 | 记\ | ||
325 | 永\ | ||
326 | 司\ | ||
327 | 尼\ | ||
328 | 民\ | ||
329 | 弗\ | ||
330 | 弘\ | ||
331 | 出\ | ||
332 | 辽\ | ||
333 | 奶\ | ||
334 | 奴\ | ||
335 | 召\ | ||
336 | 加\ | ||
337 | 皮\ | ||
338 | 边\ | ||
339 | 孕\ | ||
340 | 发\ | ||
341 | 圣\ | ||
342 | 对\ | ||
343 | 台\ | ||
344 | 矛\ | ||
345 | 纠\ | ||
346 | 母\ | ||
347 | 幼\ | ||
348 | 丝\ | ||
349 | 邦\ | ||
350 | 式\ | ||
351 | 迂\ | ||
352 | 刑\ | ||
353 | 戎\ | ||
354 | 动\ | ||
355 | 扛\ | ||
356 | 寺\ | ||
357 | 吉\ | ||
358 | 扣\ | ||
359 | 考\ | ||
360 | 托\ | ||
361 | 老\ | ||
362 | 巩\ | ||
363 | 圾\ | ||
364 | 执\ | ||
365 | 扩\ | ||
366 | 扫\ | ||
367 | 地\ | ||
368 | 场\ | ||
369 | 扬\ | ||
370 | 耳\ | ||
371 | 芋\ | ||
372 | 共\ | ||
373 | 芒\ | ||
374 | 亚\ | ||
375 | 芝\ | ||
376 | 朽\ | ||
377 | 朴\ | ||
378 | 机\ | ||
379 | 权\ | ||
380 | 过\ | ||
381 | 臣\ | ||
382 | 吏\ | ||
383 | 再\ | ||
384 | 协\ | ||
385 | 西\ | ||
386 | 压\ | ||
387 | 厌\ | ||
388 | 戌\ | ||
389 | 在\ | ||
390 | 百\ | ||
391 | 有\ | ||
392 | 存\ | ||
393 | 而\ | ||
394 | 页\ | ||
395 | 匠\ | ||
396 | 夸\ | ||
397 | 夺\ | ||
398 | 灰\ | ||
399 | 达\ | ||
400 | 列\ | ||
401 | 死\ | ||
402 | 成\ | ||
403 | 夹\ | ||
404 | 夷\ | ||
405 | 轨\ | ||
406 | 邪\ | ||
407 | 尧\ | ||
408 | 划\ | ||
409 | 迈\ | ||
410 | 毕\ | ||
411 | 至\ | ||
412 | 此\ | ||
413 | 贞\ | ||
414 | 师\ | ||
415 | 尘\ | ||
416 | 尖\ | ||
417 | 劣\ | ||
418 | 光\ | ||
419 | 当\ | ||
420 | 早\ | ||
421 | 吁\ | ||
422 | 吐\ | ||
423 | 吓\ | ||
424 | 虫\ | ||
425 | 曲\ | ||
426 | 团\ | ||
427 | 吕\ | ||
428 | 同\ | ||
429 | 吊\ | ||
430 | 吃\ | ||
431 | 因\ | ||
432 | 吸\ | ||
433 | 吗\ | ||
434 | 吆\ | ||
435 | 屿\ | ||
436 | 屹\ | ||
437 | 岁\ | ||
438 | 帆\ | ||
439 | 回\ | ||
440 | 岂\ | ||
441 | 则\ | ||
442 | 刚\ | ||
443 | 网\ | ||
444 | 肉\ | ||
445 | 年\ | ||
446 | 朱\ | ||
447 | 先\ | ||
448 | 丢\ | ||
449 | 廷\ | ||
450 | 舌\ | ||
451 | 竹\ | ||
452 | 迁\ | ||
453 | 乔\ | ||
454 | 迄\ | ||
455 | 伟\ | ||
456 | 传\ | ||
457 | 乒\ | ||
458 | 乓\ | ||
459 | 休\ | ||
460 | 伍\ | ||
461 | 伏\ | ||
462 | 优\ | ||
463 | 臼\ | ||
464 | 伐\ | ||
465 | 延\ | ||
466 | 仲\ | ||
467 | 件\ | ||
468 | 任\ | ||
469 | 伤\ | ||
470 | 价\ | ||
471 | 伦\ | ||
472 | 份\ | ||
473 | 华\ | ||
474 | 仰\ | ||
475 | 仿\ | ||
476 | 伙\ | ||
477 | 伪\ | ||
478 | 自\ | ||
479 | 伊\ | ||
480 | 血\ | ||
481 | 向\ | ||
482 | 似\ | ||
483 | 后\ | ||
484 | 行\ | ||
485 | 舟\ | ||
486 | 全\ | ||
487 | 会\ | ||
488 | 杀\ | ||
489 | 合\ | ||
490 | 兆\ | ||
491 | 企\ | ||
492 | 众\ | ||
493 | 爷\ | ||
494 | 伞\ | ||
495 | 创\ | ||
496 | 肌\ | ||
497 | 肋\ | ||
498 | 朵\ | ||
499 | 杂\ | ||
500 | 危\ | ||
501 | 旬\ | ||
502 | 旨\ | ||
503 | 旭\ | ||
504 | 负\ | ||
505 | 匈\ | ||
506 | 名\ | ||
507 | 各\ | ||
508 | 多\ | ||
509 | 争\ | ||
510 | 色\ | ||
511 | 壮\ | ||
512 | 冲\ | ||
513 | 妆\ | ||
514 | 冰\ | ||
515 | 庄\ | ||
516 | 庆\ | ||
517 | 亦\ | ||
518 | 刘\ | ||
519 | 齐\ | ||
520 | 交\ | ||
521 | 衣\ | ||
522 | 次\ | ||
523 | 产\ | ||
524 | 决\ | ||
525 | 亥\ | ||
526 | 充\ | ||
527 | 妄\ | ||
528 | 闭\ | ||
529 | 问\ | ||
530 | 闯\ | ||
531 | 羊\ | ||
532 | 并\ | ||
533 | 关\ | ||
534 | 米\ | ||
535 | 灯\ | ||
536 | 州\ | ||
537 | 汗\ | ||
538 | 污\ | ||
539 | 江\ | ||
540 | 汛\ | ||
541 | 池\ | ||
542 | 汝\ | ||
543 | 汤\ | ||
544 | 忙\ | ||
545 | 兴\ | ||
546 | 宇\ | ||
547 | 守\ | ||
548 | 宅\ | ||
549 | 字\ | ||
550 | 安\ | ||
551 | 讲\ | ||
552 | 讳\ | ||
553 | 军\ | ||
554 | 讶\ | ||
555 | 许\ | ||
556 | 讹\ | ||
557 | 论\ | ||
558 | 讼\ | ||
559 | 农\ | ||
560 | 讽\ | ||
561 | 设\ | ||
562 | 访\ | ||
563 | 诀\ | ||
564 | 寻\ | ||
565 | 那\ | ||
566 | 迅\ | ||
567 | 尽\ | ||
568 | 导\ | ||
569 | 异\ | ||
570 | 弛\ | ||
571 | 孙\ | ||
572 | 阵\ | ||
573 | 阳\ | ||
574 | 收\ | ||
575 | 阶\ | ||
576 | 阴\ | ||
577 | 防\ | ||
578 | 奸\ | ||
579 | 如\ | ||
580 | 妇\ | ||
581 | 妃\ | ||
582 | 好\ | ||
583 | 她\ | ||
584 | 妈\ | ||
585 | 戏\ | ||
586 | 羽\ | ||
587 | 观\ | ||
588 | 欢\ | ||
589 | 买\ | ||
590 | 红\ | ||
591 | 驮\ | ||
592 | 纤\ | ||
593 | 驯\ | ||
594 | 约\ | ||
595 | 级\ | ||
596 | 纪\ | ||
597 | 驰\ | ||
598 | 纫\ | ||
599 | 巡\ | ||
600 | 寿\ | ||
601 | 弄\ | ||
602 | 麦\ | ||
603 | 玖\ | ||
604 | 玛\ | ||
605 | 形\ | ||
606 | 进\ | ||
607 | 戒\ | ||
608 | 吞\ | ||
609 | 远\ | ||
610 | 违\ | ||
611 | 韧\ | ||
612 | 运\ | ||
613 | 扶\ | ||
614 | 抚\ | ||
615 | 坛\ | ||
616 | 技\ | ||
617 | 坏\ | ||
618 | 抠\ | ||
619 | 扰\ | ||
620 | 扼\ | ||
621 | 拒\ | ||
622 | 找\ | ||
623 | 批\ | ||
624 | 址\ | ||
625 | 扯\ | ||
626 | 走\ | ||
627 | 抄\ | ||
628 | 贡\ | ||
629 | 汞\ | ||
630 | 坝\ | ||
631 | 攻\ | ||
632 | 赤\ | ||
633 | 折\ | ||
634 | 抓\ | ||
635 | 扳\ | ||
636 | 抡\ | ||
637 | 扮\ | ||
638 | 抢\ | ||
639 | 孝\ | ||
640 | 坎\ | ||
641 | 均\ | ||
642 | 抑\ | ||
643 | 抛\ | ||
644 | 投\ | ||
645 | 坟\ | ||
646 | 坑\ | ||
647 | 抗\ | ||
648 | 坊\ | ||
649 | 抖\ | ||
650 | 护\ | ||
651 | 壳\ | ||
652 | 志\ | ||
653 | 块\ | ||
654 | 扭\ | ||
655 | 声\ | ||
656 | 把\ | ||
657 | 报\ | ||
658 | 拟\ | ||
659 | 却\ | ||
660 | 抒\ | ||
661 | 劫\ | ||
662 | 芙\ | ||
663 | 芜\ | ||
664 | 苇\ | ||
665 | 芽\ | ||
666 | 花\ | ||
667 | 芹\ | ||
668 | 芥\ | ||
669 | 芬\ | ||
670 | 苍\ | ||
671 | 芳\ | ||
672 | 严\ | ||
673 | 芦\ | ||
674 | 芯\ | ||
675 | 劳\ | ||
676 | 克\ | ||
677 | 芭\ | ||
678 | 苏\ | ||
679 | 杆\ | ||
680 | 杠\ | ||
681 | 杜\ | ||
682 | 材\ | ||
683 | 村\ | ||
684 | 杖\ | ||
685 | 杏\ | ||
686 | 杉\ | ||
687 | 巫\ | ||
688 | 极\ | ||
689 | 李\ | ||
690 | 杨\ | ||
691 | 求\ | ||
692 | 甫\ | ||
693 | 匣\ | ||
694 | 更\ | ||
695 | 束\ | ||
696 | 吾\ | ||
697 | 豆\ | ||
698 | 两\ | ||
699 | 酉\ | ||
700 | 丽\ | ||
701 | 医\ | ||
702 | 辰\ | ||
703 | 励\ | ||
704 | 否\ | ||
705 | 还\ | ||
706 | 尬\ | ||
707 | 歼\ | ||
708 | 来\ | ||
709 | 连\ | ||
710 | 轩\ | ||
711 | 步\ | ||
712 | 卤\ | ||
713 | 坚\ | ||
714 | 肖\ | ||
715 | 旱\ | ||
716 | 盯\ | ||
717 | 呈\ | ||
718 | 时\ | ||
719 | 吴\ | ||
720 | 助\ | ||
721 | 县\ | ||
722 | 里\ | ||
723 | 呆\ | ||
724 | 吱\ | ||
725 | 吠\ | ||
726 | 呕\ | ||
727 | 园\ | ||
728 | 旷\ | ||
729 | 围\ | ||
730 | 呀\ | ||
731 | 吨\ | ||
732 | 足\ | ||
733 | 邮\ | ||
734 | 男\ | ||
735 | 困\ | ||
736 | 吵\ | ||
737 | 串\ | ||
738 | 员\ | ||
739 | 呐\ | ||
740 | 听\ | ||
741 | 吟\ | ||
742 | 吩\ | ||
743 | 呛\ | ||
744 | 吻\ | ||
745 | 吹\ | ||
746 | 呜\ | ||
747 | 吭\ | ||
748 | 吧\ | ||
749 | 邑\ | ||
750 | 吼\ | ||
751 | 囤\ | ||
752 | 别\ | ||
753 | 吮\ | ||
754 | 岖\ | ||
755 | 岗\ | ||
756 | 帐\ | ||
757 | 财\ | ||
758 | 针\ | ||
759 | 钉\ | ||
760 | 牡\ | ||
761 | 告\ | ||
762 | 我\ | ||
763 | 乱\ | ||
764 | 利\ | ||
765 | 秃\ | ||
766 | 秀\ | ||
767 | 私\ | ||
768 | 每\ | ||
769 | 兵\ | ||
770 | 估\ | ||
771 | 体\ | ||
772 | 何\ | ||
773 | 佐\ | ||
774 | 佑\ | ||
775 | 但\ | ||
776 | 伸\ | ||
777 | 佃\ | ||
778 | 作\ | ||
779 | 伯\ | ||
780 | 伶\ | ||
781 | 佣\ | ||
782 | 低\ | ||
783 | 你\ | ||
784 | 住\ | ||
785 | 位\ | ||
786 | 伴\ | ||
787 | 身\ | ||
788 | 皂\ | ||
789 | 伺\ | ||
790 | 佛\ | ||
791 | 囱\ | ||
792 | 近\ | ||
793 | 彻\ | ||
794 | 役\ | ||
795 | 返\ | ||
796 | 余\ | ||
797 | 希\ | ||
798 | 坐\ | ||
799 | 谷\ | ||
800 | 妥\ | ||
801 | 含\ | ||
802 | 邻\ | ||
803 | 岔\ | ||
804 | 肝\ | ||
805 | 肛\ | ||
806 | 肚\ | ||
807 | 肘\ | ||
808 | 肠\ | ||
809 | 龟\ | ||
810 | 甸\ | ||
811 | 免\ | ||
812 | 狂\ | ||
813 | 犹\ | ||
814 | 狈\ | ||
815 | 角\ | ||
816 | 删\ | ||
817 | 条\ | ||
818 | 彤\ | ||
819 | 卵\ | ||
820 | 灸\ | ||
821 | 岛\ | ||
822 | 刨\ | ||
823 | 迎\ | ||
824 | 饭\ | ||
825 | 饮\ | ||
826 | 系\ | ||
827 | 言\ | ||
828 | 冻\ | ||
829 | 状\ | ||
830 | 亩\ | ||
831 | 况\ | ||
832 | 床\ | ||
833 | 库\ | ||
834 | 庇\ | ||
835 | 疗\ | ||
836 | 吝\ | ||
837 | 应\ | ||
838 | 这\ | ||
839 | 冷\ | ||
840 | 庐\ | ||
841 | 序\ | ||
842 | 辛\ | ||
843 | 弃\ | ||
844 | 冶\ | ||
845 | 忘\ | ||
846 | 闰\ | ||
847 | 闲\ | ||
848 | 间\ | ||
849 | 闷\ | ||
850 | 判\ | ||
851 | 兑\ | ||
852 | 灶\ | ||
853 | 灿\ | ||
854 | 灼\ | ||
855 | 弟\ | ||
856 | 汪\ | ||
857 | 沐\ | ||
858 | 沛\ | ||
859 | 汰\ | ||
860 | 沥\ | ||
861 | 沙\ | ||
862 | 汽\ | ||
863 | 沃\ | ||
864 | 沦\ | ||
865 | 汹\ | ||
866 | 泛\ | ||
867 | 沧\ | ||
868 | 没\ | ||
869 | 沟\ | ||
870 | 沪\ | ||
871 | 沈\ | ||
872 | 沉\ | ||
873 | 沁\ | ||
874 | 怀\ | ||
875 | 忧\ | ||
876 | 忱\ | ||
877 | 快\ | ||
878 | 完\ | ||
879 | 宋\ | ||
880 | 宏\ | ||
881 | 牢\ | ||
882 | 究\ | ||
883 | 穷\ | ||
884 | 灾\ | ||
885 | 良\ | ||
886 | 证\ | ||
887 | 启\ | ||
888 | 评\ | ||
889 | 补\ | ||
890 | 初\ | ||
891 | 社\ | ||
892 | 祀\ | ||
893 | 识\ | ||
894 | 诈\ | ||
895 | 诉\ | ||
896 | 罕\ | ||
897 | 诊\ | ||
898 | 词\ | ||
899 | 译\ | ||
900 | 君\ | ||
901 | 灵\ | ||
902 | 即\ | ||
903 | 层\ | ||
904 | 屁\ | ||
905 | 尿\ | ||
906 | 尾\ | ||
907 | 迟\ | ||
908 | 局\ | ||
909 | 改\ | ||
910 | 张\ | ||
911 | 忌\ | ||
912 | 际\ | ||
913 | 陆\ | ||
914 | 阿\ | ||
915 | 陈\ | ||
916 | 阻\ | ||
917 | 附\ | ||
918 | 坠\ | ||
919 | 妓\ | ||
920 | 妙\ | ||
921 | 妖\ | ||
922 | 姊\ | ||
923 | 妨\ | ||
924 | 妒\ | ||
925 | 努\ | ||
926 | 忍\ | ||
927 | 劲\ | ||
928 | 矣\ | ||
929 | 鸡\ | ||
930 | 纬\ | ||
931 | 驱\ | ||
932 | 纯\ | ||
933 | 纱\ | ||
934 | 纲\ | ||
935 | 纳\ | ||
936 | 驳\ | ||
937 | 纵\ | ||
938 | 纷\ | ||
939 | 纸\ | ||
940 | 纹\ | ||
941 | 纺\ | ||
942 | 驴\ | ||
943 | 纽\ | ||
944 | 奉\ | ||
945 | 玩\ | ||
946 | 环\ | ||
947 | 武\ | ||
948 | 青\ | ||
949 | 责\ | ||
950 | 现\ | ||
951 | 玫\ | ||
952 | 表\ | ||
953 | 规\ | ||
954 | 抹\ | ||
955 | 卦\ | ||
956 | 坷\ | ||
957 | 坯\ | ||
958 | 拓\ | ||
959 | 拢\ | ||
960 | 拔\ | ||
961 | 坪\ | ||
962 | 拣\ | ||
963 | 坦\ | ||
964 | 担\ | ||
965 | 坤\ | ||
966 | 押\ | ||
967 | 抽\ | ||
968 | 拐\ | ||
969 | 拖\ | ||
970 | 者\ | ||
971 | 拍\ | ||
972 | 顶\ | ||
973 | 拆\ | ||
974 | 拎\ | ||
975 | 拥\ | ||
976 | 抵\ | ||
977 | 拘\ | ||
978 | 势\ | ||
979 | 抱\ | ||
980 | 拄\ | ||
981 | 垃\ | ||
982 | 拉\ | ||
983 | 拦\ | ||
984 | 幸\ | ||
985 | 拌\ | ||
986 | 拧\ | ||
987 | 拂\ | ||
988 | 拙\ | ||
989 | 招\ | ||
990 | 坡\ | ||
991 | 披\ | ||
992 | 拨\ | ||
993 | 择\ | ||
994 | 抬\ | ||
995 | 拇\ | ||
996 | 拗\ | ||
997 | 其\ | ||
998 | 取\ | ||
999 | 茉\ | ||
1000 | 苦\ | ||
1001 | 昔\ | ||
1002 | 苛\ | ||
1003 | 若\ | ||
1004 | 茂\ | ||
1005 | 苹\ | ||
1006 | 苗\ | ||
1007 | 英\ | ||
1008 | 苟\ | ||
1009 | 苑\ | ||
1010 | 苞\ | ||
1011 | 范\ | ||
1012 | 直\ | ||
1013 | 茁\ | ||
1014 | 茄\ | ||
1015 | 茎\ | ||
1016 | 苔\ | ||
1017 | 茅\ | ||
1018 | 枉\ | ||
1019 | 林\ | ||
1020 | 枝\ | ||
1021 | 杯\ | ||
1022 | 枢\ | ||
1023 | 柜\ | ||
1024 | 枚\ | ||
1025 | 析\ | ||
1026 | 板\ | ||
1027 | 松\ | ||
1028 | 枪\ | ||
1029 | 枫\ | ||
1030 | 构\ | ||
1031 | 杭\ | ||
1032 | 杰\ | ||
1033 | 述\ | ||
1034 | 枕\ | ||
1035 | 丧\ | ||
1036 | 或\ | ||
1037 | 画\ | ||
1038 | 卧\ | ||
1039 | 事\ | ||
1040 | 刺\ | ||
1041 | 枣\ | ||
1042 | 雨\ | ||
1043 | 卖\ | ||
1044 | 郁\ | ||
1045 | 矾\ | ||
1046 | 矿\ | ||
1047 | 码\ | ||
1048 | 厕\ | ||
1049 | 奈\ | ||
1050 | 奔\ | ||
1051 | 奇\ | ||
1052 | 奋\ | ||
1053 | 态\ | ||
1054 | 欧\ | ||
1055 | 殴\ | ||
1056 | 垄\ | ||
1057 | 妻\ | ||
1058 | 轰\ | ||
1059 | 顷\ | ||
1060 | 转\ | ||
1061 | 斩\ | ||
1062 | 轮\ | ||
1063 | 软\ | ||
1064 | 到\ | ||
1065 | 非\ | ||
1066 | 叔\ | ||
1067 | 歧\ | ||
1068 | 肯\ | ||
1069 | 齿\ | ||
1070 | 些\ | ||
1071 | 卓\ | ||
1072 | 虎\ | ||
1073 | 虏\ | ||
1074 | 肾\ | ||
1075 | 贤\ | ||
1076 | 尚\ | ||
1077 | 旺\ | ||
1078 | 具\ | ||
1079 | 味\ | ||
1080 | 果\ | ||
1081 | 昆\ | ||
1082 | 国\ | ||
1083 | 哎\ | ||
1084 | 咕\ | ||
1085 | 昌\ | ||
1086 | 呵\ | ||
1087 | 畅\ | ||
1088 | 明\ | ||
1089 | 易\ | ||
1090 | 咙\ | ||
1091 | 昂\ | ||
1092 | 迪\ | ||
1093 | 典\ | ||
1094 | 固\ | ||
1095 | 忠\ | ||
1096 | 呻\ | ||
1097 | 咒\ | ||
1098 | 咋\ | ||
1099 | 咐\ | ||
1100 | 呼\ | ||
1101 | 鸣\ | ||
1102 | 咏\ | ||
1103 | 呢\ | ||
1104 | 咄\ | ||
1105 | 咖\ | ||
1106 | 岸\ | ||
1107 | 岩\ | ||
1108 | 帖\ | ||
1109 | 罗\ | ||
1110 | 帜\ | ||
1111 | 帕\ | ||
1112 | 岭\ | ||
1113 | 凯\ | ||
1114 | 败\ | ||
1115 | 账\ | ||
1116 | 贩\ | ||
1117 | 贬\ | ||
1118 | 购\ | ||
1119 | 贮\ | ||
1120 | 图\ | ||
1121 | 钓\ | ||
1122 | 制\ | ||
1123 | 知\ | ||
1124 | 迭\ | ||
1125 | 氛\ | ||
1126 | 垂\ | ||
1127 | 牧\ | ||
1128 | 物\ | ||
1129 | 乖\ | ||
1130 | 刮\ | ||
1131 | 秆\ | ||
1132 | 和\ | ||
1133 | 季\ | ||
1134 | 委\ | ||
1135 | 秉\ | ||
1136 | 佳\ | ||
1137 | 侍\ | ||
1138 | 岳\ | ||
1139 | 供\ | ||
1140 | 使\ | ||
1141 | 例\ | ||
1142 | 侠\ | ||
1143 | 侥\ | ||
1144 | 版\ | ||
1145 | 侄\ | ||
1146 | 侦\ | ||
1147 | 侣\ | ||
1148 | 侧\ | ||
1149 | 凭\ | ||
1150 | 侨\ | ||
1151 | 佩\ | ||
1152 | 货\ | ||
1153 | 侈\ | ||
1154 | 依\ | ||
1155 | 卑\ | ||
1156 | 的\ | ||
1157 | 迫\ | ||
1158 | 质\ | ||
1159 | 欣\ | ||
1160 | 征\ | ||
1161 | 往\ | ||
1162 | 爬\ | ||
1163 | 彼\ | ||
1164 | 径\ | ||
1165 | 所\ | ||
1166 | 舍\ | ||
1167 | 金\ | ||
1168 | 刹\ | ||
1169 | 命\ | ||
1170 | 肴\ | ||
1171 | 斧\ | ||
1172 | 爸\ | ||
1173 | 采\ | ||
1174 | 觅\ | ||
1175 | 受\ | ||
1176 | 乳\ | ||
1177 | 贪\ | ||
1178 | 念\ | ||
1179 | 贫\ | ||
1180 | 忿\ | ||
1181 | 肤\ | ||
1182 | 肺\ | ||
1183 | 肢\ | ||
1184 | 肿\ | ||
1185 | 胀\ | ||
1186 | 朋\ | ||
1187 | 股\ | ||
1188 | 肮\ | ||
1189 | 肪\ | ||
1190 | 肥\ | ||
1191 | 服\ | ||
1192 | 胁\ | ||
1193 | 周\ | ||
1194 | 昏\ | ||
1195 | 鱼\ | ||
1196 | 兔\ | ||
1197 | 狐\ | ||
1198 | 忽\ | ||
1199 | 狗\ | ||
1200 | 狞\ | ||
1201 | 备\ | ||
1202 | 饰\ | ||
1203 | 饱\ | ||
1204 | 饲\ | ||
1205 | 变\ | ||
1206 | 京\ | ||
1207 | 享\ | ||
1208 | 庞\ | ||
1209 | 店\ | ||
1210 | 夜\ | ||
1211 | 庙\ | ||
1212 | 府\ | ||
1213 | 底\ | ||
1214 | 疟\ | ||
1215 | 疙\ | ||
1216 | 疚\ | ||
1217 | 剂\ | ||
1218 | 卒\ | ||
1219 | 郊\ | ||
1220 | 庚\ | ||
1221 | 废\ | ||
1222 | 净\ | ||
1223 | 盲\ | ||
1224 | 放\ | ||
1225 | 刻\ | ||
1226 | 育\ | ||
1227 | 氓\ | ||
1228 | 闸\ | ||
1229 | 闹\ | ||
1230 | 郑\ | ||
1231 | 券\ | ||
1232 | 卷\ | ||
1233 | 单\ | ||
1234 | 炬\ | ||
1235 | 炒\ | ||
1236 | 炊\ | ||
1237 | 炕\ | ||
1238 | 炎\ | ||
1239 | 炉\ | ||
1240 | 沫\ | ||
1241 | 浅\ | ||
1242 | 法\ | ||
1243 | 泄\ | ||
1244 | 沽\ | ||
1245 | 河\ | ||
1246 | 沾\ | ||
1247 | 泪\ | ||
1248 | 沮\ | ||
1249 | 油\ | ||
1250 | 泊\ | ||
1251 | 沿\ | ||
1252 | 泡\ | ||
1253 | 注\ | ||
1254 | 泣\ | ||
1255 | 泞\ | ||
1256 | 泻\ | ||
1257 | 泌\ | ||
1258 | 泳\ | ||
1259 | 泥\ | ||
1260 | 沸\ | ||
1261 | 沼\ | ||
1262 | 波\ | ||
1263 | 泼\ | ||
1264 | 泽\ | ||
1265 | 治\ | ||
1266 | 怔\ | ||
1267 | 怯\ | ||
1268 | 怖\ | ||
1269 | 性\ | ||
1270 | 怕\ | ||
1271 | 怜\ | ||
1272 | 怪\ | ||
1273 | 怡\ | ||
1274 | 学\ | ||
1275 | 宝\ | ||
1276 | 宗\ | ||
1277 | 定\ | ||
1278 | 宠\ | ||
1279 | 宜\ | ||
1280 | 审\ | ||
1281 | 宙\ | ||
1282 | 官\ | ||
1283 | 空\ | ||
1284 | 帘\ | ||
1285 | 宛\ | ||
1286 | 实\ | ||
1287 | 试\ | ||
1288 | 郎\ | ||
1289 | 诗\ | ||
1290 | 肩\ | ||
1291 | 房\ | ||
1292 | 诚\ | ||
1293 | 衬\ | ||
1294 | 衫\ | ||
1295 | 视\ | ||
1296 | 祈\ | ||
1297 | 话\ | ||
1298 | 诞\ | ||
1299 | 诡\ | ||
1300 | 询\ | ||
1301 | 该\ | ||
1302 | 详\ | ||
1303 | 建\ | ||
1304 | 肃\ | ||
1305 | 录\ | ||
1306 | 隶\ | ||
1307 | 帚\ | ||
1308 | 屉\ | ||
1309 | 居\ | ||
1310 | 届\ | ||
1311 | 刷\ | ||
1312 | 屈\ | ||
1313 | 弧\ | ||
1314 | 弥\ | ||
1315 | 弦\ | ||
1316 | 承\ | ||
1317 | 孟\ | ||
1318 | 陋\ | ||
1319 | 陌\ | ||
1320 | 孤\ | ||
1321 | 陕\ | ||
1322 | 降\ | ||
1323 | 函\ | ||
1324 | 限\ | ||
1325 | 妹\ | ||
1326 | 姑\ | ||
1327 | 姐\ | ||
1328 | 姓\ | ||
1329 | 妮\ | ||
1330 | 始\ | ||
1331 | 姆\ | ||
1332 | 迢\ | ||
1333 | 驾\ | ||
1334 | 叁\ | ||
1335 | 参\ | ||
1336 | 艰\ | ||
1337 | 线\ | ||
1338 | 练\ | ||
1339 | 组\ | ||
1340 | 绅\ | ||
1341 | 细\ | ||
1342 | 驶\ | ||
1343 | 织\ | ||
1344 | 驹\ | ||
1345 | 终\ | ||
1346 | 驻\ | ||
1347 | 绊\ | ||
1348 | 驼\ | ||
1349 | 绍\ | ||
1350 | 绎\ | ||
1351 | 经\ | ||
1352 | 贯\ | ||
1353 | 契\ | ||
1354 | 贰\ | ||
1355 | 奏\ | ||
1356 | 春\ | ||
1357 | 帮\ | ||
1358 | 玷\ | ||
1359 | 珍\ | ||
1360 | 玲\ | ||
1361 | 珊\ | ||
1362 | 玻\ | ||
1363 | 毒\ | ||
1364 | 型\ | ||
1365 | 拭\ | ||
1366 | 挂\ | ||
1367 | 封\ | ||
1368 | 持\ | ||
1369 | 拷\ | ||
1370 | 拱\ | ||
1371 | 项\ | ||
1372 | 垮\ | ||
1373 | 挎\ | ||
1374 | 城\ | ||
1375 | 挟\ | ||
1376 | 挠\ | ||
1377 | 政\ | ||
1378 | 赴\ | ||
1379 | 赵\ | ||
1380 | 挡\ | ||
1381 | 拽\ | ||
1382 | 哉\ | ||
1383 | 挺\ | ||
1384 | 括\ | ||
1385 | 垢\ | ||
1386 | 拴\ | ||
1387 | 拾\ | ||
1388 | 挑\ | ||
1389 | 垛\ | ||
1390 | 指\ | ||
1391 | 垫\ | ||
1392 | 挣\ | ||
1393 | 挤\ | ||
1394 | 拼\ | ||
1395 | 挖\ | ||
1396 | 按\ | ||
1397 | 挥\ | ||
1398 | 挪\ | ||
1399 | 拯\ | ||
1400 | 某\ | ||
1401 | 甚\ | ||
1402 | 荆\ | ||
1403 | 茸\ | ||
1404 | 革\ | ||
1405 | 茬\ | ||
1406 | 荐\ | ||
1407 | 巷\ | ||
1408 | 带\ | ||
1409 | 草\ | ||
1410 | 茧\ | ||
1411 | 茵\ | ||
1412 | 茶\ | ||
1413 | 荒\ | ||
1414 | 茫\ | ||
1415 | 荡\ | ||
1416 | 荣\ | ||
1417 | 荤\ | ||
1418 | 荧\ | ||
1419 | 故\ | ||
1420 | 胡\ | ||
1421 | 荫\ | ||
1422 | 荔\ | ||
1423 | 南\ | ||
1424 | 药\ | ||
1425 | 标\ | ||
1426 | 栈\ | ||
1427 | 柑\ | ||
1428 | 枯\ | ||
1429 | 柄\ | ||
1430 | 栋\ | ||
1431 | 相\ | ||
1432 | 查\ | ||
1433 | 柏\ | ||
1434 | 栅\ | ||
1435 | 柳\ | ||
1436 | 柱\ | ||
1437 | 柿\ | ||
1438 | 栏\ | ||
1439 | 柠\ | ||
1440 | 树\ | ||
1441 | 勃\ | ||
1442 | 要\ | ||
1443 | 柬\ | ||
1444 | 咸\ | ||
1445 | 威\ | ||
1446 | 歪\ | ||
1447 | 研\ | ||
1448 | 砖\ | ||
1449 | 厘\ | ||
1450 | 厚\ | ||
1451 | 砌\ | ||
1452 | 砂\ | ||
1453 | 泵\ | ||
1454 | 砚\ | ||
1455 | 砍\ | ||
1456 | 面\ | ||
1457 | 耐\ | ||
1458 | 耍\ | ||
1459 | 牵\ | ||
1460 | 鸥\ | ||
1461 | 残\ | ||
1462 | 殃\ | ||
1463 | 轴\ | ||
1464 | 轻\ | ||
1465 | 鸦\ | ||
1466 | 皆\ | ||
1467 | 韭\ | ||
1468 | 背\ | ||
1469 | 战\ | ||
1470 | 点\ | ||
1471 | 虐\ | ||
1472 | 临\ | ||
1473 | 览\ | ||
1474 | 竖\ | ||
1475 | 省\ | ||
1476 | 削\ | ||
1477 | 尝\ | ||
1478 | 昧\ | ||
1479 | 盹\ | ||
1480 | 是\ | ||
1481 | 盼\ | ||
1482 | 眨\ | ||
1483 | 哇\ | ||
1484 | 哄\ | ||
1485 | 哑\ | ||
1486 | 显\ | ||
1487 | 冒\ | ||
1488 | 映\ | ||
1489 | 星\ | ||
1490 | 昨\ | ||
1491 | 咧\ | ||
1492 | 昭\ | ||
1493 | 畏\ | ||
1494 | 趴\ | ||
1495 | 胃\ | ||
1496 | 贵\ | ||
1497 | 界\ | ||
1498 | 虹\ | ||
1499 | 虾\ | ||
1500 | 蚁\ | ||
1501 | 思\ | ||
1502 | 蚂\ | ||
1503 | 虽\ | ||
1504 | 品\ | ||
1505 | 咽\ | ||
1506 | 骂\ | ||
1507 | 勋\ | ||
1508 | 哗\ | ||
1509 | 咱\ | ||
1510 | 响\ | ||
1511 | 哈\ | ||
1512 | 哆\ | ||
1513 | 咬\ | ||
1514 | 咳\ | ||
1515 | 咪\ | ||
1516 | 哪\ | ||
1517 | 哟\ | ||
1518 | 炭\ | ||
1519 | 峡\ | ||
1520 | 罚\ | ||
1521 | 贱\ | ||
1522 | 贴\ | ||
1523 | 贻\ | ||
1524 | 骨\ | ||
1525 | 幽\ | ||
1526 | 钙\ | ||
1527 | 钝\ | ||
1528 | 钞\ | ||
1529 | 钟\ | ||
1530 | 钢\ | ||
1531 | 钠\ | ||
1532 | 钥\ | ||
1533 | 钦\ | ||
1534 | 钧\ | ||
1535 | 钩\ | ||
1536 | 钮\ | ||
1537 | 卸\ | ||
1538 | 缸\ | ||
1539 | 拜\ | ||
1540 | 看\ | ||
1541 | 矩\ | ||
1542 | 毡\ | ||
1543 | 氢\ | ||
1544 | 怎\ | ||
1545 | 牲\ | ||
1546 | 选\ | ||
1547 | 适\ | ||
1548 | 秒\ | ||
1549 | 香\ | ||
1550 | 种\ | ||
1551 | 秋\ | ||
1552 | 科\ | ||
1553 | 重\ | ||
1554 | 复\ | ||
1555 | 竿\ | ||
1556 | 段\ | ||
1557 | 便\ | ||
1558 | 俩\ | ||
1559 | 贷\ | ||
1560 | 顺\ | ||
1561 | 修\ | ||
1562 | 俏\ | ||
1563 | 保\ | ||
1564 | 促\ | ||
1565 | 俄\ | ||
1566 | 俐\ | ||
1567 | 侮\ | ||
1568 | 俭\ | ||
1569 | 俗\ | ||
1570 | 俘\ | ||
1571 | 信\ | ||
1572 | 皇\ | ||
1573 | 泉\ | ||
1574 | 鬼\ | ||
1575 | 侵\ | ||
1576 | 禹\ | ||
1577 | 侯\ | ||
1578 | 追\ | ||
1579 | 俊\ | ||
1580 | 盾\ | ||
1581 | 待\ | ||
1582 | 徊\ | ||
1583 | 衍\ | ||
1584 | 律\ | ||
1585 | 很\ | ||
1586 | 须\ | ||
1587 | 叙\ | ||
1588 | 剑\ | ||
1589 | 逃\ | ||
1590 | 食\ | ||
1591 | 盆\ | ||
1592 | 胚\ | ||
1593 | 胧\ | ||
1594 | 胆\ | ||
1595 | 胜\ | ||
1596 | 胞\ | ||
1597 | 胖\ | ||
1598 | 脉\ | ||
1599 | 胎\ | ||
1600 | 勉\ | ||
1601 | 狭\ | ||
1602 | 狮\ | ||
1603 | 独\ | ||
1604 | 狰\ | ||
1605 | 狡\ | ||
1606 | 狱\ | ||
1607 | 狠\ | ||
1608 | 贸\ | ||
1609 | 怨\ | ||
1610 | 急\ | ||
1611 | 饵\ | ||
1612 | 饶\ | ||
1613 | 蚀\ | ||
1614 | 饺\ | ||
1615 | 饼\ | ||
1616 | 峦\ | ||
1617 | 弯\ | ||
1618 | 将\ | ||
1619 | 奖\ | ||
1620 | 哀\ | ||
1621 | 亭\ | ||
1622 | 亮\ | ||
1623 | 度\ | ||
1624 | 迹\ | ||
1625 | 庭\ | ||
1626 | 疮\ | ||
1627 | 疯\ | ||
1628 | 疫\ | ||
1629 | 疤\ | ||
1630 | 咨\ | ||
1631 | 姿\ | ||
1632 | 亲\ | ||
1633 | 音\ | ||
1634 | 帝\ | ||
1635 | 施\ | ||
1636 | 闺\ | ||
1637 | 闻\ | ||
1638 | 闽\ | ||
1639 | 阀\ | ||
1640 | 阁\ | ||
1641 | 差\ | ||
1642 | 养\ | ||
1643 | 美\ | ||
1644 | 姜\ | ||
1645 | 叛\ | ||
1646 | 送\ | ||
1647 | 类\ | ||
1648 | 迷\ | ||
1649 | 籽\ | ||
1650 | 娄\ | ||
1651 | 前\ | ||
1652 | 首\ | ||
1653 | 逆\ | ||
1654 | 兹\ | ||
1655 | 总\ | ||
1656 | 炼\ | ||
1657 | 炸\ | ||
1658 | 烁\ | ||
1659 | 炮\ | ||
1660 | 炫\ | ||
1661 | 烂\ | ||
1662 | 剃\ | ||
1663 | 洼\ | ||
1664 | 洁\ | ||
1665 | 洪\ | ||
1666 | 洒\ | ||
1667 | 柒\ | ||
1668 | 浇\ | ||
1669 | 浊\ | ||
1670 | 洞\ | ||
1671 | 测\ | ||
1672 | 洗\ | ||
1673 | 活\ | ||
1674 | 派\ | ||
1675 | 洽\ | ||
1676 | 染\ | ||
1677 | 洛\ | ||
1678 | 浏\ | ||
1679 | 济\ | ||
1680 | 洋\ | ||
1681 | 洲\ | ||
1682 | 浑\ | ||
1683 | 浓\ | ||
1684 | 津\ | ||
1685 | 恃\ | ||
1686 | 恒\ | ||
1687 | 恢\ | ||
1688 | 恍\ | ||
1689 | 恬\ | ||
1690 | 恤\ | ||
1691 | 恰\ | ||
1692 | 恼\ | ||
1693 | 恨\ | ||
1694 | 举\ | ||
1695 | 觉\ | ||
1696 | 宣\ | ||
1697 | 宦\ | ||
1698 | 室\ | ||
1699 | 宫\ | ||
1700 | 宪\ | ||
1701 | 突\ | ||
1702 | 穿\ | ||
1703 | 窃\ | ||
1704 | 客\ | ||
1705 | 诫\ | ||
1706 | 冠\ | ||
1707 | 诬\ | ||
1708 | 语\ | ||
1709 | 扁\ | ||
1710 | 袄\ | ||
1711 | 祖\ | ||
1712 | 神\ | ||
1713 | 祝\ | ||
1714 | 祠\ | ||
1715 | 误\ | ||
1716 | 诱\ | ||
1717 | 诲\ | ||
1718 | 说\ | ||
1719 | 诵\ | ||
1720 | 垦\ | ||
1721 | 退\ | ||
1722 | 既\ | ||
1723 | 屋\ | ||
1724 | 昼\ | ||
1725 | 屏\ | ||
1726 | 屎\ | ||
1727 | 费\ | ||
1728 | 陡\ | ||
1729 | 逊\ | ||
1730 | 眉\ | ||
1731 | 孩\ | ||
1732 | 陨\ | ||
1733 | 除\ | ||
1734 | 险\ | ||
1735 | 院\ | ||
1736 | 娃\ | ||
1737 | 姥\ | ||
1738 | 姨\ | ||
1739 | 姻\ | ||
1740 | 娇\ | ||
1741 | 姚\ | ||
1742 | 娜\ | ||
1743 | 怒\ | ||
1744 | 架\ | ||
1745 | 贺\ | ||
1746 | 盈\ | ||
1747 | 勇\ | ||
1748 | 怠\ | ||
1749 | 癸\ | ||
1750 | 蚤\ | ||
1751 | 柔\ | ||
1752 | 垒\ | ||
1753 | 绑\ | ||
1754 | 绒\ | ||
1755 | 结\ | ||
1756 | 绕\ | ||
1757 | 骄\ | ||
1758 | 绘\ | ||
1759 | 给\ | ||
1760 | 绚\ | ||
1761 | 骆\ | ||
1762 | 络\ | ||
1763 | 绝\ | ||
1764 | 绞\ | ||
1765 | 骇\ | ||
1766 | 统\ | ||
1767 | 耕\ | ||
1768 | 耘\ | ||
1769 | 耗\ | ||
1770 | 耙\ | ||
1771 | 艳\ | ||
1772 | 泰\ | ||
1773 | 秦\ | ||
1774 | 珠\ | ||
1775 | 班\ | ||
1776 | 素\ | ||
1777 | 匿\ | ||
1778 | 蚕\ | ||
1779 | 顽\ | ||
1780 | 盏\ | ||
1781 | 匪\ | ||
1782 | 捞\ | ||
1783 | 栽\ | ||
1784 | 捕\ | ||
1785 | 埂\ | ||
1786 | 捂\ | ||
1787 | 振\ | ||
1788 | 载\ | ||
1789 | 赶\ | ||
1790 | 起\ | ||
1791 | 盐\ | ||
1792 | 捎\ | ||
1793 | 捍\ | ||
1794 | 捏\ | ||
1795 | 埋\ | ||
1796 | 捉\ | ||
1797 | 捆\ | ||
1798 | 捐\ | ||
1799 | 损\ | ||
1800 | 袁\ | ||
1801 | 捌\ | ||
1802 | 都\ | ||
1803 | 哲\ | ||
1804 | 逝\ | ||
1805 | 捡\ | ||
1806 | 挫\ | ||
1807 | 换\ | ||
1808 | 挽\ | ||
1809 | 挚\ | ||
1810 | 热\ | ||
1811 | 恐\ | ||
1812 | 捣\ | ||
1813 | 壶\ | ||
1814 | 捅\ | ||
1815 | 埃\ | ||
1816 | 挨\ | ||
1817 | 耻\ | ||
1818 | 耿\ | ||
1819 | 耽\ | ||
1820 | 聂\ | ||
1821 | 恭\ | ||
1822 | 莽\ | ||
1823 | 莱\ | ||
1824 | 莲\ | ||
1825 | 莫\ | ||
1826 | 莉\ | ||
1827 | 荷\ | ||
1828 | 获\ | ||
1829 | 晋\ | ||
1830 | 恶\ | ||
1831 | 莹\ | ||
1832 | 莺\ | ||
1833 | 真\ | ||
1834 | 框\ | ||
1835 | 梆\ | ||
1836 | 桂\ | ||
1837 | 桔\ | ||
1838 | 栖\ | ||
1839 | 档\ | ||
1840 | 桐\ | ||
1841 | 株\ | ||
1842 | 桥\ | ||
1843 | 桦\ | ||
1844 | 栓\ | ||
1845 | 桃\ | ||
1846 | 格\ | ||
1847 | 桩\ | ||
1848 | 校\ | ||
1849 | 核\ | ||
1850 | 样\ | ||
1851 | 根\ | ||
1852 | 索\ | ||
1853 | 哥\ | ||
1854 | 速\ | ||
1855 | 逗\ | ||
1856 | 栗\ | ||
1857 | 贾\ | ||
1858 | 酌\ | ||
1859 | 配\ | ||
1860 | 翅\ | ||
1861 | 辱\ | ||
1862 | 唇\ | ||
1863 | 夏\ | ||
1864 | 砸\ | ||
1865 | 砰\ | ||
1866 | 砾\ | ||
1867 | 础\ | ||
1868 | 破\ | ||
1869 | 原\ | ||
1870 | 套\ | ||
1871 | 逐\ | ||
1872 | 烈\ | ||
1873 | 殊\ | ||
1874 | 殉\ | ||
1875 | 顾\ | ||
1876 | 轿\ | ||
1877 | 较\ | ||
1878 | 顿\ | ||
1879 | 毙\ | ||
1880 | 致\ | ||
1881 | 柴\ | ||
1882 | 桌\ | ||
1883 | 虑\ | ||
1884 | 监\ | ||
1885 | 紧\ | ||
1886 | 党\ | ||
1887 | 逞\ | ||
1888 | 晒\ | ||
1889 | 眠\ | ||
1890 | 晓\ | ||
1891 | 哮\ | ||
1892 | 唠\ | ||
1893 | 鸭\ | ||
1894 | 晃\ | ||
1895 | 哺\ | ||
1896 | 晌\ | ||
1897 | 剔\ | ||
1898 | 晕\ | ||
1899 | 蚌\ | ||
1900 | 畔\ | ||
1901 | 蚣\ | ||
1902 | 蚊\ | ||
1903 | 蚪\ | ||
1904 | 蚓\ | ||
1905 | 哨\ | ||
1906 | 哩\ | ||
1907 | 圃\ | ||
1908 | 哭\ | ||
1909 | 哦\ | ||
1910 | 恩\ | ||
1911 | 鸯\ | ||
1912 | 唤\ | ||
1913 | 唁\ | ||
1914 | 哼\ | ||
1915 | 唧\ | ||
1916 | 啊\ | ||
1917 | 唉\ | ||
1918 | 唆\ | ||
1919 | 罢\ | ||
1920 | 峭\ | ||
1921 | 峨\ | ||
1922 | 峰\ | ||
1923 | 圆\ | ||
1924 | 峻\ | ||
1925 | 贼\ | ||
1926 | 贿\ | ||
1927 | 赂\ | ||
1928 | 赃\ | ||
1929 | 钱\ | ||
1930 | 钳\ | ||
1931 | 钻\ | ||
1932 | 钾\ | ||
1933 | 铁\ | ||
1934 | 铃\ | ||
1935 | 铅\ | ||
1936 | 缺\ | ||
1937 | 氧\ | ||
1938 | 氨\ | ||
1939 | 特\ | ||
1940 | 牺\ | ||
1941 | 造\ | ||
1942 | 乘\ | ||
1943 | 敌\ | ||
1944 | 秤\ | ||
1945 | 租\ | ||
1946 | 积\ | ||
1947 | 秧\ | ||
1948 | 秩\ | ||
1949 | 称\ | ||
1950 | 秘\ | ||
1951 | 透\ | ||
1952 | 笔\ | ||
1953 | 笑\ | ||
1954 | 笋\ | ||
1955 | 债\ | ||
1956 | 借\ | ||
1957 | 值\ | ||
1958 | 倚\ | ||
1959 | 俺\ | ||
1960 | 倾\ | ||
1961 | 倒\ | ||
1962 | 倘\ | ||
1963 | 俱\ | ||
1964 | 倡\ | ||
1965 | 候\ | ||
1966 | 赁\ | ||
1967 | 俯\ | ||
1968 | 倍\ | ||
1969 | 倦\ | ||
1970 | 健\ | ||
1971 | 臭\ | ||
1972 | 射\ | ||
1973 | 躬\ | ||
1974 | 息\ | ||
1975 | 倔\ | ||
1976 | 徒\ | ||
1977 | 徐\ | ||
1978 | 殷\ | ||
1979 | 舰\ | ||
1980 | 舱\ | ||
1981 | 般\ | ||
1982 | 航\ | ||
1983 | 途\ | ||
1984 | 拿\ | ||
1985 | 耸\ | ||
1986 | 爹\ | ||
1987 | 舀\ | ||
1988 | 爱\ | ||
1989 | 豺\ | ||
1990 | 豹\ | ||
1991 | 颁\ | ||
1992 | 颂\ | ||
1993 | 翁\ | ||
1994 | 胰\ | ||
1995 | 脆\ | ||
1996 | 脂\ | ||
1997 | 胸\ | ||
1998 | 胳\ | ||
1999 | 脏\ | ||
2000 | 脐\ | ||
2001 | 胶\ | ||
2002 | 脑\ | ||
2003 | 脓\ | ||
2004 | 逛\ | ||
2005 | 狸\ | ||
2006 | 狼\ | ||
2007 | 卿\ | ||
2008 | 逢\ | ||
2009 | 鸵\ | ||
2010 | 留\ | ||
2011 | 鸳\ | ||
2012 | 皱\ | ||
2013 | 饿\ | ||
2014 | 馁\ | ||
2015 | 凌\ | ||
2016 | 凄\ | ||
2017 | 恋\ | ||
2018 | 桨\ | ||
2019 | 浆\ | ||
2020 | 衰\ | ||
2021 | 衷\ | ||
2022 | 高\ | ||
2023 | 郭\ | ||
2024 | 席\ | ||
2025 | 准\ | ||
2026 | 座\ | ||
2027 | 症\ | ||
2028 | 病\ | ||
2029 | 疾\ | ||
2030 | 斋\ | ||
2031 | 疹\ | ||
2032 | 疼\ | ||
2033 | 疲\ | ||
2034 | 脊\ | ||
2035 | 效\ | ||
2036 | 离\ | ||
2037 | 紊\ | ||
2038 | 唐\ | ||
2039 | 瓷\ | ||
2040 | 资\ | ||
2041 | 凉\ | ||
2042 | 站\ | ||
2043 | 剖\ | ||
2044 | 竞\ | ||
2045 | 部\ | ||
2046 | 旁\ | ||
2047 | 旅\ | ||
2048 | 畜\ | ||
2049 | 阅\ | ||
2050 | 羞\ | ||
2051 | 羔\ | ||
2052 | 瓶\ | ||
2053 | 拳\ | ||
2054 | 粉\ | ||
2055 | 料\ | ||
2056 | 益\ | ||
2057 | 兼\ | ||
2058 | 烤\ | ||
2059 | 烘\ | ||
2060 | 烦\ | ||
2061 | 烧\ | ||
2062 | 烛\ | ||
2063 | 烟\ | ||
2064 | 烙\ | ||
2065 | 递\ | ||
2066 | 涛\ | ||
2067 | 浙\ | ||
2068 | 涝\ | ||
2069 | 浦\ | ||
2070 | 酒\ | ||
2071 | 涉\ | ||
2072 | 消\ | ||
2073 | 涡\ | ||
2074 | 浩\ | ||
2075 | 海\ | ||
2076 | 涂\ | ||
2077 | 浴\ | ||
2078 | 浮\ | ||
2079 | 涣\ | ||
2080 | 涤\ | ||
2081 | 流\ | ||
2082 | 润\ | ||
2083 | 涧\ | ||
2084 | 涕\ | ||
2085 | 浪\ | ||
2086 | 浸\ | ||
2087 | 涨\ | ||
2088 | 烫\ | ||
2089 | 涩\ | ||
2090 | 涌\ | ||
2091 | 悖\ | ||
2092 | 悟\ | ||
2093 | 悄\ | ||
2094 | 悍\ | ||
2095 | 悔\ | ||
2096 | 悯\ | ||
2097 | 悦\ | ||
2098 | 害\ | ||
2099 | 宽\ | ||
2100 | 家\ | ||
2101 | 宵\ | ||
2102 | 宴\ | ||
2103 | 宾\ | ||
2104 | 窍\ | ||
2105 | 窄\ | ||
2106 | 容\ | ||
2107 | 宰\ | ||
2108 | 案\ | ||
2109 | 请\ | ||
2110 | 朗\ | ||
2111 | 诸\ | ||
2112 | 诺\ | ||
2113 | 读\ | ||
2114 | 扇\ | ||
2115 | 诽\ | ||
2116 | 袜\ | ||
2117 | 袖\ | ||
2118 | 袍\ | ||
2119 | 被\ | ||
2120 | 祥\ | ||
2121 | 课\ | ||
2122 | 冥\ | ||
2123 | 谁\ | ||
2124 | 调\ | ||
2125 | 冤\ | ||
2126 | 谅\ | ||
2127 | 谆\ | ||
2128 | 谈\ | ||
2129 | 谊\ | ||
2130 | 剥\ | ||
2131 | 恳\ | ||
2132 | 展\ | ||
2133 | 剧\ | ||
2134 | 屑\ | ||
2135 | 弱\ | ||
2136 | 陵\ | ||
2137 | 祟\ | ||
2138 | 陶\ | ||
2139 | 陷\ | ||
2140 | 陪\ | ||
2141 | 娱\ | ||
2142 | 娟\ | ||
2143 | 恕\ | ||
2144 | 娥\ | ||
2145 | 娘\ | ||
2146 | 通\ | ||
2147 | 能\ | ||
2148 | 难\ | ||
2149 | 预\ | ||
2150 | 桑\ | ||
2151 | 绢\ | ||
2152 | 绣\ | ||
2153 | 验\ | ||
2154 | 继\ | ||
2155 | 骏\ | ||
2156 | 球\ | ||
2157 | 琐\ | ||
2158 | 理\ | ||
2159 | 琉\ | ||
2160 | 琅\ | ||
2161 | 捧\ | ||
2162 | 堵\ | ||
2163 | 措\ | ||
2164 | 描\ | ||
2165 | 域\ | ||
2166 | 捺\ | ||
2167 | 掩\ | ||
2168 | 捷\ | ||
2169 | 排\ | ||
2170 | 焉\ | ||
2171 | 掉\ | ||
2172 | 捶\ | ||
2173 | 赦\ | ||
2174 | 堆\ | ||
2175 | 推\ | ||
2176 | 埠\ | ||
2177 | 掀\ | ||
2178 | 授\ | ||
2179 | 捻\ | ||
2180 | 教\ | ||
2181 | 掏\ | ||
2182 | 掐\ | ||
2183 | 掠\ | ||
2184 | 掂\ | ||
2185 | 培\ | ||
2186 | 接\ | ||
2187 | 掷\ | ||
2188 | 控\ | ||
2189 | 探\ | ||
2190 | 据\ | ||
2191 | 掘\ | ||
2192 | 掺\ | ||
2193 | 职\ | ||
2194 | 基\ | ||
2195 | 聆\ | ||
2196 | 勘\ | ||
2197 | 聊\ | ||
2198 | 娶\ | ||
2199 | 著\ | ||
2200 | 菱\ | ||
2201 | 勒\ | ||
2202 | 黄\ | ||
2203 | 菲\ | ||
2204 | 萌\ | ||
2205 | 萝\ | ||
2206 | 菌\ | ||
2207 | 萎\ | ||
2208 | 菜\ | ||
2209 | 萄\ | ||
2210 | 菊\ | ||
2211 | 菩\ | ||
2212 | 萍\ | ||
2213 | 菠\ | ||
2214 | 萤\ | ||
2215 | 营\ | ||
2216 | 乾\ | ||
2217 | 萧\ | ||
2218 | 萨\ | ||
2219 | 菇\ | ||
2220 | 械\ | ||
2221 | 彬\ | ||
2222 | 梦\ | ||
2223 | 婪\ | ||
2224 | 梗\ | ||
2225 | 梧\ | ||
2226 | 梢\ | ||
2227 | 梅\ | ||
2228 | 检\ | ||
2229 | 梳\ | ||
2230 | 梯\ | ||
2231 | 桶\ | ||
2232 | 梭\ | ||
2233 | 救\ | ||
2234 | 曹\ | ||
2235 | 副\ | ||
2236 | 票\ | ||
2237 | 酝\ | ||
2238 | 酗\ | ||
2239 | 厢\ | ||
2240 | 戚\ | ||
2241 | 硅\ | ||
2242 | 硕\ | ||
2243 | 奢\ | ||
2244 | 盔\ | ||
2245 | 爽\ | ||
2246 | 聋\ | ||
2247 | 袭\ | ||
2248 | 盛\ | ||
2249 | 匾\ | ||
2250 | 雪\ | ||
2251 | 辅\ | ||
2252 | 辆\ | ||
2253 | 颅\ | ||
2254 | 虚\ | ||
2255 | 彪\ | ||
2256 | 雀\ | ||
2257 | 堂\ | ||
2258 | 常\ | ||
2259 | 眶\ | ||
2260 | 匙\ | ||
2261 | 晨\ | ||
2262 | 睁\ | ||
2263 | 眯\ | ||
2264 | 眼\ | ||
2265 | 悬\ | ||
2266 | 野\ | ||
2267 | 啪\ | ||
2268 | 啦\ | ||
2269 | 曼\ | ||
2270 | 晦\ | ||
2271 | 晚\ | ||
2272 | 啄\ | ||
2273 | 啡\ | ||
2274 | 距\ | ||
2275 | 趾\ | ||
2276 | 啃\ | ||
2277 | 跃\ | ||
2278 | 略\ | ||
2279 | 蚯\ | ||
2280 | 蛀\ | ||
2281 | 蛇\ | ||
2282 | 唬\ | ||
2283 | 累\ | ||
2284 | 鄂\ | ||
2285 | 唱\ | ||
2286 | 患\ | ||
2287 | 啰\ | ||
2288 | 唾\ | ||
2289 | 唯\ | ||
2290 | 啤\ | ||
2291 | 啥\ | ||
2292 | 啸\ | ||
2293 | 崖\ | ||
2294 | 崎\ | ||
2295 | 崭\ | ||
2296 | 逻\ | ||
2297 | 崔\ | ||
2298 | 帷\ | ||
2299 | 崩\ | ||
2300 | 崇\ | ||
2301 | 崛\ | ||
2302 | 婴\ | ||
2303 | 圈\ | ||
2304 | 铐\ | ||
2305 | 铛\ | ||
2306 | 铝\ | ||
2307 | 铜\ | ||
2308 | 铭\ | ||
2309 | 铲\ | ||
2310 | 银\ | ||
2311 | 矫\ | ||
2312 | 甜\ | ||
2313 | 秸\ | ||
2314 | 梨\ | ||
2315 | 犁\ | ||
2316 | 秽\ | ||
2317 | 移\ | ||
2318 | 笨\ | ||
2319 | 笼\ | ||
2320 | 笛\ | ||
2321 | 笙\ | ||
2322 | 符\ | ||
2323 | 第\ | ||
2324 | 敏\ | ||
2325 | 做\ | ||
2326 | 袋\ | ||
2327 | 悠\ | ||
2328 | 偿\ | ||
2329 | 偶\ | ||
2330 | 偎\ | ||
2331 | 偷\ | ||
2332 | 您\ | ||
2333 | 售\ | ||
2334 | 停\ | ||
2335 | 偏\ | ||
2336 | 躯\ | ||
2337 | 兜\ | ||
2338 | 假\ | ||
2339 | 衅\ | ||
2340 | 徘\ | ||
2341 | 徙\ | ||
2342 | 得\ | ||
2343 | 衔\ | ||
2344 | 盘\ | ||
2345 | 舶\ | ||
2346 | 船\ | ||
2347 | 舵\ | ||
2348 | 斜\ | ||
2349 | 盒\ | ||
2350 | 鸽\ | ||
2351 | 敛\ | ||
2352 | 悉\ | ||
2353 | 欲\ | ||
2354 | 彩\ | ||
2355 | 领\ | ||
2356 | 脚\ | ||
2357 | 脖\ | ||
2358 | 脯\ | ||
2359 | 豚\ | ||
2360 | 脸\ | ||
2361 | 脱\ | ||
2362 | 象\ | ||
2363 | 够\ | ||
2364 | 逸\ | ||
2365 | 猜\ | ||
2366 | 猪\ | ||
2367 | 猎\ | ||
2368 | 猫\ | ||
2369 | 凰\ | ||
2370 | 猖\ | ||
2371 | 猛\ | ||
2372 | 祭\ | ||
2373 | 馅\ | ||
2374 | 馆\ | ||
2375 | 凑\ | ||
2376 | 减\ | ||
2377 | 毫\ | ||
2378 | 烹\ | ||
2379 | 庶\ | ||
2380 | 麻\ | ||
2381 | 庵\ | ||
2382 | 痊\ | ||
2383 | 痒\ | ||
2384 | 痕\ | ||
2385 | 廊\ | ||
2386 | 康\ | ||
2387 | 庸\ | ||
2388 | 鹿\ | ||
2389 | 盗\ | ||
2390 | 章\ | ||
2391 | 竟\ | ||
2392 | 商\ | ||
2393 | 族\ | ||
2394 | 旋\ | ||
2395 | 望\ | ||
2396 | 率\ | ||
2397 | 阎\ | ||
2398 | 阐\ | ||
2399 | 着\ | ||
2400 | 羚\ | ||
2401 | 盖\ | ||
2402 | 眷\ | ||
2403 | 粘\ | ||
2404 | 粗\ | ||
2405 | 粒\ | ||
2406 | 断\ | ||
2407 | 剪\ | ||
2408 | 兽\ | ||
2409 | 焊\ | ||
2410 | 焕\ | ||
2411 | 清\ | ||
2412 | 添\ | ||
2413 | 鸿\ | ||
2414 | 淋\ | ||
2415 | 涯\ | ||
2416 | 淹\ | ||
2417 | 渠\ | ||
2418 | 渐\ | ||
2419 | 淑\ | ||
2420 | 淌\ | ||
2421 | 混\ | ||
2422 | 淮\ | ||
2423 | 淆\ | ||
2424 | 渊\ | ||
2425 | 淫\ | ||
2426 | 渔\ | ||
2427 | 淘\ | ||
2428 | 淳\ | ||
2429 | 液\ | ||
2430 | 淤\ | ||
2431 | 淡\ | ||
2432 | 淀\ | ||
2433 | 深\ | ||
2434 | 涮\ | ||
2435 | 涵\ | ||
2436 | 婆\ | ||
2437 | 梁\ | ||
2438 | 渗\ | ||
2439 | 情\ | ||
2440 | 惜\ | ||
2441 | 惭\ | ||
2442 | 悼\ | ||
2443 | 惧\ | ||
2444 | 惕\ | ||
2445 | 惟\ | ||
2446 | 惊\ | ||
2447 | 惦\ | ||
2448 | 悴\ | ||
2449 | 惋\ | ||
2450 | 惨\ | ||
2451 | 惯\ | ||
2452 | 寇\ | ||
2453 | 寅\ | ||
2454 | 寄\ | ||
2455 | 寂\ | ||
2456 | 宿\ | ||
2457 | 窒\ | ||
2458 | 窑\ | ||
2459 | 密\ | ||
2460 | 谋\ | ||
2461 | 谍\ | ||
2462 | 谎\ | ||
2463 | 谐\ | ||
2464 | 袱\ | ||
2465 | 祷\ | ||
2466 | 祸\ | ||
2467 | 谓\ | ||
2468 | 谚\ | ||
2469 | 谜\ | ||
2470 | 逮\ | ||
2471 | 敢\ | ||
2472 | 尉\ | ||
2473 | 屠\ | ||
2474 | 弹\ | ||
2475 | 隋\ | ||
2476 | 堕\ | ||
2477 | 随\ | ||
2478 | 蛋\ | ||
2479 | 隅\ | ||
2480 | 隆\ | ||
2481 | 隐\ | ||
2482 | 婚\ | ||
2483 | 婶\ | ||
2484 | 婉\ | ||
2485 | 颇\ | ||
2486 | 颈\ | ||
2487 | 绩\ | ||
2488 | 绪\ | ||
2489 | 续\ | ||
2490 | 骑\ | ||
2491 | 绰\ | ||
2492 | 绳\ | ||
2493 | 维\ | ||
2494 | 绵\ | ||
2495 | 绷\ | ||
2496 | 绸\ | ||
2497 | 综\ | ||
2498 | 绽\ | ||
2499 | 绿\ | ||
2500 | 缀\ | ||
2501 | 巢\ | ||
2502 | 琴\ | ||
2503 | 琳\ | ||
2504 | 琢\ | ||
2505 | 琼\ | ||
2506 | 斑\ | ||
2507 | 替\ | ||
2508 | 揍\ | ||
2509 | 款\ | ||
2510 | 堪\ | ||
2511 | 塔\ | ||
2512 | 搭\ | ||
2513 | 堰\ | ||
2514 | 揩\ | ||
2515 | 越\ | ||
2516 | 趁\ | ||
2517 | 趋\ | ||
2518 | 超\ | ||
2519 | 揽\ | ||
2520 | 堤\ | ||
2521 | 提\ | ||
2522 | 博\ | ||
2523 | 揭\ | ||
2524 | 喜\ | ||
2525 | 彭\ | ||
2526 | 揣\ | ||
2527 | 插\ | ||
2528 | 揪\ | ||
2529 | 搜\ | ||
2530 | 煮\ | ||
2531 | 援\ | ||
2532 | 搀\ | ||
2533 | 裁\ | ||
2534 | 搁\ | ||
2535 | 搓\ | ||
2536 | 搂\ | ||
2537 | 搅\ | ||
2538 | 壹\ | ||
2539 | 握\ | ||
2540 | 搔\ | ||
2541 | 揉\ | ||
2542 | 斯\ | ||
2543 | 期\ | ||
2544 | 欺\ | ||
2545 | 联\ | ||
2546 | 葫\ | ||
2547 | 散\ | ||
2548 | 惹\ | ||
2549 | 葬\ | ||
2550 | 募\ | ||
2551 | 葛\ | ||
2552 | 董\ | ||
2553 | 葡\ | ||
2554 | 敬\ | ||
2555 | 葱\ | ||
2556 | 蒋\ | ||
2557 | 蒂\ | ||
2558 | 落\ | ||
2559 | 韩\ | ||
2560 | 朝\ | ||
2561 | 辜\ | ||
2562 | 葵\ | ||
2563 | 棒\ | ||
2564 | 棱\ | ||
2565 | 棋\ | ||
2566 | 椰\ | ||
2567 | 植\ | ||
2568 | 森\ | ||
2569 | 焚\ | ||
2570 | 椅\ | ||
2571 | 椒\ | ||
2572 | 棵\ | ||
2573 | 棍\ | ||
2574 | 椎\ | ||
2575 | 棉\ | ||
2576 | 棚\ | ||
2577 | 棕\ | ||
2578 | 棺\ | ||
2579 | 榔\ | ||
2580 | 椭\ | ||
2581 | 惠\ | ||
2582 | 惑\ | ||
2583 | 逼\ | ||
2584 | 粟\ | ||
2585 | 棘\ | ||
2586 | 酣\ | ||
2587 | 酥\ | ||
2588 | 厨\ | ||
2589 | 厦\ | ||
2590 | 硬\ | ||
2591 | 硝\ | ||
2592 | 确\ | ||
2593 | 硫\ | ||
2594 | 雁\ | ||
2595 | 殖\ | ||
2596 | 裂\ | ||
2597 | 雄\ | ||
2598 | 颊\ | ||
2599 | 雳\ | ||
2600 | 暂\ | ||
2601 | 雅\ | ||
2602 | 翘\ | ||
2603 | 辈\ | ||
2604 | 悲\ | ||
2605 | 紫\ | ||
2606 | 凿\ | ||
2607 | 辉\ | ||
2608 | 敞\ | ||
2609 | 棠\ | ||
2610 | 赏\ | ||
2611 | 掌\ | ||
2612 | 晴\ | ||
2613 | 睐\ | ||
2614 | 暑\ | ||
2615 | 最\ | ||
2616 | 晰\ | ||
2617 | 量\ | ||
2618 | 鼎\ | ||
2619 | 喷\ | ||
2620 | 喳\ | ||
2621 | 晶\ | ||
2622 | 喇\ | ||
2623 | 遇\ | ||
2624 | 喊\ | ||
2625 | 遏\ | ||
2626 | 晾\ | ||
2627 | 景\ | ||
2628 | 畴\ | ||
2629 | 践\ | ||
2630 | 跋\ | ||
2631 | 跌\ | ||
2632 | 跑\ | ||
2633 | 跛\ | ||
2634 | 遗\ | ||
2635 | 蛙\ | ||
2636 | 蛛\ | ||
2637 | 蜓\ | ||
2638 | 蜒\ | ||
2639 | 蛤\ | ||
2640 | 喝\ | ||
2641 | 鹃\ | ||
2642 | 喂\ | ||
2643 | 喘\ | ||
2644 | 喉\ | ||
2645 | 喻\ | ||
2646 | 啼\ | ||
2647 | 喧\ | ||
2648 | 嵌\ | ||
2649 | 幅\ | ||
2650 | 帽\ | ||
2651 | 赋\ | ||
2652 | 赌\ | ||
2653 | 赎\ | ||
2654 | 赐\ | ||
2655 | 赔\ | ||
2656 | 黑\ | ||
2657 | 铸\ | ||
2658 | 铺\ | ||
2659 | 链\ | ||
2660 | 销\ | ||
2661 | 锁\ | ||
2662 | 锄\ | ||
2663 | 锅\ | ||
2664 | 锈\ | ||
2665 | 锋\ | ||
2666 | 锌\ | ||
2667 | 锐\ | ||
2668 | 甥\ | ||
2669 | 掰\ | ||
2670 | 短\ | ||
2671 | 智\ | ||
2672 | 氮\ | ||
2673 | 毯\ | ||
2674 | 氯\ | ||
2675 | 鹅\ | ||
2676 | 剩\ | ||
2677 | 稍\ | ||
2678 | 程\ | ||
2679 | 稀\ | ||
2680 | 税\ | ||
2681 | 筐\ | ||
2682 | 等\ | ||
2683 | 筑\ | ||
2684 | 策\ | ||
2685 | 筛\ | ||
2686 | 筒\ | ||
2687 | 筏\ | ||
2688 | 答\ | ||
2689 | 筋\ | ||
2690 | 筝\ | ||
2691 | 傲\ | ||
2692 | 傅\ | ||
2693 | 牌\ | ||
2694 | 堡\ | ||
2695 | 集\ | ||
2696 | 焦\ | ||
2697 | 傍\ | ||
2698 | 储\ | ||
2699 | 皓\ | ||
2700 | 皖\ | ||
2701 | 粤\ | ||
2702 | 奥\ | ||
2703 | 街\ | ||
2704 | 惩\ | ||
2705 | 御\ | ||
2706 | 循\ | ||
2707 | 艇\ | ||
2708 | 舒\ | ||
2709 | 逾\ | ||
2710 | 番\ | ||
2711 | 释\ | ||
2712 | 禽\ | ||
2713 | 腊\ | ||
2714 | 脾\ | ||
2715 | 腋\ | ||
2716 | 腔\ | ||
2717 | 腕\ | ||
2718 | 鲁\ | ||
2719 | 猩\ | ||
2720 | 猬\ | ||
2721 | 猾\ | ||
2722 | 猴\ | ||
2723 | 惫\ | ||
2724 | 然\ | ||
2725 | 馈\ | ||
2726 | 馋\ | ||
2727 | 装\ | ||
2728 | 蛮\ | ||
2729 | 就\ | ||
2730 | 敦\ | ||
2731 | 斌\ | ||
2732 | 痘\ | ||
2733 | 痢\ | ||
2734 | 痪\ | ||
2735 | 痛\ | ||
2736 | 童\ | ||
2737 | 竣\ | ||
2738 | 阔\ | ||
2739 | 善\ | ||
2740 | 翔\ | ||
2741 | 羡\ | ||
2742 | 普\ | ||
2743 | 粪\ | ||
2744 | 尊\ | ||
2745 | 奠\ | ||
2746 | 道\ | ||
2747 | 遂\ | ||
2748 | 曾\ | ||
2749 | 焰\ | ||
2750 | 港\ | ||
2751 | 滞\ | ||
2752 | 湖\ | ||
2753 | 湘\ | ||
2754 | 渣\ | ||
2755 | 渤\ | ||
2756 | 渺\ | ||
2757 | 湿\ | ||
2758 | 温\ | ||
2759 | 渴\ | ||
2760 | 溃\ | ||
2761 | 溅\ | ||
2762 | 滑\ | ||
2763 | 湃\ | ||
2764 | 渝\ | ||
2765 | 湾\ | ||
2766 | 渡\ | ||
2767 | 游\ | ||
2768 | 滋\ | ||
2769 | 渲\ | ||
2770 | 溉\ | ||
2771 | 愤\ | ||
2772 | 慌\ | ||
2773 | 惰\ | ||
2774 | 愕\ | ||
2775 | 愣\ | ||
2776 | 惶\ | ||
2777 | 愧\ | ||
2778 | 愉\ | ||
2779 | 慨\ | ||
2780 | 割\ | ||
2781 | 寒\ | ||
2782 | 富\ | ||
2783 | 寓\ | ||
2784 | 窜\ | ||
2785 | 窝\ | ||
2786 | 窖\ | ||
2787 | 窗\ | ||
2788 | 窘\ | ||
2789 | 遍\ | ||
2790 | 雇\ | ||
2791 | 裕\ | ||
2792 | 裤\ | ||
2793 | 裙\ | ||
2794 | 禅\ | ||
2795 | 禄\ | ||
2796 | 谢\ | ||
2797 | 谣\ | ||
2798 | 谤\ | ||
2799 | 谦\ | ||
2800 | 犀\ | ||
2801 | 属\ | ||
2802 | 屡\ | ||
2803 | 强\ | ||
2804 | 粥\ | ||
2805 | 疏\ | ||
2806 | 隔\ | ||
2807 | 隙\ | ||
2808 | 隘\ | ||
2809 | 媒\ | ||
2810 | 絮\ | ||
2811 | 嫂\ | ||
2812 | 媚\ | ||
2813 | 婿\ | ||
2814 | 登\ | ||
2815 | 缅\ | ||
2816 | 缆\ | ||
2817 | 缉\ | ||
2818 | 缎\ | ||
2819 | 缓\ | ||
2820 | 缔\ | ||
2821 | 缕\ | ||
2822 | 骗\ | ||
2823 | 编\ | ||
2824 | 骚\ | ||
2825 | 缘\ | ||
2826 | 瑟\ | ||
2827 | 鹉\ | ||
2828 | 瑞\ | ||
2829 | 瑰\ | ||
2830 | 瑙\ | ||
2831 | 魂\ | ||
2832 | 肆\ | ||
2833 | 摄\ | ||
2834 | 摸\ | ||
2835 | 填\ | ||
2836 | 搏\ | ||
2837 | 塌\ | ||
2838 | 鼓\ | ||
2839 | 摆\ | ||
2840 | 携\ | ||
2841 | 搬\ | ||
2842 | 摇\ | ||
2843 | 搞\ | ||
2844 | 塘\ | ||
2845 | 摊\ | ||
2846 | 聘\ | ||
2847 | 斟\ | ||
2848 | 蒜\ | ||
2849 | 勤\ | ||
2850 | 靴\ | ||
2851 | 靶\ | ||
2852 | 鹊\ | ||
2853 | 蓝\ | ||
2854 | 墓\ | ||
2855 | 幕\ | ||
2856 | 蓬\ | ||
2857 | 蓄\ | ||
2858 | 蒲\ | ||
2859 | 蓉\ | ||
2860 | 蒙\ | ||
2861 | 蒸\ | ||
2862 | 献\ | ||
2863 | 椿\ | ||
2864 | 禁\ | ||
2865 | 楚\ | ||
2866 | 楷\ | ||
2867 | 榄\ | ||
2868 | 想\ | ||
2869 | 槐\ | ||
2870 | 榆\ | ||
2871 | 楼\ | ||
2872 | 概\ | ||
2873 | 赖\ | ||
2874 | 酪\ | ||
2875 | 酬\ | ||
2876 | 感\ | ||
2877 | 碍\ | ||
2878 | 碘\ | ||
2879 | 碑\ | ||
2880 | 碎\ | ||
2881 | 碰\ | ||
2882 | 碗\ | ||
2883 | 碌\ | ||
2884 | 尴\ | ||
2885 | 雷\ | ||
2886 | 零\ | ||
2887 | 雾\ | ||
2888 | 雹\ | ||
2889 | 辐\ | ||
2890 | 辑\ | ||
2891 | 输\ | ||
2892 | 督\ | ||
2893 | 频\ | ||
2894 | 龄\ | ||
2895 | 鉴\ | ||
2896 | 睛\ | ||
2897 | 睹\ | ||
2898 | 睦\ | ||
2899 | 瞄\ | ||
2900 | 睫\ | ||
2901 | 睡\ | ||
2902 | 睬\ | ||
2903 | 嗜\ | ||
2904 | 鄙\ | ||
2905 | 嗦\ | ||
2906 | 愚\ | ||
2907 | 暖\ | ||
2908 | 盟\ | ||
2909 | 歇\ | ||
2910 | 暗\ | ||
2911 | 暇\ | ||
2912 | 照\ | ||
2913 | 畸\ | ||
2914 | 跨\ | ||
2915 | 跷\ | ||
2916 | 跳\ | ||
2917 | 跺\ | ||
2918 | 跪\ | ||
2919 | 路\ | ||
2920 | 跤\ | ||
2921 | 跟\ | ||
2922 | 遣\ | ||
2923 | 蜈\ | ||
2924 | 蜗\ | ||
2925 | 蛾\ | ||
2926 | 蜂\ | ||
2927 | 蜕\ | ||
2928 | 嗅\ | ||
2929 | 嗡\ | ||
2930 | 嗓\ | ||
2931 | 署\ | ||
2932 | 置\ | ||
2933 | 罪\ | ||
2934 | 罩\ | ||
2935 | 蜀\ | ||
2936 | 幌\ | ||
2937 | 错\ | ||
2938 | 锚\ | ||
2939 | 锡\ | ||
2940 | 锣\ | ||
2941 | 锤\ | ||
2942 | 锥\ | ||
2943 | 锦\ | ||
2944 | 键\ | ||
2945 | 锯\ | ||
2946 | 锰\ | ||
2947 | 矮\ | ||
2948 | 辞\ | ||
2949 | 稚\ | ||
2950 | 稠\ | ||
2951 | 颓\ | ||
2952 | 愁\ | ||
2953 | 筹\ | ||
2954 | 签\ | ||
2955 | 简\ | ||
2956 | 筷\ | ||
2957 | 毁\ | ||
2958 | 舅\ | ||
2959 | 鼠\ | ||
2960 | 催\ | ||
2961 | 傻\ | ||
2962 | 像\ | ||
2963 | 躲\ | ||
2964 | 魁\ | ||
2965 | 衙\ | ||
2966 | 微\ | ||
2967 | 愈\ | ||
2968 | 遥\ | ||
2969 | 腻\ | ||
2970 | 腰\ | ||
2971 | 腥\ | ||
2972 | 腮\ | ||
2973 | 腹\ | ||
2974 | 腺\ | ||
2975 | 鹏\ | ||
2976 | 腾\ | ||
2977 | 腿\ | ||
2978 | 鲍\ | ||
2979 | 猿\ | ||
2980 | 颖\ | ||
2981 | 触\ | ||
2982 | 解\ | ||
2983 | 煞\ | ||
2984 | 雏\ | ||
2985 | 馍\ | ||
2986 | 馏\ | ||
2987 | 酱\ | ||
2988 | 禀\ | ||
2989 | 痹\ | ||
2990 | 廓\ | ||
2991 | 痴\ | ||
2992 | 痰\ | ||
2993 | 廉\ | ||
2994 | 靖\ | ||
2995 | 新\ | ||
2996 | 韵\ | ||
2997 | 意\ | ||
2998 | 誊\ | ||
2999 | 粮\ | ||
3000 | 数\ | ||
3001 | 煎\ | ||
3002 | 塑\ | ||
3003 | 慈\ | ||
3004 | 煤\ | ||
3005 | 煌\ | ||
3006 | 满\ | ||
3007 | 漠\ | ||
3008 | 滇\ | ||
3009 | 源\ | ||
3010 | 滤\ | ||
3011 | 滥\ | ||
3012 | 滔\ | ||
3013 | 溪\ | ||
3014 | 溜\ | ||
3015 | 漓\ | ||
3016 | 滚\ | ||
3017 | 溢\ | ||
3018 | 溯\ | ||
3019 | 滨\ | ||
3020 | 溶\ | ||
3021 | 溺\ | ||
3022 | 粱\ | ||
3023 | 滩\ | ||
3024 | 慎\ | ||
3025 | 誉\ | ||
3026 | 塞\ | ||
3027 | 寞\ | ||
3028 | 窥\ | ||
3029 | 窟\ | ||
3030 | 寝\ | ||
3031 | 谨\ | ||
3032 | 褂\ | ||
3033 | 裸\ | ||
3034 | 福\ | ||
3035 | 谬\ | ||
3036 | 群\ | ||
3037 | 殿\ | ||
3038 | 辟\ | ||
3039 | 障\ | ||
3040 | 媳\ | ||
3041 | 嫉\ | ||
3042 | 嫌\ | ||
3043 | 嫁\ | ||
3044 | 叠\ | ||
3045 | 缚\ | ||
3046 | 缝\ | ||
3047 | 缠\ | ||
3048 | 缤\ | ||
3049 | 剿\ | ||
3050 | 静\ | ||
3051 | 碧\ | ||
3052 | 璃\ | ||
3053 | 赘\ | ||
3054 | 熬\ | ||
3055 | 墙\ | ||
3056 | 墟\ | ||
3057 | 嘉\ | ||
3058 | 摧\ | ||
3059 | 赫\ | ||
3060 | 截\ | ||
3061 | 誓\ | ||
3062 | 境\ | ||
3063 | 摘\ | ||
3064 | 摔\ | ||
3065 | 撇\ | ||
3066 | 聚\ | ||
3067 | 慕\ | ||
3068 | 暮\ | ||
3069 | 摹\ | ||
3070 | 蔓\ | ||
3071 | 蔑\ | ||
3072 | 蔡\ | ||
3073 | 蔗\ | ||
3074 | 蔽\ | ||
3075 | 蔼\ | ||
3076 | 熙\ | ||
3077 | 蔚\ | ||
3078 | 兢\ | ||
3079 | 模\ | ||
3080 | 槛\ | ||
3081 | 榴\ | ||
3082 | 榜\ | ||
3083 | 榨\ | ||
3084 | 榕\ | ||
3085 | 歌\ | ||
3086 | 遭\ | ||
3087 | 酵\ | ||
3088 | 酷\ | ||
3089 | 酿\ | ||
3090 | 酸\ | ||
3091 | 碟\ | ||
3092 | 碱\ | ||
3093 | 碳\ | ||
3094 | 磁\ | ||
3095 | 愿\ | ||
3096 | 需\ | ||
3097 | 辖\ | ||
3098 | 辗\ | ||
3099 | 雌\ | ||
3100 | 裳\ | ||
3101 | 颗\ | ||
3102 | 瞅\ | ||
3103 | 墅\ | ||
3104 | 嗽\ | ||
3105 | 踊\ | ||
3106 | 蜻\ | ||
3107 | 蜡\ | ||
3108 | 蝇\ | ||
3109 | 蜘\ | ||
3110 | 蝉\ | ||
3111 | 嘛\ | ||
3112 | 嘀\ | ||
3113 | 赚\ | ||
3114 | 锹\ | ||
3115 | 锻\ | ||
3116 | 镀\ | ||
3117 | 舞\ | ||
3118 | 舔\ | ||
3119 | 稳\ | ||
3120 | 熏\ | ||
3121 | 箕\ | ||
3122 | 算\ | ||
3123 | 箩\ | ||
3124 | 管\ | ||
3125 | 箫\ | ||
3126 | 舆\ | ||
3127 | 僚\ | ||
3128 | 僧\ | ||
3129 | 鼻\ | ||
3130 | 魄\ | ||
3131 | 魅\ | ||
3132 | 貌\ | ||
3133 | 膜\ | ||
3134 | 膊\ | ||
3135 | 膀\ | ||
3136 | 鲜\ | ||
3137 | 疑\ | ||
3138 | 孵\ | ||
3139 | 馒\ | ||
3140 | 裹\ | ||
3141 | 敲\ | ||
3142 | 豪\ | ||
3143 | 膏\ | ||
3144 | 遮\ | ||
3145 | 腐\ | ||
3146 | 瘩\ | ||
3147 | 瘟\ | ||
3148 | 瘦\ | ||
3149 | 辣\ | ||
3150 | 彰\ | ||
3151 | 竭\ | ||
3152 | 端\ | ||
3153 | 旗\ | ||
3154 | 精\ | ||
3155 | 粹\ | ||
3156 | 歉\ | ||
3157 | 弊\ | ||
3158 | 熄\ | ||
3159 | 熔\ | ||
3160 | 煽\ | ||
3161 | 潇\ | ||
3162 | 漆\ | ||
3163 | 漱\ | ||
3164 | 漂\ | ||
3165 | 漫\ | ||
3166 | 滴\ | ||
3167 | 漾\ | ||
3168 | 演\ | ||
3169 | 漏\ | ||
3170 | 慢\ | ||
3171 | 慷\ | ||
3172 | 寨\ | ||
3173 | 赛\ | ||
3174 | 寡\ | ||
3175 | 察\ | ||
3176 | 蜜\ | ||
3177 | 寥\ | ||
3178 | 谭\ | ||
3179 | 肇\ | ||
3180 | 褐\ | ||
3181 | 褪\ | ||
3182 | 谱\ | ||
3183 | 隧\ | ||
3184 | 嫩\ | ||
3185 | 翠\ | ||
3186 | 熊\ | ||
3187 | 凳\ | ||
3188 | 骡\ | ||
3189 | 缩\ | ||
3190 | 慧\ | ||
3191 | 撵\ | ||
3192 | 撕\ | ||
3193 | 撒\ | ||
3194 | 撩\ | ||
3195 | 趣\ | ||
3196 | 趟\ | ||
3197 | 撑\ | ||
3198 | 撮\ | ||
3199 | 撬\ | ||
3200 | 播\ | ||
3201 | 擒\ | ||
3202 | 墩\ | ||
3203 | 撞\ | ||
3204 | 撤\ | ||
3205 | 增\ | ||
3206 | 撰\ | ||
3207 | 聪\ | ||
3208 | 鞋\ | ||
3209 | 鞍\ | ||
3210 | 蕉\ | ||
3211 | 蕊\ | ||
3212 | 蔬\ | ||
3213 | 蕴\ | ||
3214 | 横\ | ||
3215 | 槽\ | ||
3216 | 樱\ | ||
3217 | 橡\ | ||
3218 | 樟\ | ||
3219 | 橄\ | ||
3220 | 敷\ | ||
3221 | 豌\ | ||
3222 | 飘\ | ||
3223 | 醋\ | ||
3224 | 醇\ | ||
3225 | 醉\ | ||
3226 | 磕\ | ||
3227 | 磊\ | ||
3228 | 磅\ | ||
3229 | 碾\ | ||
3230 | 震\ | ||
3231 | 霄\ | ||
3232 | 霉\ | ||
3233 | 瞒\ | ||
3234 | 题\ | ||
3235 | 暴\ | ||
3236 | 瞎\ | ||
3237 | 嘻\ | ||
3238 | 嘶\ | ||
3239 | 嘲\ | ||
3240 | 嘹\ | ||
3241 | 影\ | ||
3242 | 踢\ | ||
3243 | 踏\ | ||
3244 | 踩\ | ||
3245 | 踪\ | ||
3246 | 蝶\ | ||
3247 | 蝴\ | ||
3248 | 蝠\ | ||
3249 | 蝎\ | ||
3250 | 蝌\ | ||
3251 | 蝗\ | ||
3252 | 蝙\ | ||
3253 | 嘿\ | ||
3254 | 嘱\ | ||
3255 | 幢\ | ||
3256 | 墨\ | ||
3257 | 镇\ | ||
3258 | 镐\ | ||
3259 | 镑\ | ||
3260 | 靠\ | ||
3261 | 稽\ | ||
3262 | 稻\ | ||
3263 | 黎\ | ||
3264 | 稿\ | ||
3265 | 稼\ | ||
3266 | 箱\ | ||
3267 | 篓\ | ||
3268 | 箭\ | ||
3269 | 篇\ | ||
3270 | 僵\ | ||
3271 | 躺\ | ||
3272 | 僻\ | ||
3273 | 德\ | ||
3274 | 艘\ | ||
3275 | 膝\ | ||
3276 | 膛\ | ||
3277 | 鲤\ | ||
3278 | 鲫\ | ||
3279 | 熟\ | ||
3280 | 摩\ | ||
3281 | 褒\ | ||
3282 | 瘪\ | ||
3283 | 瘤\ | ||
3284 | 瘫\ | ||
3285 | 凛\ | ||
3286 | 颜\ | ||
3287 | 毅\ | ||
3288 | 糊\ | ||
3289 | 遵\ | ||
3290 | 憋\ | ||
3291 | 潜\ | ||
3292 | 澎\ | ||
3293 | 潮\ | ||
3294 | 潭\ | ||
3295 | 鲨\ | ||
3296 | 澳\ | ||
3297 | 潘\ | ||
3298 | 澈\ | ||
3299 | 澜\ | ||
3300 | 澄\ | ||
3301 | 懂\ | ||
3302 | 憔\ | ||
3303 | 懊\ | ||
3304 | 憎\ | ||
3305 | 额\ | ||
3306 | 翩\ | ||
3307 | 褥\ | ||
3308 | 谴\ | ||
3309 | 鹤\ | ||
3310 | 憨\ | ||
3311 | 慰\ | ||
3312 | 劈\ | ||
3313 | 履\ | ||
3314 | 豫\ | ||
3315 | 缭\ | ||
3316 | 撼\ | ||
3317 | 擂\ | ||
3318 | 操\ | ||
3319 | 擅\ | ||
3320 | 燕\ | ||
3321 | 蕾\ | ||
3322 | 薯\ | ||
3323 | 薛\ | ||
3324 | 薇\ | ||
3325 | 擎\ | ||
3326 | 薪\ | ||
3327 | 薄\ | ||
3328 | 颠\ | ||
3329 | 翰\ | ||
3330 | 噩\ | ||
3331 | 橱\ | ||
3332 | 橙\ | ||
3333 | 橘\ | ||
3334 | 整\ | ||
3335 | 融\ | ||
3336 | 瓢\ | ||
3337 | 醒\ | ||
3338 | 霍\ | ||
3339 | 霎\ | ||
3340 | 辙\ | ||
3341 | 冀\ | ||
3342 | 餐\ | ||
3343 | 嘴\ | ||
3344 | 踱\ | ||
3345 | 蹄\ | ||
3346 | 蹂\ | ||
3347 | 蟆\ | ||
3348 | 螃\ | ||
3349 | 器\ | ||
3350 | 噪\ | ||
3351 | 鹦\ | ||
3352 | 赠\ | ||
3353 | 默\ | ||
3354 | 黔\ | ||
3355 | 镜\ | ||
3356 | 赞\ | ||
3357 | 穆\ | ||
3358 | 篮\ | ||
3359 | 篡\ | ||
3360 | 篷\ | ||
3361 | 篱\ | ||
3362 | 儒\ | ||
3363 | 邀\ | ||
3364 | 衡\ | ||
3365 | 膨\ | ||
3366 | 雕\ | ||
3367 | 鲸\ | ||
3368 | 磨\ | ||
3369 | 瘾\ | ||
3370 | 瘸\ | ||
3371 | 凝\ | ||
3372 | 辨\ | ||
3373 | 辩\ | ||
3374 | 糙\ | ||
3375 | 糖\ | ||
3376 | 糕\ | ||
3377 | 燃\ | ||
3378 | 濒\ | ||
3379 | 澡\ | ||
3380 | 激\ | ||
3381 | 懒\ | ||
3382 | 憾\ | ||
3383 | 懈\ | ||
3384 | 窿\ | ||
3385 | 壁\ | ||
3386 | 避\ | ||
3387 | 缰\ | ||
3388 | 缴\ | ||
3389 | 戴\ | ||
3390 | 擦\ | ||
3391 | 藉\ | ||
3392 | 鞠\ | ||
3393 | 藏\ | ||
3394 | 藐\ | ||
3395 | 檬\ | ||
3396 | 檐\ | ||
3397 | 檀\ | ||
3398 | 礁\ | ||
3399 | 磷\ | ||
3400 | 霜\ | ||
3401 | 霞\ | ||
3402 | 瞭\ | ||
3403 | 瞧\ | ||
3404 | 瞬\ | ||
3405 | 瞳\ | ||
3406 | 瞩\ | ||
3407 | 瞪\ | ||
3408 | 曙\ | ||
3409 | 蹋\ | ||
3410 | 蹈\ | ||
3411 | 螺\ | ||
3412 | 蟋\ | ||
3413 | 蟀\ | ||
3414 | 嚎\ | ||
3415 | 赡\ | ||
3416 | 穗\ | ||
3417 | 魏\ | ||
3418 | 簧\ | ||
3419 | 簇\ | ||
3420 | 繁\ | ||
3421 | 徽\ | ||
3422 | 爵\ | ||
3423 | 朦\ | ||
3424 | 臊\ | ||
3425 | 鳄\ | ||
3426 | 癌\ | ||
3427 | 辫\ | ||
3428 | 赢\ | ||
3429 | 糟\ | ||
3430 | 糠\ | ||
3431 | 燥\ | ||
3432 | 懦\ | ||
3433 | 豁\ | ||
3434 | 臀\ | ||
3435 | 臂\ | ||
3436 | 翼\ | ||
3437 | 骤\ | ||
3438 | 藕\ | ||
3439 | 鞭\ | ||
3440 | 藤\ | ||
3441 | 覆\ | ||
3442 | 瞻\ | ||
3443 | 蹦\ | ||
3444 | 嚣\ | ||
3445 | 镰\ | ||
3446 | 翻\ | ||
3447 | 鳍\ | ||
3448 | 鹰\ | ||
3449 | 瀑\ | ||
3450 | 襟\ | ||
3451 | 璧\ | ||
3452 | 戳\ | ||
3453 | 孽\ | ||
3454 | 警\ | ||
3455 | 蘑\ | ||
3456 | 藻\ | ||
3457 | 攀\ | ||
3458 | 曝\ | ||
3459 | 蹲\ | ||
3460 | 蹭\ | ||
3461 | 蹬\ | ||
3462 | 巅\ | ||
3463 | 簸\ | ||
3464 | 簿\ | ||
3465 | 蟹\ | ||
3466 | 颤\ | ||
3467 | 靡\ | ||
3468 | 癣\ | ||
3469 | 瓣\ | ||
3470 | 羹\ | ||
3471 | 鳖\ | ||
3472 | 爆\ | ||
3473 | 疆\ | ||
3474 | 鬓\ | ||
3475 | 壤\ | ||
3476 | 馨\ | ||
3477 | 耀\ | ||
3478 | 躁\ | ||
3479 | 蠕\ | ||
3480 | 嚼\ | ||
3481 | 嚷\ | ||
3482 | 巍\ | ||
3483 | 籍\ | ||
3484 | 鳞\ | ||
3485 | 魔\ | ||
3486 | 糯\ | ||
3487 | 灌\ | ||
3488 | 譬\ | ||
3489 | 蠢\ | ||
3490 | 霸\ | ||
3491 | 露\ | ||
3492 | 霹\ | ||
3493 | 躏\ | ||
3494 | 黯\ | ||
3495 | 髓\ | ||
3496 | 赣\ | ||
3497 | 囊\ | ||
3498 | 镶\ | ||
3499 | 瓤\ | ||
3500 | 罐\ | ||
3501 | 矗\ | ||
3502 | 乂\ | ||
3503 | 乜\ | ||
3504 | 兀\ | ||
3505 | 弋\ | ||
3506 | 孑\ | ||
3507 | 孓\ | ||
3508 | 幺\ | ||
3509 | 亓\ | ||
3510 | 韦\ | ||
3511 | 廿\ | ||
3512 | 丏\ | ||
3513 | 卅\ | ||
3514 | 仄\ | ||
3515 | 厄\ | ||
3516 | 仃\ | ||
3517 | 仉\ | ||
3518 | 仂\ | ||
3519 | 兮\ | ||
3520 | 刈\ | ||
3521 | 爻\ | ||
3522 | 卞\ | ||
3523 | 闩\ | ||
3524 | 讣\ | ||
3525 | 尹\ | ||
3526 | 夬\ | ||
3527 | 爿\ | ||
3528 | 毋\ | ||
3529 | 邗\ | ||
3530 | 邛\ | ||
3531 | 艽\ | ||
3532 | 艿\ | ||
3533 | 札\ | ||
3534 | 叵\ | ||
3535 | 匝\ | ||
3536 | 丕\ | ||
3537 | 匜\ | ||
3538 | 劢\ | ||
3539 | 卟\ | ||
3540 | 叱\ | ||
3541 | 叻\ | ||
3542 | 仨\ | ||
3543 | 仕\ | ||
3544 | 仟\ | ||
3545 | 仡\ | ||
3546 | 仫\ | ||
3547 | 仞\ | ||
3548 | 卮\ | ||
3549 | 氐\ | ||
3550 | 犰\ | ||
3551 | 刍\ | ||
3552 | 邝\ | ||
3553 | 邙\ | ||
3554 | 汀\ | ||
3555 | 讦\ | ||
3556 | 讧\ | ||
3557 | 讪\ | ||
3558 | 讫\ | ||
3559 | 尻\ | ||
3560 | 阡\ | ||
3561 | 尕\ | ||
3562 | 弁\ | ||
3563 | 驭\ | ||
3564 | 匡\ | ||
3565 | 耒\ | ||
3566 | 玎\ | ||
3567 | 玑\ | ||
3568 | 邢\ | ||
3569 | 圩\ | ||
3570 | 圬\ | ||
3571 | 圭\ | ||
3572 | 扦\ | ||
3573 | 圪\ | ||
3574 | 圳\ | ||
3575 | 圹\ | ||
3576 | 扪\ | ||
3577 | 圮\ | ||
3578 | 圯\ | ||
3579 | 芊\ | ||
3580 | 芍\ | ||
3581 | 芄\ | ||
3582 | 芨\ | ||
3583 | 芑\ | ||
3584 | 芎\ | ||
3585 | 芗\ | ||
3586 | 亘\ | ||
3587 | 厍\ | ||
3588 | 夼\ | ||
3589 | 戍\ | ||
3590 | 尥\ | ||
3591 | 乩\ | ||
3592 | 旯\ | ||
3593 | 曳\ | ||
3594 | 岌\ | ||
3595 | 屺\ | ||
3596 | 凼\ | ||
3597 | 囡\ | ||
3598 | 钇\ | ||
3599 | 缶\ | ||
3600 | 氘\ | ||
3601 | 氖\ | ||
3602 | 牝\ | ||
3603 | 伎\ | ||
3604 | 伛\ | ||
3605 | 伢\ | ||
3606 | 佤\ | ||
3607 | 仵\ | ||
3608 | 伥\ | ||
3609 | 伧\ | ||
3610 | 伉\ | ||
3611 | 伫\ | ||
3612 | 囟\ | ||
3613 | 汆\ | ||
3614 | 刖\ | ||
3615 | 夙\ | ||
3616 | 旮\ | ||
3617 | 刎\ | ||
3618 | 犷\ | ||
3619 | 犸\ | ||
3620 | 舛\ | ||
3621 | 凫\ | ||
3622 | 邬\ | ||
3623 | 饧\ | ||
3624 | 汕\ | ||
3625 | 汔\ | ||
3626 | 汐\ | ||
3627 | 汲\ | ||
3628 | 汜\ | ||
3629 | 汊\ | ||
3630 | 忖\ | ||
3631 | 忏\ | ||
3632 | 讴\ | ||
3633 | 讵\ | ||
3634 | 祁\ | ||
3635 | 讷\ | ||
3636 | 聿\ | ||
3637 | 艮\ | ||
3638 | 厾\ | ||
3639 | 阱\ | ||
3640 | 阮\ | ||
3641 | 阪\ | ||
3642 | 丞\ | ||
3643 | 妁\ | ||
3644 | 牟\ | ||
3645 | 纡\ | ||
3646 | 纣\ | ||
3647 | 纥\ | ||
3648 | 纨\ | ||
3649 | 玕\ | ||
3650 | 玙\ | ||
3651 | 抟\ | ||
3652 | 抔\ | ||
3653 | 圻\ | ||
3654 | 坂\ | ||
3655 | 坍\ | ||
3656 | 坞\ | ||
3657 | 抃\ | ||
3658 | 抉\ | ||
3659 | 㧐\ | ||
3660 | 芫\ | ||
3661 | 邯\ | ||
3662 | 芸\ | ||
3663 | 芾\ | ||
3664 | 苈\ | ||
3665 | 苣\ | ||
3666 | 芷\ | ||
3667 | 芮\ | ||
3668 | 苋\ | ||
3669 | 芼\ | ||
3670 | 苌\ | ||
3671 | 苁\ | ||
3672 | 芩\ | ||
3673 | 芪\ | ||
3674 | 芡\ | ||
3675 | 芟\ | ||
3676 | 苄\ | ||
3677 | 苎\ | ||
3678 | 苡\ | ||
3679 | 杌\ | ||
3680 | 杓\ | ||
3681 | 杞\ | ||
3682 | 杈\ | ||
3683 | 忑\ | ||
3684 | 孛\ | ||
3685 | 邴\ | ||
3686 | 邳\ | ||
3687 | 矶\ | ||
3688 | 奁\ | ||
3689 | 豕\ | ||
3690 | 忒\ | ||
3691 | 欤\ | ||
3692 | 轫\ | ||
3693 | 迓\ | ||
3694 | 邶\ | ||
3695 | 忐\ | ||
3696 | 卣\ | ||
3697 | 邺\ | ||
3698 | 旰\ | ||
3699 | 呋\ | ||
3700 | 呒\ | ||
3701 | 呓\ | ||
3702 | 呔\ | ||
3703 | 呖\ | ||
3704 | 呃\ | ||
3705 | 旸\ | ||
3706 | 吡\ | ||
3707 | 町\ | ||
3708 | 虬\ | ||
3709 | 呗\ | ||
3710 | 吽\ | ||
3711 | 吣\ | ||
3712 | 吲\ | ||
3713 | 帏\ | ||
3714 | 岐\ | ||
3715 | 岈\ | ||
3716 | 岘\ | ||
3717 | 岑\ | ||
3718 | 岚\ | ||
3719 | 兕\ | ||
3720 | 囵\ | ||
3721 | 囫\ | ||
3722 | 钊\ | ||
3723 | 钋\ | ||
3724 | 钌\ | ||
3725 | 迕\ | ||
3726 | 氙\ | ||
3727 | 氚\ | ||
3728 | 牤\ | ||
3729 | 佞\ | ||
3730 | 邱\ | ||
3731 | 攸\ | ||
3732 | 佚\ | ||
3733 | 佝\ | ||
3734 | 佟\ | ||
3735 | 佗\ | ||
3736 | 伽\ | ||
3737 | 彷\ | ||
3738 | 佘\ | ||
3739 | 佥\ | ||
3740 | 孚\ | ||
3741 | 豸\ | ||
3742 | 坌\ | ||
3743 | 肟\ | ||
3744 | 邸\ | ||
3745 | 奂\ | ||
3746 | 劬\ | ||
3747 | 狄\ | ||
3748 | 狁\ | ||
3749 | 鸠\ | ||
3750 | 邹\ | ||
3751 | 饨\ | ||
3752 | 饩\ | ||
3753 | 饪\ | ||
3754 | 饫\ | ||
3755 | 饬\ | ||
3756 | 亨\ | ||
3757 | 庑\ | ||
3758 | 庋\ | ||
3759 | 疔\ | ||
3760 | 疖\ | ||
3761 | 肓\ | ||
3762 | 闱\ | ||
3763 | 闳\ | ||
3764 | 闵\ | ||
3765 | 羌\ | ||
3766 | 炀\ | ||
3767 | 沣\ | ||
3768 | 沅\ | ||
3769 | 沔\ | ||
3770 | 沤\ | ||
3771 | 沌\ | ||
3772 | 沏\ | ||
3773 | 沚\ | ||
3774 | 汩\ | ||
3775 | 汨\ | ||
3776 | 沂\ | ||
3777 | 汾\ | ||
3778 | 沨\ | ||
3779 | 汴\ | ||
3780 | 汶\ | ||
3781 | 沆\ | ||
3782 | 沩\ | ||
3783 | 泐\ | ||
3784 | 怃\ | ||
3785 | 怄\ | ||
3786 | 忡\ | ||
3787 | 忤\ | ||
3788 | 忾\ | ||
3789 | 怅\ | ||
3790 | 忻\ | ||
3791 | 忪\ | ||
3792 | 怆\ | ||
3793 | 忭\ | ||
3794 | 忸\ | ||
3795 | 诂\ | ||
3796 | 诃\ | ||
3797 | 诅\ | ||
3798 | 诋\ | ||
3799 | 诌\ | ||
3800 | 诏\ | ||
3801 | 诒\ | ||
3802 | 孜\ | ||
3803 | 陇\ | ||
3804 | 陀\ | ||
3805 | 陂\ | ||
3806 | 陉\ | ||
3807 | 妍\ | ||
3808 | 妩\ | ||
3809 | 妪\ | ||
3810 | 妣\ | ||
3811 | 妊\ | ||
3812 | 妗\ | ||
3813 | 妫\ | ||
3814 | 妞\ | ||
3815 | 姒\ | ||
3816 | 妤\ | ||
3817 | 邵\ | ||
3818 | 劭\ | ||
3819 | 刭\ | ||
3820 | 甬\ | ||
3821 | 邰\ | ||
3822 | 纭\ | ||
3823 | 纰\ | ||
3824 | 纴\ | ||
3825 | 纶\ | ||
3826 | 纾\ | ||
3827 | 玮\ | ||
3828 | 玡\ | ||
3829 | 玭\ | ||
3830 | 玠\ | ||
3831 | 玢\ | ||
3832 | 玥\ | ||
3833 | 玦\ | ||
3834 | 盂\ | ||
3835 | 忝\ | ||
3836 | 匦\ | ||
3837 | 坩\ | ||
3838 | 抨\ | ||
3839 | 拤\ | ||
3840 | 坫\ | ||
3841 | 拈\ | ||
3842 | 垆\ | ||
3843 | 抻\ | ||
3844 | 劼\ | ||
3845 | 拃\ | ||
3846 | 拊\ | ||
3847 | 坼\ | ||
3848 | 坻\ | ||
3849 | 㧟\ | ||
3850 | 坨\ | ||
3851 | 坭\ | ||
3852 | 抿\ | ||
3853 | 坳\ | ||
3854 | 耶\ | ||
3855 | 苷\ | ||
3856 | 苯\ | ||
3857 | 苤\ | ||
3858 | 茏\ | ||
3859 | 苫\ | ||
3860 | 苜\ | ||
3861 | 苴\ | ||
3862 | 苒\ | ||
3863 | 苘\ | ||
3864 | 茌\ | ||
3865 | 苻\ | ||
3866 | 苓\ | ||
3867 | 茚\ | ||
3868 | 茆\ | ||
3869 | 茑\ | ||
3870 | 茓\ | ||
3871 | 茔\ | ||
3872 | 茕\ | ||
3873 | 茀\ | ||
3874 | 苕\ | ||
3875 | 枥\ | ||
3876 | 枇\ | ||
3877 | 杪\ | ||
3878 | 杳\ | ||
3879 | 枧\ | ||
3880 | 杵\ | ||
3881 | 枨\ | ||
3882 | 枞\ | ||
3883 | 枋\ | ||
3884 | 杻\ | ||
3885 | 杷\ | ||
3886 | 杼\ | ||
3887 | 矸\ | ||
3888 | 砀\ | ||
3889 | 刳\ | ||
3890 | 奄\ | ||
3891 | 瓯\ | ||
3892 | 殁\ | ||
3893 | 郏\ | ||
3894 | 轭\ | ||
3895 | 郅\ | ||
3896 | 鸢\ | ||
3897 | 盱\ | ||
3898 | 昊\ | ||
3899 | 昙\ | ||
3900 | 杲\ | ||
3901 | 昃\ | ||
3902 | 咂\ | ||
3903 | 呸\ | ||
3904 | 昕\ | ||
3905 | 昀\ | ||
3906 | 旻\ | ||
3907 | 昉\ | ||
3908 | 炅\ | ||
3909 | 咔\ | ||
3910 | 畀\ | ||
3911 | 虮\ | ||
3912 | 咀\ | ||
3913 | 呷\ | ||
3914 | 黾\ | ||
3915 | 呱\ | ||
3916 | 呤\ | ||
3917 | 咚\ | ||
3918 | 咆\ | ||
3919 | 咛\ | ||
3920 | 呶\ | ||
3921 | 呣\ | ||
3922 | 呦\ | ||
3923 | 咝\ | ||
3924 | 岢\ | ||
3925 | 岿\ | ||
3926 | 岬\ | ||
3927 | 岫\ | ||
3928 | 帙\ | ||
3929 | 岣\ | ||
3930 | 峁\ | ||
3931 | 刿\ | ||
3932 | 迥\ | ||
3933 | 岷\ | ||
3934 | 剀\ | ||
3935 | 帔\ | ||
3936 | 峄\ | ||
3937 | 沓\ | ||
3938 | 囹\ | ||
3939 | 罔\ | ||
3940 | 钍\ | ||
3941 | 钎\ | ||
3942 | 钏\ | ||
3943 | 钒\ | ||
3944 | 钕\ | ||
3945 | 钗\ | ||
3946 | 邾\ | ||
3947 | 迮\ | ||
3948 | 牦\ | ||
3949 | 竺\ | ||
3950 | 迤\ | ||
3951 | 佶\ | ||
3952 | 佬\ | ||
3953 | 佰\ | ||
3954 | 侑\ | ||
3955 | 侉\ | ||
3956 | 臾\ | ||
3957 | 岱\ | ||
3958 | 侗\ | ||
3959 | 侃\ | ||
3960 | 侏\ | ||
3961 | 侩\ | ||
3962 | 佻\ | ||
3963 | 佾\ | ||
3964 | 侪\ | ||
3965 | 佼\ | ||
3966 | 佯\ | ||
3967 | 侬\ | ||
3968 | 帛\ | ||
3969 | 阜\ | ||
3970 | 侔\ | ||
3971 | 徂\ | ||
3972 | 刽\ | ||
3973 | 郄\ | ||
3974 | 怂\ | ||
3975 | 籴\ | ||
3976 | 瓮\ | ||
3977 | 戗\ | ||
3978 | 肼\ | ||
3979 | 䏝\ | ||
3980 | 肽\ | ||
3981 | 肱\ | ||
3982 | 肫\ | ||
3983 | 剁\ | ||
3984 | 迩\ | ||
3985 | 郇\ | ||
3986 | 狙\ | ||
3987 | 狎\ | ||
3988 | 狍\ | ||
3989 | 狒\ | ||
3990 | 咎\ | ||
3991 | 炙\ | ||
3992 | 枭\ | ||
3993 | 饯\ | ||
3994 | 饴\ | ||
3995 | 冽\ | ||
3996 | 冼\ | ||
3997 | 庖\ | ||
3998 | 疠\ | ||
3999 | 疝\ | ||
4000 | 疡\ | ||
4001 | 兖\ | ||
4002 | 妾\ | ||
4003 | 劾\ | ||
4004 | 炜\ | ||
4005 | 熰\ | ||
4006 | 炖\ | ||
4007 | 炘\ | ||
4008 | 炝\ | ||
4009 | 炔\ | ||
4010 | 泔\ | ||
4011 | 沭\ | ||
4012 | 泷\ | ||
4013 | 泸\ | ||
4014 | 泱\ | ||
4015 | 泅\ | ||
4016 | 泗\ | ||
4017 | 泠\ | ||
4018 | 泺\ | ||
4019 | 泖\ | ||
4020 | 泫\ | ||
4021 | 泮\ | ||
4022 | 沱\ | ||
4023 | 泯\ | ||
4024 | 泓\ | ||
4025 | 泾\ | ||
4026 | 怙\ | ||
4027 | 怵\ | ||
4028 | 怦\ | ||
4029 | 怛\ | ||
4030 | 怏\ | ||
4031 | 怍\ | ||
4032 | 㤘\ | ||
4033 | 怩\ | ||
4034 | 怫\ | ||
4035 | 怿\ | ||
4036 | 宕\ | ||
4037 | 穹\ | ||
4038 | 宓\ | ||
4039 | 诓\ | ||
4040 | 诔\ | ||
4041 | 诖\ | ||
4042 | 诘\ | ||
4043 | 戾\ | ||
4044 | 诙\ | ||
4045 | 戽\ | ||
4046 | 郓\ | ||
4047 | 衩\ | ||
4048 | 祆\ | ||
4049 | 祎\ | ||
4050 | 祉\ | ||
4051 | 祇\ | ||
4052 | 诛\ | ||
4053 | 诜\ | ||
4054 | 诟\ | ||
4055 | 诠\ | ||
4056 | 诣\ | ||
4057 | 诤\ | ||
4058 | 诧\ | ||
4059 | 诨\ | ||
4060 | 诩\ | ||
4061 | 戕\ | ||
4062 | 孢\ | ||
4063 | 亟\ | ||
4064 | 陔\ | ||
4065 | 妲\ | ||
4066 | 妯\ | ||
4067 | 姗\ | ||
4068 | 帑\ | ||
4069 | 弩\ | ||
4070 | 孥\ | ||
4071 | 驽\ | ||
4072 | 虱\ | ||
4073 | 迦\ | ||
4074 | 迨\ | ||
4075 | 绀\ | ||
4076 | 绁\ | ||
4077 | 绂\ | ||
4078 | 驷\ | ||
4079 | 驸\ | ||
4080 | 绉\ | ||
4081 | 绌\ | ||
4082 | 驿\ | ||
4083 | 骀\ | ||
4084 | 甾\ | ||
4085 | 珏\ | ||
4086 | 珐\ | ||
4087 | 珂\ | ||
4088 | 珑\ | ||
4089 | 玳\ | ||
4090 | 珀\ | ||
4091 | 顸\ | ||
4092 | 珉\ | ||
4093 | 珈\ | ||
4094 | 拮\ | ||
4095 | 垭\ | ||
4096 | 挝\ | ||
4097 | 垣\ | ||
4098 | 挞\ | ||
4099 | 垤\ | ||
4100 | 赳\ | ||
4101 | 贲\ | ||
4102 | 垱\ | ||
4103 | 垌\ | ||
4104 | 郝\ | ||
4105 | 垧\ | ||
4106 | 垓\ | ||
4107 | 挦\ | ||
4108 | 垠\ | ||
4109 | 茜\ | ||
4110 | 荚\ | ||
4111 | 荑\ | ||
4112 | 贳\ | ||
4113 | 荜\ | ||
4114 | 莒\ | ||
4115 | 茼\ | ||
4116 | 茴\ | ||
4117 | 茱\ | ||
4118 | 莛\ | ||
4119 | 荞\ | ||
4120 | 茯\ | ||
4121 | 荏\ | ||
4122 | 荇\ | ||
4123 | 荃\ | ||
4124 | 荟\ | ||
4125 | 荀\ | ||
4126 | 茗\ | ||
4127 | 荠\ | ||
4128 | 茭\ | ||
4129 | 茨\ | ||
4130 | 垩\ | ||
4131 | 荥\ | ||
4132 | 荦\ | ||
4133 | 荨\ | ||
4134 | 荩\ | ||
4135 | 剋\ | ||
4136 | 荪\ | ||
4137 | 茹\ | ||
4138 | 荬\ | ||
4139 | 荮\ | ||
4140 | 柰\ | ||
4141 | 栉\ | ||
4142 | 柯\ | ||
4143 | 柘\ | ||
4144 | 栊\ | ||
4145 | 柩\ | ||
4146 | 枰\ | ||
4147 | 栌\ | ||
4148 | 柙\ | ||
4149 | 枵\ | ||
4150 | 柚\ | ||
4151 | 枳\ | ||
4152 | 柞\ | ||
4153 | 柝\ | ||
4154 | 栀\ | ||
4155 | 柢\ | ||
4156 | 栎\ | ||
4157 | 枸\ | ||
4158 | 柈\ | ||
4159 | 柁\ | ||
4160 | 枷\ | ||
4161 | 柽\ | ||
4162 | 剌\ | ||
4163 | 酊\ | ||
4164 | 郦\ | ||
4165 | 甭\ | ||
4166 | 砗\ | ||
4167 | 砘\ | ||
4168 | 砒\ | ||
4169 | 斫\ | ||
4170 | 砭\ | ||
4171 | 砜\ | ||
4172 | 奎\ | ||
4173 | 耷\ | ||
4174 | 虺\ | ||
4175 | 殂\ | ||
4176 | 殇\ | ||
4177 | 殄\ | ||
4178 | 殆\ | ||
4179 | 轱\ | ||
4180 | 轲\ | ||
4181 | 轳\ | ||
4182 | 轶\ | ||
4183 | 轸\ | ||
4184 | 虿\ | ||
4185 | 毖\ | ||
4186 | 觇\ | ||
4187 | 尜\ | ||
4188 | 哐\ | ||
4189 | 眄\ | ||
4190 | 眍\ | ||
4191 | 𠳐\ | ||
4192 | 郢\ | ||
4193 | 眇\ | ||
4194 | 眊\ | ||
4195 | 眈\ | ||
4196 | 禺\ | ||
4197 | 哂\ | ||
4198 | 咴\ | ||
4199 | 曷\ | ||
4200 | 昴\ | ||
4201 | 昱\ | ||
4202 | 昵\ | ||
4203 | 咦\ | ||
4204 | 哓\ | ||
4205 | 哔\ | ||
4206 | 畎\ | ||
4207 | 毗\ | ||
4208 | 呲\ | ||
4209 | 胄\ | ||
4210 | 畋\ | ||
4211 | 畈\ | ||
4212 | 虼\ | ||
4213 | 虻\ | ||
4214 | 盅\ | ||
4215 | 咣\ | ||
4216 | 哕\ | ||
4217 | 剐\ | ||
4218 | 郧\ | ||
4219 | 咻\ | ||
4220 | 囿\ | ||
4221 | 咿\ | ||
4222 | 哌\ | ||
4223 | 哙\ | ||
4224 | 哚\ | ||
4225 | 咯\ | ||
4226 | 咩\ | ||
4227 | 咤\ | ||
4228 | 哝\ | ||
4229 | 哏\ | ||
4230 | 哞\ | ||
4231 | 峙\ | ||
4232 | 峣\ | ||
4233 | 罘\ | ||
4234 | 帧\ | ||
4235 | 峒\ | ||
4236 | 峤\ | ||
4237 | 峋\ | ||
4238 | 峥\ | ||
4239 | 贶\ | ||
4240 | 钚\ | ||
4241 | 钛\ | ||
4242 | 钡\ | ||
4243 | 钣\ | ||
4244 | 钤\ | ||
4245 | 钨\ | ||
4246 | 钫\ | ||
4247 | 钯\ | ||
4248 | 氡\ | ||
4249 | 氟\ | ||
4250 | 牯\ | ||
4251 | 郜\ | ||
4252 | 秕\ | ||
4253 | 秭\ | ||
4254 | 竽\ | ||
4255 | 笈\ | ||
4256 | 笃\ | ||
4257 | 俦\ | ||
4258 | 俨\ | ||
4259 | 俅\ | ||
4260 | 俪\ | ||
4261 | 叟\ | ||
4262 | 垡\ | ||
4263 | 牮\ | ||
4264 | 俣\ | ||
4265 | 俚\ | ||
4266 | 皈\ | ||
4267 | 俑\ | ||
4268 | 俟\ | ||
4269 | 逅\ | ||
4270 | 徇\ | ||
4271 | 徉\ | ||
4272 | 舢\ | ||
4273 | 俞\ | ||
4274 | 郗\ | ||
4275 | 俎\ | ||
4276 | 郤\ | ||
4277 | 爰\ | ||
4278 | 郛\ | ||
4279 | 瓴\ | ||
4280 | 胨\ | ||
4281 | 胪\ | ||
4282 | 胛\ | ||
4283 | 胂\ | ||
4284 | 胙\ | ||
4285 | 胍\ | ||
4286 | 胗\ | ||
4287 | 胝\ | ||
4288 | 朐\ | ||
4289 | 胫\ | ||
4290 | 鸨\ | ||
4291 | 匍\ | ||
4292 | 狨\ | ||
4293 | 狯\ | ||
4294 | 飑\ | ||
4295 | 狩\ | ||
4296 | 狲\ | ||
4297 | 訇\ | ||
4298 | 逄\ | ||
4299 | 昝\ | ||
4300 | 饷\ | ||
4301 | 饸\ | ||
4302 | 饹\ | ||
4303 | 胤\ | ||
4304 | 孪\ | ||
4305 | 娈\ | ||
4306 | 弈\ | ||
4307 | 奕\ | ||
4308 | 庥\ | ||
4309 | 疬\ | ||
4310 | 疣\ | ||
4311 | 疥\ | ||
4312 | 疭\ | ||
4313 | 庠\ | ||
4314 | 竑\ | ||
4315 | 彦\ | ||
4316 | 飒\ | ||
4317 | 闼\ | ||
4318 | 闾\ | ||
4319 | 闿\ | ||
4320 | 阂\ | ||
4321 | 羑\ | ||
4322 | 迸\ | ||
4323 | 籼\ | ||
4324 | 酋\ | ||
4325 | 炳\ | ||
4326 | 炻\ | ||
4327 | 炽\ | ||
4328 | 炯\ | ||
4329 | 烀\ | ||
4330 | 炷\ | ||
4331 | 烃\ | ||
4332 | 洱\ | ||
4333 | 洹\ | ||
4334 | 洧\ | ||
4335 | 洌\ | ||
4336 | 浃\ | ||
4337 | 洇\ | ||
4338 | 洄\ | ||
4339 | 洙\ | ||
4340 | 涎\ | ||
4341 | 洎\ | ||
4342 | 洫\ | ||
4343 | 浍\ | ||
4344 | 洮\ | ||
4345 | 洵\ | ||
4346 | 浒\ | ||
4347 | 浔\ | ||
4348 | 浕\ | ||
4349 | 洳\ | ||
4350 | 恸\ | ||
4351 | 恓\ | ||
4352 | 恹\ | ||
4353 | 恫\ | ||
4354 | 恺\ | ||
4355 | 恻\ | ||
4356 | 恂\ | ||
4357 | 恪\ | ||
4358 | 恽\ | ||
4359 | 宥\ | ||
4360 | 扃\ | ||
4361 | 衲\ | ||
4362 | 衽\ | ||
4363 | 衿\ | ||
4364 | 袂\ | ||
4365 | 祛\ | ||
4366 | 祜\ | ||
4367 | 祓\ | ||
4368 | 祚\ | ||
4369 | 诮\ | ||
4370 | 祗\ | ||
4371 | 祢\ | ||
4372 | 诰\ | ||
4373 | 诳\ | ||
4374 | 鸩\ | ||
4375 | 昶\ | ||
4376 | 郡\ | ||
4377 | 咫\ | ||
4378 | 弭\ | ||
4379 | 牁\ | ||
4380 | 胥\ | ||
4381 | 陛\ | ||
4382 | 陟\ | ||
4383 | 娅\ | ||
4384 | 姮\ | ||
4385 | 娆\ | ||
4386 | 姝\ | ||
4387 | 姣\ | ||
4388 | 姘\ | ||
4389 | 姹\ | ||
4390 | 怼\ | ||
4391 | 羿\ | ||
4392 | 炱\ | ||
4393 | 矜\ | ||
4394 | 绔\ | ||
4395 | 骁\ | ||
4396 | 骅\ | ||
4397 | 绗\ | ||
4398 | 绛\ | ||
4399 | 骈\ | ||
4400 | 耖\ | ||
4401 | 挈\ | ||
4402 | 珥\ | ||
4403 | 珙\ | ||
4404 | 顼\ | ||
4405 | 珰\ | ||
4406 | 珩\ | ||
4407 | 珧\ | ||
4408 | 珣\ | ||
4409 | 珞\ | ||
4410 | 琤\ | ||
4411 | 珲\ | ||
4412 | 敖\ | ||
4413 | 恚\ | ||
4414 | 埔\ | ||
4415 | 埕\ | ||
4416 | 埘\ | ||
4417 | 埙\ | ||
4418 | 埚\ | ||
4419 | 挹\ | ||
4420 | 耆\ | ||
4421 | 耄\ | ||
4422 | 埒\ | ||
4423 | 捋\ | ||
4424 | 贽\ | ||
4425 | 垸\ | ||
4426 | 捃\ | ||
4427 | 盍\ | ||
4428 | 荸\ | ||
4429 | 莆\ | ||
4430 | 莳\ | ||
4431 | 莴\ | ||
4432 | 莪\ | ||
4433 | 莠\ | ||
4434 | 莓\ | ||
4435 | 莜\ | ||
4436 | 莅\ | ||
4437 | 荼\ | ||
4438 | 莩\ | ||
4439 | 荽\ | ||
4440 | 莸\ | ||
4441 | 荻\ | ||
4442 | 莘\ | ||
4443 | 莎\ | ||
4444 | 莞\ | ||
4445 | 莨\ | ||
4446 | 鸪\ | ||
4447 | 莼\ | ||
4448 | 栲\ | ||
4449 | 栳\ | ||
4450 | 郴\ | ||
4451 | 桓\ | ||
4452 | 桡\ | ||
4453 | 桎\ | ||
4454 | 桢\ | ||
4455 | 桤\ | ||
4456 | 梃\ | ||
4457 | 栝\ | ||
4458 | 桕\ | ||
4459 | 桁\ | ||
4460 | 桧\ | ||
4461 | 桅\ | ||
4462 | 栟\ | ||
4463 | 桉\ | ||
4464 | 栩\ | ||
4465 | 逑\ | ||
4466 | 逋\ | ||
4467 | 彧\ | ||
4468 | 鬲\ | ||
4469 | 豇\ | ||
4470 | 酐\ | ||
4471 | 逦\ | ||
4472 | 厝\ | ||
4473 | 孬\ | ||
4474 | 砝\ | ||
4475 | 砹\ | ||
4476 | 砺\ | ||
4477 | 砧\ | ||
4478 | 砷\ | ||
4479 | 砟\ | ||
4480 | 砼\ | ||
4481 | 砥\ | ||
4482 | 砣\ | ||
4483 | 剞\ | ||
4484 | 砻\ | ||
4485 | 轼\ | ||
4486 | 轾\ | ||
4487 | 辂\ | ||
4488 | 鸫\ | ||
4489 | 趸\ | ||
4490 | 龀\ | ||
4491 | 鸬\ | ||
4492 | 虔\ | ||
4493 | 逍\ | ||
4494 | 眬\ | ||
4495 | 唛\ | ||
4496 | 晟\ | ||
4497 | 眩\ | ||
4498 | 眙\ | ||
4499 | 哧\ | ||
4500 | 哽\ | ||
4501 | 唔\ | ||
4502 | 晁\ | ||
4503 | 晏\ | ||
4504 | 鸮\ | ||
4505 | 趵\ | ||
4506 | 趿\ | ||
4507 | 畛\ | ||
4508 | 蚨\ | ||
4509 | 蚜\ | ||
4510 | 蚍\ | ||
4511 | 蚋\ | ||
4512 | 蚬\ | ||
4513 | 蚝\ | ||
4514 | 蚧\ | ||
4515 | 唢\ | ||
4516 | 圄\ | ||
4517 | 唣\ | ||
4518 | 唏\ | ||
4519 | 盎\ | ||
4520 | 唑\ | ||
4521 | 崂\ | ||
4522 | 崃\ | ||
4523 | 罡\ | ||
4524 | 罟\ | ||
4525 | 峪\ | ||
4526 | 觊\ | ||
4527 | 赅\ | ||
4528 | 钰\ | ||
4529 | 钲\ | ||
4530 | 钴\ | ||
4531 | 钵\ | ||
4532 | 钹\ | ||
4533 | 钺\ | ||
4534 | 钽\ | ||
4535 | 钼\ | ||
4536 | 钿\ | ||
4537 | 铀\ | ||
4538 | 铂\ | ||
4539 | 铄\ | ||
4540 | 铆\ | ||
4541 | 铈\ | ||
4542 | 铉\ | ||
4543 | 铊\ | ||
4544 | 铋\ | ||
4545 | 铌\ | ||
4546 | 铍\ | ||
4547 | 䥽\ | ||
4548 | 铎\ | ||
4549 | 氩\ | ||
4550 | 氤\ | ||
4551 | 氦\ | ||
4552 | 毪\ | ||
4553 | 舐\ | ||
4554 | 秣\ | ||
4555 | 秫\ | ||
4556 | 盉\ | ||
4557 | 笄\ | ||
4558 | 笕\ | ||
4559 | 笊\ | ||
4560 | 笏\ | ||
4561 | 笆\ | ||
4562 | 俸\ | ||
4563 | 倩\ | ||
4564 | 俵\ | ||
4565 | 偌\ | ||
4566 | 俳\ | ||
4567 | 俶\ | ||
4568 | 倬\ | ||
4569 | 倏\ | ||
4570 | 恁\ | ||
4571 | 倭\ | ||
4572 | 倪\ | ||
4573 | 俾\ | ||
4574 | 倜\ | ||
4575 | 隼\ | ||
4576 | 隽\ | ||
4577 | 倌\ | ||
4578 | 倥\ | ||
4579 | 臬\ | ||
4580 | 皋\ | ||
4581 | 郫\ | ||
4582 | 倨\ | ||
4583 | 衄\ | ||
4584 | 颀\ | ||
4585 | 徕\ | ||
4586 | 舫\ | ||
4587 | 釜\ | ||
4588 | 奚\ | ||
4589 | 衾\ | ||
4590 | 胯\ | ||
4591 | 胱\ | ||
4592 | 胴\ | ||
4593 | 胭\ | ||
4594 | 脍\ | ||
4595 | 胼\ | ||
4596 | 朕\ | ||
4597 | 脒\ | ||
4598 | 胺\ | ||
4599 | 鸱\ | ||
4600 | 玺\ | ||
4601 | 鸲\ | ||
4602 | 狷\ | ||
4603 | 猁\ | ||
4604 | 狳\ | ||
4605 | 猃\ | ||
4606 | 狺\ | ||
4607 | 逖\ | ||
4608 | 桀\ | ||
4609 | 袅\ | ||
4610 | 饽\ | ||
4611 | 凇\ | ||
4612 | 栾\ | ||
4613 | 挛\ | ||
4614 | 亳\ | ||
4615 | 疳\ | ||
4616 | 疴\ | ||
4617 | 疸\ | ||
4618 | 疽\ | ||
4619 | 痈\ | ||
4620 | 疱\ | ||
4621 | 痂\ | ||
4622 | 痉\ | ||
4623 | 衮\ | ||
4624 | 凋\ | ||
4625 | 颃\ | ||
4626 | 恣\ | ||
4627 | 旆\ | ||
4628 | 旄\ | ||
4629 | 旃\ | ||
4630 | 阃\ | ||
4631 | 阄\ | ||
4632 | 訚\ | ||
4633 | 阆\ | ||
4634 | 恙\ | ||
4635 | 粑\ | ||
4636 | 朔\ | ||
4637 | 郸\ | ||
4638 | 烜\ | ||
4639 | 烨\ | ||
4640 | 烩\ | ||
4641 | 烊\ | ||
4642 | 剡\ | ||
4643 | 郯\ | ||
4644 | 烬\ | ||
4645 | 涑\ | ||
4646 | 浯\ | ||
4647 | 涞\ | ||
4648 | 涟\ | ||
4649 | 娑\ | ||
4650 | 涅\ | ||
4651 | 涠\ | ||
4652 | 浞\ | ||
4653 | 涓\ | ||
4654 | 浥\ | ||
4655 | 涔\ | ||
4656 | 浜\ | ||
4657 | 浠\ | ||
4658 | 浣\ | ||
4659 | 浚\ | ||
4660 | 悚\ | ||
4661 | 悭\ | ||
4662 | 悝\ | ||
4663 | 悒\ | ||
4664 | 悌\ | ||
4665 | 悛\ | ||
4666 | 宸\ | ||
4667 | 窈\ | ||
4668 | 剜\ | ||
4669 | 诹\ | ||
4670 | 冢\ | ||
4671 | 诼\ | ||
4672 | 袒\ | ||
4673 | 袢\ | ||
4674 | 祯\ | ||
4675 | 诿\ | ||
4676 | 谀\ | ||
4677 | 谂\ | ||
4678 | 谄\ | ||
4679 | 谇\ | ||
4680 | 屐\ | ||
4681 | 屙\ | ||
4682 | 陬\ | ||
4683 | 勐\ | ||
4684 | 奘\ | ||
4685 | 牂\ | ||
4686 | 蚩\ | ||
4687 | 陲\ | ||
4688 | 姬\ | ||
4689 | 娠\ | ||
4690 | 娌\ | ||
4691 | 娉\ | ||
4692 | 娲\ | ||
4693 | 娩\ | ||
4694 | 娴\ | ||
4695 | 娣\ | ||
4696 | 娓\ | ||
4697 | 婀\ | ||
4698 | 畚\ | ||
4699 | 逡\ | ||
4700 | 绠\ | ||
4701 | 骊\ | ||
4702 | 绡\ | ||
4703 | 骋\ | ||
4704 | 绥\ | ||
4705 | 绦\ | ||
4706 | 绨\ | ||
4707 | 骎\ | ||
4708 | 邕\ | ||
4709 | 鸶\ | ||
4710 | 彗\ | ||
4711 | 耜\ | ||
4712 | 焘\ | ||
4713 | 舂\ | ||
4714 | 琏\ | ||
4715 | 琇\ | ||
4716 | 麸\ | ||
4717 | 揶\ | ||
4718 | 埴\ | ||
4719 | 埯\ | ||
4720 | 捯\ | ||
4721 | 掳\ | ||
4722 | 掴\ | ||
4723 | 埸\ | ||
4724 | 埵\ | ||
4725 | 赧\ | ||
4726 | 埤\ | ||
4727 | 捭\ | ||
4728 | 逵\ | ||
4729 | 埝\ | ||
4730 | 堋\ | ||
4731 | 堍\ | ||
4732 | 掬\ | ||
4733 | 鸷\ | ||
4734 | 掖\ | ||
4735 | 捽\ | ||
4736 | 掊\ | ||
4737 | 堉\ | ||
4738 | 掸\ | ||
4739 | 捩\ | ||
4740 | 掮\ | ||
4741 | 悫\ | ||
4742 | 埭\ | ||
4743 | 埽\ | ||
4744 | 掇\ | ||
4745 | 掼\ | ||
4746 | 聃\ | ||
4747 | 菁\ | ||
4748 | 萁\ | ||
4749 | 菘\ | ||
4750 | 堇\ | ||
4751 | 萘\ | ||
4752 | 萋\ | ||
4753 | 菽\ | ||
4754 | 菖\ | ||
4755 | 萜\ | ||
4756 | 萸\ | ||
4757 | 萑\ | ||
4758 | 棻\ | ||
4759 | 菔\ | ||
4760 | 菟\ | ||
4761 | 萏\ | ||
4762 | 萃\ | ||
4763 | 菏\ | ||
4764 | 菹\ | ||
4765 | 菪\ | ||
4766 | 菅\ | ||
4767 | 菀\ | ||
4768 | 萦\ | ||
4769 | 菰\ | ||
4770 | 菡\ | ||
4771 | 梵\ | ||
4772 | 梿\ | ||
4773 | 梏\ | ||
4774 | 觋\ | ||
4775 | 桴\ | ||
4776 | 桷\ | ||
4777 | 梓\ | ||
4778 | 棁\ | ||
4779 | 桫\ | ||
4780 | 棂\ | ||
4781 | 啬\ | ||
4782 | 郾\ | ||
4783 | 匮\ | ||
4784 | 敕\ | ||
4785 | 豉\ | ||
4786 | 鄄\ | ||
4787 | 酞\ | ||
4788 | 酚\ | ||
4789 | 戛\ | ||
4790 | 硎\ | ||
4791 | 硭\ | ||
4792 | 硒\ | ||
4793 | 硖\ | ||
4794 | 硗\ | ||
4795 | 硐\ | ||
4796 | 硇\ | ||
4797 | 硌\ | ||
4798 | 鸸\ | ||
4799 | 瓠\ | ||
4800 | 匏\ | ||
4801 | 厩\ | ||
4802 | 龚\ | ||
4803 | 殒\ | ||
4804 | 殓\ | ||
4805 | 殍\ | ||
4806 | 赉\ | ||
4807 | 雩\ | ||
4808 | 辄\ | ||
4809 | 堑\ | ||
4810 | 眭\ | ||
4811 | 眦\ | ||
4812 | 啧\ | ||
4813 | 晡\ | ||
4814 | 晤\ | ||
4815 | 眺\ | ||
4816 | 眵\ | ||
4817 | 眸\ | ||
4818 | 圊\ | ||
4819 | 喏\ | ||
4820 | 喵\ | ||
4821 | 啉\ | ||
4822 | 勖\ | ||
4823 | 晞\ | ||
4824 | 唵\ | ||
4825 | 晗\ | ||
4826 | 冕\ | ||
4827 | 啭\ | ||
4828 | 畦\ | ||
4829 | 趺\ | ||
4830 | 啮\ | ||
4831 | 跄\ | ||
4832 | 蚶\ | ||
4833 | 蛄\ | ||
4834 | 蛎\ | ||
4835 | 蛆\ | ||
4836 | 蚰\ | ||
4837 | 蛊\ | ||
4838 | 圉\ | ||
4839 | 蚱\ | ||
4840 | 蛉\ | ||
4841 | 蛏\ | ||
4842 | 蚴\ | ||
4843 | 啁\ | ||
4844 | 啕\ | ||
4845 | 唿\ | ||
4846 | 啐\ | ||
4847 | 唼\ | ||
4848 | 唷\ | ||
4849 | 啖\ | ||
4850 | 啵\ | ||
4851 | 啶\ | ||
4852 | 啷\ | ||
4853 | 唳\ | ||
4854 | 唰\ | ||
4855 | 啜\ | ||
4856 | 帻\ | ||
4857 | 崚\ | ||
4858 | 崦\ | ||
4859 | 帼\ | ||
4860 | 崮\ | ||
4861 | 崤\ | ||
4862 | 崆\ | ||
4863 | 赇\ | ||
4864 | 赈\ | ||
4865 | 赊\ | ||
4866 | 铑\ | ||
4867 | 铒\ | ||
4868 | 铗\ | ||
4869 | 铙\ | ||
4870 | 铟\ | ||
4871 | 铠\ | ||
4872 | 铡\ | ||
4873 | 铢\ | ||
4874 | 铣\ | ||
4875 | 铤\ | ||
4876 | 铧\ | ||
4877 | 铨\ | ||
4878 | 铩\ | ||
4879 | 铪\ | ||
4880 | 铫\ | ||
4881 | 铬\ | ||
4882 | 铮\ | ||
4883 | 铯\ | ||
4884 | 铰\ | ||
4885 | 铱\ | ||
4886 | 铳\ | ||
4887 | 铵\ | ||
4888 | 铷\ | ||
4889 | 氪\ | ||
4890 | 牾\ | ||
4891 | 鸹\ | ||
4892 | 秾\ | ||
4893 | 逶\ | ||
4894 | 笺\ | ||
4895 | 筇\ | ||
4896 | 笸\ | ||
4897 | 笪\ | ||
4898 | 笮\ | ||
4899 | 笠\ | ||
4900 | 笥\ | ||
4901 | 笤\ | ||
4902 | 笳\ | ||
4903 | 笾\ | ||
4904 | 笞\ | ||
4905 | 偾\ | ||
4906 | 偃\ | ||
4907 | 偕\ | ||
4908 | 偈\ | ||
4909 | 傀\ | ||
4910 | 偬\ | ||
4911 | 偻\ | ||
4912 | 皑\ | ||
4913 | 皎\ | ||
4914 | 鸻\ | ||
4915 | 徜\ | ||
4916 | 舸\ | ||
4917 | 舻\ | ||
4918 | 舴\ | ||
4919 | 舷\ | ||
4920 | 龛\ | ||
4921 | 翎\ | ||
4922 | 脬\ | ||
4923 | 脘\ | ||
4924 | 脲\ | ||
4925 | 匐\ | ||
4926 | 猗\ | ||
4927 | 猡\ | ||
4928 | 猞\ | ||
4929 | 猝\ | ||
4930 | 斛\ | ||
4931 | 猕\ | ||
4932 | 馗\ | ||
4933 | 馃\ | ||
4934 | 馄\ | ||
4935 | 鸾\ | ||
4936 | 孰\ | ||
4937 | 庹\ | ||
4938 | 庾\ | ||
4939 | 痔\ | ||
4940 | 痍\ | ||
4941 | 疵\ | ||
4942 | 翊\ | ||
4943 | 旌\ | ||
4944 | 旎\ | ||
4945 | 袤\ | ||
4946 | 阇\ | ||
4947 | 阈\ | ||
4948 | 阉\ | ||
4949 | 阊\ | ||
4950 | 阋\ | ||
4951 | 阍\ | ||
4952 | 阏\ | ||
4953 | 羟\ | ||
4954 | 粝\ | ||
4955 | 粕\ | ||
4956 | 敝\ | ||
4957 | 焐\ | ||
4958 | 烯\ | ||
4959 | 焓\ | ||
4960 | 烽\ | ||
4961 | 焖\ | ||
4962 | 烷\ | ||
4963 | 焗\ | ||
4964 | 渍\ | ||
4965 | 渚\ | ||
4966 | 淇\ | ||
4967 | 淅\ | ||
4968 | 淞\ | ||
4969 | 渎\ | ||
4970 | 涿\ | ||
4971 | 淖\ | ||
4972 | 挲\ | ||
4973 | 淠\ | ||
4974 | 涸\ | ||
4975 | 渑\ | ||
4976 | 淦\ | ||
4977 | 淝\ | ||
4978 | 淬\ | ||
4979 | 涪\ | ||
4980 | 淙\ | ||
4981 | 涫\ | ||
4982 | 渌\ | ||
4983 | 淄\ | ||
4984 | 惬\ | ||
4985 | 悻\ | ||
4986 | 悱\ | ||
4987 | 惝\ | ||
4988 | 惘\ | ||
4989 | 悸\ | ||
4990 | 惆\ | ||
4991 | 惚\ | ||
4992 | 惇\ | ||
4993 | 惮\ | ||
4994 | 窕\ | ||
4995 | 谌\ | ||
4996 | 谏\ | ||
4997 | 扈\ | ||
4998 | 皲\ | ||
4999 | 谑\ | ||
5000 | 裆\ | ||
5001 | 袷\ | ||
5002 | 裉\ | ||
5003 | 谒\ | ||
5004 | 谔\ | ||
5005 | 谕\ | ||
5006 | 谖\ | ||
5007 | 谗\ | ||
5008 | 谙\ | ||
5009 | 谛\ | ||
5010 | 谝\ | ||
5011 | 逯\ | ||
5012 | 郿\ | ||
5013 | 隈\ | ||
5014 | 粜\ | ||
5015 | 隍\ | ||
5016 | 隗\ | ||
5017 | 婧\ | ||
5018 | 婊\ | ||
5019 | 婕\ | ||
5020 | 娼\ | ||
5021 | 婢\ | ||
5022 | 婵\ | ||
5023 | 胬\ | ||
5024 | 袈\ | ||
5025 | 翌\ | ||
5026 | 恿\ | ||
5027 | 欸\ | ||
5028 | 绫\ | ||
5029 | 骐\ | ||
5030 | 绮\ | ||
5031 | 绯\ | ||
5032 | 绱\ | ||
5033 | 骒\ | ||
5034 | 绲\ | ||
5035 | 骓\ | ||
5036 | 绶\ | ||
5037 | 绺\ | ||
5038 | 绻\ | ||
5039 | 绾\ | ||
5040 | 骖\ | ||
5041 | 缁\ | ||
5042 | 耠\ | ||
5043 | 琫\ | ||
5044 | 琵\ | ||
5045 | 琶\ | ||
5046 | 琪\ | ||
5047 | 瑛\ | ||
5048 | 琦\ | ||
5049 | 琥\ | ||
5050 | 琨\ | ||
5051 | 靓\ | ||
5052 | 琰\ | ||
5053 | 琮\ | ||
5054 | 琯\ | ||
5055 | 琬\ | ||
5056 | 琛\ | ||
5057 | 琚\ | ||
5058 | 辇\ | ||
5059 | 鼋\ | ||
5060 | 揳\ | ||
5061 | 堞\ | ||
5062 | 搽\ | ||
5063 | 揸\ | ||
5064 | 揠\ | ||
5065 | 堙\ | ||
5066 | 趄\ | ||
5067 | 揖\ | ||
5068 | 颉\ | ||
5069 | 塄\ | ||
5070 | 揿\ | ||
5071 | 耋\ | ||
5072 | 揄\ | ||
5073 | 蛩\ | ||
5074 | 蛰\ | ||
5075 | 塆\ | ||
5076 | 摒\ | ||
5077 | 揆\ | ||
5078 | 掾\ | ||
5079 | 聒\ | ||
5080 | 葑\ | ||
5081 | 葚\ | ||
5082 | 靰\ | ||
5083 | 靸\ | ||
5084 | 葳\ | ||
5085 | 葺\ | ||
5086 | 葸\ | ||
5087 | 萼\ | ||
5088 | 葆\ | ||
5089 | 葩\ | ||
5090 | 葶\ | ||
5091 | 蒌\ | ||
5092 | 萱\ | ||
5093 | 戟\ | ||
5094 | 葭\ | ||
5095 | 楮\ | ||
5096 | 棼\ | ||
5097 | 椟\ | ||
5098 | 棹\ | ||
5099 | 椤\ | ||
5100 | 棰\ | ||
5101 | 赍\ | ||
5102 | 椋\ | ||
5103 | 椁\ | ||
5104 | 椪\ | ||
5105 | 棣\ | ||
5106 | 椐\ | ||
5107 | 鹁\ | ||
5108 | 覃\ | ||
5109 | 酤\ | ||
5110 | 酢\ | ||
5111 | 酡\ | ||
5112 | 鹂\ | ||
5113 | 厥\ | ||
5114 | 殚\ | ||
5115 | 殛\ | ||
5116 | 雯\ | ||
5117 | 雱\ | ||
5118 | 辊\ | ||
5119 | 辋\ | ||
5120 | 椠\ | ||
5121 | 辍\ | ||
5122 | 辎\ | ||
5123 | 斐\ | ||
5124 | 睄\ | ||
5125 | 睑\ | ||
5126 | 睇\ | ||
5127 | 睃\ | ||
5128 | 戢\ | ||
5129 | 喋\ | ||
5130 | 嗒\ | ||
5131 | 喃\ | ||
5132 | 喱\ | ||
5133 | 喹\ | ||
5134 | 晷\ | ||
5135 | 喈\ | ||
5136 | 跖\ | ||
5137 | 跗\ | ||
5138 | 跞\ | ||
5139 | 跚\ | ||
5140 | 跎\ | ||
5141 | 跏\ | ||
5142 | 跆\ | ||
5143 | 蛱\ | ||
5144 | 蛲\ | ||
5145 | 蛭\ | ||
5146 | 蛳\ | ||
5147 | 蛐\ | ||
5148 | 蛔\ | ||
5149 | 蛞\ | ||
5150 | 蛴\ | ||
5151 | 蛟\ | ||
5152 | 蛘\ | ||
5153 | 喁\ | ||
5154 | 喟\ | ||
5155 | 啾\ | ||
5156 | 嗖\ | ||
5157 | 喑\ | ||
5158 | 嗟\ | ||
5159 | 喽\ | ||
5160 | 嗞\ | ||
5161 | 喀\ | ||
5162 | 喔\ | ||
5163 | 喙\ | ||
5164 | 嵘\ | ||
5165 | 嵖\ | ||
5166 | 崴\ | ||
5167 | 遄\ | ||
5168 | 詈\ | ||
5169 | 嵎\ | ||
5170 | 崽\ | ||
5171 | 嵬\ | ||
5172 | 嵛\ | ||
5173 | 嵯\ | ||
5174 | 嵝\ | ||
5175 | 嵫\ | ||
5176 | 幄\ | ||
5177 | 嵋\ | ||
5178 | 赕\ | ||
5179 | 铻\ | ||
5180 | 铼\ | ||
5181 | 铿\ | ||
5182 | 锃\ | ||
5183 | 锂\ | ||
5184 | 锆\ | ||
5185 | 锇\ | ||
5186 | 锉\ | ||
5187 | 锏\ | ||
5188 | 锑\ | ||
5189 | 锒\ | ||
5190 | 锔\ | ||
5191 | 锕\ | ||
5192 | 掣\ | ||
5193 | 矬\ | ||
5194 | 氰\ | ||
5195 | 毳\ | ||
5196 | 毽\ | ||
5197 | 犊\ | ||
5198 | 犄\ | ||
5199 | 犋\ | ||
5200 | 鹄\ | ||
5201 | 犍\ | ||
5202 | 嵇\ | ||
5203 | 黍\ | ||
5204 | 稃\ | ||
5205 | 稂\ | ||
5206 | 筚\ | ||
5207 | 筵\ | ||
5208 | 筌\ | ||
5209 | 傣\ | ||
5210 | 傈\ | ||
5211 | 舄\ | ||
5212 | 牍\ | ||
5213 | 傥\ | ||
5214 | 傧\ | ||
5215 | 遑\ | ||
5216 | 傩\ | ||
5217 | 遁\ | ||
5218 | 徨\ | ||
5219 | 媭\ | ||
5220 | 畲\ | ||
5221 | 弑\ | ||
5222 | 颌\ | ||
5223 | 翕\ | ||
5224 | 釉\ | ||
5225 | 鹆\ | ||
5226 | 舜\ | ||
5227 | 貂\ | ||
5228 | 腈\ | ||
5229 | 腌\ | ||
5230 | 腓\ | ||
5231 | 腆\ | ||
5232 | 腴\ | ||
5233 | 腑\ | ||
5234 | 腚\ | ||
5235 | 腱\ | ||
5236 | 鱿\ | ||
5237 | 鲀\ | ||
5238 | 鲂\ | ||
5239 | 颍\ | ||
5240 | 猢\ | ||
5241 | 猹\ | ||
5242 | 猥\ | ||
5243 | 飓\ | ||
5244 | 觞\ | ||
5245 | 觚\ | ||
5246 | 猱\ | ||
5247 | 颎\ | ||
5248 | 飧\ | ||
5249 | 馇\ | ||
5250 | 馊\ | ||
5251 | 亵\ | ||
5252 | 脔\ | ||
5253 | 裒\ | ||
5254 | 痣\ | ||
5255 | 痨\ | ||
5256 | 痦\ | ||
5257 | 痞\ | ||
5258 | 痤\ | ||
5259 | 痫\ | ||
5260 | 痧\ | ||
5261 | 赓\ | ||
5262 | 竦\ | ||
5263 | 瓿\ | ||
5264 | 啻\ | ||
5265 | 颏\ | ||
5266 | 鹇\ | ||
5267 | 阑\ | ||
5268 | 阒\ | ||
5269 | 阕\ | ||
5270 | 粞\ | ||
5271 | 遒\ | ||
5272 | 孳\ | ||
5273 | 焯\ | ||
5274 | 焜\ | ||
5275 | 焙\ | ||
5276 | 焱\ | ||
5277 | 鹈\ | ||
5278 | 湛\ | ||
5279 | 渫\ | ||
5280 | 湮\ | ||
5281 | 湎\ | ||
5282 | 湜\ | ||
5283 | 渭\ | ||
5284 | 湍\ | ||
5285 | 湫\ | ||
5286 | 溲\ | ||
5287 | 湟\ | ||
5288 | 溆\ | ||
5289 | 湲\ | ||
5290 | 湔\ | ||
5291 | 湉\ | ||
5292 | 渥\ | ||
5293 | 湄\ | ||
5294 | 滁\ | ||
5295 | 愠\ | ||
5296 | 惺\ | ||
5297 | 愦\ | ||
5298 | 惴\ | ||
5299 | 愀\ | ||
5300 | 愎\ | ||
5301 | 愔\ | ||
5302 | 喾\ | ||
5303 | 寐\ | ||
5304 | 谟\ | ||
5305 | 扉\ | ||
5306 | 裢\ | ||
5307 | 裎\ | ||
5308 | 裥\ | ||
5309 | 祾\ | ||
5310 | 祺\ | ||
5311 | 谠\ | ||
5312 | 幂\ | ||
5313 | 谡\ | ||
5314 | 谥\ | ||
5315 | 谧\ | ||
5316 | 遐\ | ||
5317 | 孱\ | ||
5318 | 弼\ | ||
5319 | 巽\ | ||
5320 | 骘\ | ||
5321 | 媪\ | ||
5322 | 媛\ | ||
5323 | 婷\ | ||
5324 | 巯\ | ||
5325 | 翚\ | ||
5326 | 皴\ | ||
5327 | 婺\ | ||
5328 | 骛\ | ||
5329 | 缂\ | ||
5330 | 缃\ | ||
5331 | 缄\ | ||
5332 | 彘\ | ||
5333 | 缇\ | ||
5334 | 缈\ | ||
5335 | 缌\ | ||
5336 | 缑\ | ||
5337 | 缒\ | ||
5338 | 缗\ | ||
5339 | 飨\ | ||
5340 | 耢\ | ||
5341 | 瑚\ | ||
5342 | 瑁\ | ||
5343 | 瑜\ | ||
5344 | 瑗\ | ||
5345 | 瑄\ | ||
5346 | 瑕\ | ||
5347 | 遨\ | ||
5348 | 骜\ | ||
5349 | 韫\ | ||
5350 | 髡\ | ||
5351 | 塬\ | ||
5352 | 鄢\ | ||
5353 | 趔\ | ||
5354 | 趑\ | ||
5355 | 摅\ | ||
5356 | 摁\ | ||
5357 | 蜇\ | ||
5358 | 搋\ | ||
5359 | 搪\ | ||
5360 | 搐\ | ||
5361 | 搛\ | ||
5362 | 搠\ | ||
5363 | 摈\ | ||
5364 | 彀\ | ||
5365 | 毂\ | ||
5366 | 搦\ | ||
5367 | 搡\ | ||
5368 | 蓁\ | ||
5369 | 戡\ | ||
5370 | 蓍\ | ||
5371 | 鄞\ | ||
5372 | 靳\ | ||
5373 | 蓐\ | ||
5374 | 蓦\ | ||
5375 | 鹋\ | ||
5376 | 蒽\ | ||
5377 | 蓓\ | ||
5378 | 蓖\ | ||
5379 | 蓊\ | ||
5380 | 蒯\ | ||
5381 | 蓟\ | ||
5382 | 蓑\ | ||
5383 | 蒿\ | ||
5384 | 蒺\ | ||
5385 | 蓠\ | ||
5386 | 蒟\ | ||
5387 | 蒡\ | ||
5388 | 蒹\ | ||
5389 | 蒴\ | ||
5390 | 蒗\ | ||
5391 | 蓥\ | ||
5392 | 颐\ | ||
5393 | 楔\ | ||
5394 | 楠\ | ||
5395 | 楂\ | ||
5396 | 楝\ | ||
5397 | 楫\ | ||
5398 | 楸\ | ||
5399 | 椴\ | ||
5400 | 槌\ | ||
5401 | 楯\ | ||
5402 | 皙\ | ||
5403 | 榈\ | ||
5404 | 槎\ | ||
5405 | 榉\ | ||
5406 | 楦\ | ||
5407 | 楣\ | ||
5408 | 楹\ | ||
5409 | 椽\ | ||
5410 | 裘\ | ||
5411 | 剽\ | ||
5412 | 甄\ | ||
5413 | 酮\ | ||
5414 | 酰\ | ||
5415 | 酯\ | ||
5416 | 酩\ | ||
5417 | 蜃\ | ||
5418 | 碛\ | ||
5419 | 碓\ | ||
5420 | 硼\ | ||
5421 | 碉\ | ||
5422 | 碚\ | ||
5423 | 碇\ | ||
5424 | 碜\ | ||
5425 | 鹌\ | ||
5426 | 辏\ | ||
5427 | 龃\ | ||
5428 | 龅\ | ||
5429 | 訾\ | ||
5430 | 粲\ | ||
5431 | 虞\ | ||
5432 | 睚\ | ||
5433 | 嗪\ | ||
5434 | 韪\ | ||
5435 | 嗷\ | ||
5436 | 嗉\ | ||
5437 | 睨\ | ||
5438 | 睢\ | ||
5439 | 雎\ | ||
5440 | 睥\ | ||
5441 | 嘟\ | ||
5442 | 嗑\ | ||
5443 | 嗫\ | ||
5444 | 嗬\ | ||
5445 | 嗔\ | ||
5446 | 嗝\ | ||
5447 | 戥\ | ||
5448 | 嗄\ | ||
5449 | 煦\ | ||
5450 | 暄\ | ||
5451 | 遢\ | ||
5452 | 暌\ | ||
5453 | 跬\ | ||
5454 | 跶\ | ||
5455 | 跸\ | ||
5456 | 跐\ | ||
5457 | 跣\ | ||
5458 | 跹\ | ||
5459 | 跻\ | ||
5460 | 蛸\ | ||
5461 | 蜊\ | ||
5462 | 蜍\ | ||
5463 | 蜉\ | ||
5464 | 蜣\ | ||
5465 | 畹\ | ||
5466 | 蛹\ | ||
5467 | 嗣\ | ||
5468 | 嗯\ | ||
5469 | 嗥\ | ||
5470 | 嗲\ | ||
5471 | 嗳\ | ||
5472 | 嗌\ | ||
5473 | 嗍\ | ||
5474 | 嗨\ | ||
5475 | 嗐\ | ||
5476 | 嗤\ | ||
5477 | 嗵\ | ||
5478 | 罨\ | ||
5479 | 嵊\ | ||
5480 | 嵩\ | ||
5481 | 嵴\ | ||
5482 | 骰\ | ||
5483 | 锗\ | ||
5484 | 锛\ | ||
5485 | 锜\ | ||
5486 | 锝\ | ||
5487 | 锞\ | ||
5488 | 锟\ | ||
5489 | 锢\ | ||
5490 | 锨\ | ||
5491 | 锩\ | ||
5492 | 锭\ | ||
5493 | 锱\ | ||
5494 | 雉\ | ||
5495 | 氲\ | ||
5496 | 犏\ | ||
5497 | 歃\ | ||
5498 | 稞\ | ||
5499 | 稗\ | ||
5500 | 稔\ | ||
5501 | 筠\ | ||
5502 | 筢\ | ||
5503 | 筮\ | ||
5504 | 筲\ | ||
5505 | 筱\ | ||
5506 | 牒\ | ||
5507 | 煲\ | ||
5508 | 敫\ | ||
5509 | 徭\ | ||
5510 | 愆\ | ||
5511 | 艄\ | ||
5512 | 觎\ | ||
5513 | 毹\ | ||
5514 | 貊\ | ||
5515 | 貅\ | ||
5516 | 貉\ | ||
5517 | 颔\ | ||
5518 | 腠\ | ||
5519 | 腩\ | ||
5520 | 腼\ | ||
5521 | 腭\ | ||
5522 | 腧\ | ||
5523 | 塍\ | ||
5524 | 媵\ | ||
5525 | 詹\ | ||
5526 | 鲅\ | ||
5527 | 鲆\ | ||
5528 | 鲇\ | ||
5529 | 鲈\ | ||
5530 | 稣\ | ||
5531 | 鲋\ | ||
5532 | 鲐\ | ||
5533 | 肄\ | ||
5534 | 鹐\ | ||
5535 | 飕\ | ||
5536 | 觥\ | ||
5537 | 遛\ | ||
5538 | 馐\ | ||
5539 | 鹑\ | ||
5540 | 亶\ | ||
5541 | 瘃\ | ||
5542 | 痱\ | ||
5543 | 痼\ | ||
5544 | 痿\ | ||
5545 | 瘐\ | ||
5546 | 瘁\ | ||
5547 | 瘆\ | ||
5548 | 麂\ | ||
5549 | 裔\ | ||
5550 | 歆\ | ||
5551 | 旒\ | ||
5552 | 雍\ | ||
5553 | 阖\ | ||
5554 | 阗\ | ||
5555 | 阙\ | ||
5556 | 羧\ | ||
5557 | 豢\ | ||
5558 | 粳\ | ||
5559 | 猷\ | ||
5560 | 煳\ | ||
5561 | 煜\ | ||
5562 | 煨\ | ||
5563 | 煅\ | ||
5564 | 煊\ | ||
5565 | 煸\ | ||
5566 | 煺\ | ||
5567 | 滟\ | ||
5568 | 溱\ | ||
5569 | 溘\ | ||
5570 | 漭\ | ||
5571 | 滢\ | ||
5572 | 溥\ | ||
5573 | 溧\ | ||
5574 | 溽\ | ||
5575 | 裟\ | ||
5576 | 溻\ | ||
5577 | 溷\ | ||
5578 | 滗\ | ||
5579 | 滫\ | ||
5580 | 溴\ | ||
5581 | 滏\ | ||
5582 | 滃\ | ||
5583 | 滦\ | ||
5584 | 溏\ | ||
5585 | 滂\ | ||
5586 | 滓\ | ||
5587 | 溟\ | ||
5588 | 滪\ | ||
5589 | 愫\ | ||
5590 | 慑\ | ||
5591 | 慊\ | ||
5592 | 鲎\ | ||
5593 | 骞\ | ||
5594 | 窦\ | ||
5595 | 窠\ | ||
5596 | 窣\ | ||
5597 | 裱\ | ||
5598 | 褚\ | ||
5599 | 裨\ | ||
5600 | 裾\ | ||
5601 | 裰\ | ||
5602 | 禊\ | ||
5603 | 谩\ | ||
5604 | 谪\ | ||
5605 | 媾\ | ||
5606 | 嫫\ | ||
5607 | 媲\ | ||
5608 | 嫒\ | ||
5609 | 嫔\ | ||
5610 | 媸\ | ||
5611 | 缙\ | ||
5612 | 缜\ | ||
5613 | 缛\ | ||
5614 | 辔\ | ||
5615 | 骝\ | ||
5616 | 缟\ | ||
5617 | 缡\ | ||
5618 | 缢\ | ||
5619 | 缣\ | ||
5620 | 骟\ | ||
5621 | 耥\ | ||
5622 | 璈\ | ||
5623 | 瑶\ | ||
5624 | 瑭\ | ||
5625 | 獒\ | ||
5626 | 觏\ | ||
5627 | 慝\ | ||
5628 | 嫠\ | ||
5629 | 韬\ | ||
5630 | 叆\ | ||
5631 | 髦\ | ||
5632 | 摽\ | ||
5633 | 墁\ | ||
5634 | 撂\ | ||
5635 | 摞\ | ||
5636 | 撄\ | ||
5637 | 翥\ | ||
5638 | 踅\ | ||
5639 | 摭\ | ||
5640 | 墉\ | ||
5641 | 墒\ | ||
5642 | 榖\ | ||
5643 | 綦\ | ||
5644 | 蔫\ | ||
5645 | 蔷\ | ||
5646 | 靺\ | ||
5647 | 靼\ | ||
5648 | 鞅\ | ||
5649 | 靿\ | ||
5650 | 甍\ | ||
5651 | 蔸\ | ||
5652 | 蔟\ | ||
5653 | 蔺\ | ||
5654 | 戬\ | ||
5655 | 蕖\ | ||
5656 | 蔻\ | ||
5657 | 蓿\ | ||
5658 | 斡\ | ||
5659 | 鹕\ | ||
5660 | 蓼\ | ||
5661 | 榛\ | ||
5662 | 榧\ | ||
5663 | 榻\ | ||
5664 | 榫\ | ||
5665 | 榭\ | ||
5666 | 槔\ | ||
5667 | 榱\ | ||
5668 | 槁\ | ||
5669 | 槟\ | ||
5670 | 槠\ | ||
5671 | 榷\ | ||
5672 | 僰\ | ||
5673 | 酽\ | ||
5674 | 酶\ | ||
5675 | 酹\ | ||
5676 | 厮\ | ||
5677 | 碡\ | ||
5678 | 碴\ | ||
5679 | 碣\ | ||
5680 | 碲\ | ||
5681 | 磋\ | ||
5682 | 臧\ | ||
5683 | 豨\ | ||
5684 | 殡\ | ||
5685 | 霆\ | ||
5686 | 霁\ | ||
5687 | 辕\ | ||
5688 | 蜚\ | ||
5689 | 裴\ | ||
5690 | 翡\ | ||
5691 | 龇\ | ||
5692 | 龈\ | ||
5693 | 睿\ | ||
5694 | 䁖\ | ||
5695 | 睽\ | ||
5696 | 嘞\ | ||
5697 | 嘈\ | ||
5698 | 嘌\ | ||
5699 | 嘁\ | ||
5700 | 嘎\ | ||
5701 | 暧\ | ||
5702 | 暝\ | ||
5703 | 踌\ | ||
5704 | 踉\ | ||
5705 | 蜞\ | ||
5706 | 蜥\ | ||
5707 | 蜮\ | ||
5708 | 蝈\ | ||
5709 | 蜴\ | ||
5710 | 蜱\ | ||
5711 | 蜩\ | ||
5712 | 蜷\ | ||
5713 | 蜿\ | ||
5714 | 螂\ | ||
5715 | 蜢\ | ||
5716 | 嘘\ | ||
5717 | 嘡\ | ||
5718 | 鹗\ | ||
5719 | 嘣\ | ||
5720 | 嘤\ | ||
5721 | 嘚\ | ||
5722 | 嗾\ | ||
5723 | 嘧\ | ||
5724 | 罴\ | ||
5725 | 罱\ | ||
5726 | 幔\ | ||
5727 | 嶂\ | ||
5728 | 幛\ | ||
5729 | 赙\ | ||
5730 | 罂\ | ||
5731 | 骷\ | ||
5732 | 骶\ | ||
5733 | 鹘\ | ||
5734 | 锲\ | ||
5735 | 锴\ | ||
5736 | 锶\ | ||
5737 | 锷\ | ||
5738 | 锸\ | ||
5739 | 锵\ | ||
5740 | 镁\ | ||
5741 | 镂\ | ||
5742 | 犒\ | ||
5743 | 箐\ | ||
5744 | 箦\ | ||
5745 | 箧\ | ||
5746 | 箍\ | ||
5747 | 箸\ | ||
5748 | 箬\ | ||
5749 | 箅\ | ||
5750 | 箪\ | ||
5751 | 箔\ | ||
5752 | 箜\ | ||
5753 | 箢\ | ||
5754 | 箓\ | ||
5755 | 毓\ | ||
5756 | 僖\ | ||
5757 | 儆\ | ||
5758 | 僳\ | ||
5759 | 僭\ | ||
5760 | 劁\ | ||
5761 | 僮\ | ||
5762 | 魃\ | ||
5763 | 魆\ | ||
5764 | 睾\ | ||
5765 | 艋\ | ||
5766 | 鄱\ | ||
5767 | 膈\ | ||
5768 | 膑\ | ||
5769 | 鲑\ | ||
5770 | 鲔\ | ||
5771 | 鲚\ | ||
5772 | 鲛\ | ||
5773 | 鲟\ | ||
5774 | 獐\ | ||
5775 | 觫\ | ||
5776 | 雒\ | ||
5777 | 夤\ | ||
5778 | 馑\ | ||
5779 | 銮\ | ||
5780 | 塾\ | ||
5781 | 麽\ | ||
5782 | 瘌\ | ||
5783 | 瘊\ | ||
5784 | 瘘\ | ||
5785 | 瘙\ | ||
5786 | 廖\ | ||
5787 | 韶\ | ||
5788 | 旖\ | ||
5789 | 膂\ | ||
5790 | 阚\ | ||
5791 | 鄯\ | ||
5792 | 鲞\ | ||
5793 | 粿\ | ||
5794 | 粼\ | ||
5795 | 粽\ | ||
5796 | 糁\ | ||
5797 | 槊\ | ||
5798 | 鹚\ | ||
5799 | 熘\ | ||
5800 | 熥\ | ||
5801 | 潢\ | ||
5802 | 漕\ | ||
5803 | 滹\ | ||
5804 | 漯\ | ||
5805 | 漶\ | ||
5806 | 潋\ | ||
5807 | 潴\ | ||
5808 | 漪\ | ||
5809 | 漉\ | ||
5810 | 漳\ | ||
5811 | 漩\ | ||
5812 | 澉\ | ||
5813 | 潍\ | ||
5814 | 慵\ | ||
5815 | 搴\ | ||
5816 | 窨\ | ||
5817 | 寤\ | ||
5818 | 綮\ | ||
5819 | 谮\ | ||
5820 | 褡\ | ||
5821 | 褙\ | ||
5822 | 褓\ | ||
5823 | 褛\ | ||
5824 | 褊\ | ||
5825 | 谯\ | ||
5826 | 谰\ | ||
5827 | 谲\ | ||
5828 | 暨\ | ||
5829 | 屣\ | ||
5830 | 鹛\ | ||
5831 | 嫣\ | ||
5832 | 嫱\ | ||
5833 | 嫖\ | ||
5834 | 嫦\ | ||
5835 | 嫚\ | ||
5836 | 嫘\ | ||
5837 | 嫡\ | ||
5838 | 鼐\ | ||
5839 | 翟\ | ||
5840 | 瞀\ | ||
5841 | 鹜\ | ||
5842 | 骠\ | ||
5843 | 缥\ | ||
5844 | 缦\ | ||
5845 | 缧\ | ||
5846 | 缨\ | ||
5847 | 骢\ | ||
5848 | 缪\ | ||
5849 | 缫\ | ||
5850 | 耦\ | ||
5851 | 耧\ | ||
5852 | 瑾\ | ||
5853 | 璜\ | ||
5854 | 璀\ | ||
5855 | 璎\ | ||
5856 | 璁\ | ||
5857 | 璋\ | ||
5858 | 璇\ | ||
5859 | 奭\ | ||
5860 | 髯\ | ||
5861 | 髫\ | ||
5862 | 撷\ | ||
5863 | 撅\ | ||
5864 | 赭\ | ||
5865 | 撸\ | ||
5866 | 鋆\ | ||
5867 | 撙\ | ||
5868 | 撺\ | ||
5869 | 墀\ | ||
5870 | 聩\ | ||
5871 | 觐\ | ||
5872 | 鞑\ | ||
5873 | 蕙\ | ||
5874 | 鞒\ | ||
5875 | 蕈\ | ||
5876 | 蕨\ | ||
5877 | 蕤\ | ||
5878 | 蕞\ | ||
5879 | 蕺\ | ||
5880 | 瞢\ | ||
5881 | 蕃\ | ||
5882 | 蕲\ | ||
5883 | 赜\ | ||
5884 | 槿\ | ||
5885 | 樯\ | ||
5886 | 槭\ | ||
5887 | 樗\ | ||
5888 | 樘\ | ||
5889 | 樊\ | ||
5890 | 槲\ | ||
5891 | 醌\ | ||
5892 | 醅\ | ||
5893 | 靥\ | ||
5894 | 魇\ | ||
5895 | 餍\ | ||
5896 | 磔\ | ||
5897 | 磙\ | ||
5898 | 霈\ | ||
5899 | 辘\ | ||
5900 | 龉\ | ||
5901 | 龊\ | ||
5902 | 觑\ | ||
5903 | 瞌\ | ||
5904 | 瞋\ | ||
5905 | 瞑\ | ||
5906 | 嘭\ | ||
5907 | 噎\ | ||
5908 | 噶\ | ||
5909 | 颙\ | ||
5910 | 暹\ | ||
5911 | 噘\ | ||
5912 | 踔\ | ||
5913 | 踝\ | ||
5914 | 踟\ | ||
5915 | 踒\ | ||
5916 | 踬\ | ||
5917 | 踮\ | ||
5918 | 踯\ | ||
5919 | 踺\ | ||
5920 | 踞\ | ||
5921 | 蝽\ | ||
5922 | 蝾\ | ||
5923 | 蝻\ | ||
5924 | 蝰\ | ||
5925 | 蝮\ | ||
5926 | 螋\ | ||
5927 | 蝓\ | ||
5928 | 蝣\ | ||
5929 | 蝼\ | ||
5930 | 噗\ | ||
5931 | 嘬\ | ||
5932 | 颚\ | ||
5933 | 噍\ | ||
5934 | 噢\ | ||
5935 | 噙\ | ||
5936 | 噜\ | ||
5937 | 噌\ | ||
5938 | 噔\ | ||
5939 | 颛\ | ||
5940 | 幞\ | ||
5941 | 幡\ | ||
5942 | 嶙\ | ||
5943 | 嶝\ | ||
5944 | 骺\ | ||
5945 | 骼\ | ||
5946 | 骸\ | ||
5947 | 镊\ | ||
5948 | 镉\ | ||
5949 | 镌\ | ||
5950 | 镍\ | ||
5951 | 镏\ | ||
5952 | 镒\ | ||
5953 | 镓\ | ||
5954 | 镔\ | ||
5955 | 稷\ | ||
5956 | 箴\ | ||
5957 | 篑\ | ||
5958 | 篁\ | ||
5959 | 篌\ | ||
5960 | 篆\ | ||
5961 | 牖\ | ||
5962 | 儋\ | ||
5963 | 徵\ | ||
5964 | 磐\ | ||
5965 | 虢\ | ||
5966 | 鹞\ | ||
5967 | 膘\ | ||
5968 | 滕\ | ||
5969 | 鲠\ | ||
5970 | 鲡\ | ||
5971 | 鲢\ | ||
5972 | 鲣\ | ||
5973 | 鲥\ | ||
5974 | 鲧\ | ||
5975 | 鲩\ | ||
5976 | 獗\ | ||
5977 | 獠\ | ||
5978 | 觯\ | ||
5979 | 馓\ | ||
5980 | 馔\ | ||
5981 | 麾\ | ||
5982 | 廛\ | ||
5983 | 瘛\ | ||
5984 | 瘼\ | ||
5985 | 瘢\ | ||
5986 | 瘠\ | ||
5987 | 齑\ | ||
5988 | 羯\ | ||
5989 | 羰\ | ||
5990 | 𥻗\ | ||
5991 | 遴\ | ||
5992 | 糌\ | ||
5993 | 糍\ | ||
5994 | 糅\ | ||
5995 | 熜\ | ||
5996 | 熵\ | ||
5997 | 熠\ | ||
5998 | 澍\ | ||
5999 | 澌\ | ||
6000 | 潸\ | ||
6001 | 潦\ | ||
6002 | 潲\ | ||
6003 | 鋈\ | ||
6004 | 潟\ | ||
6005 | 潼\ | ||
6006 | 潺\ | ||
6007 | 憬\ | ||
6008 | 憧\ | ||
6009 | 寮\ | ||
6010 | 窳\ | ||
6011 | 谳\ | ||
6012 | 褴\ | ||
6013 | 褟\ | ||
6014 | 褫\ | ||
6015 | 谵\ | ||
6016 | 熨\ | ||
6017 | 屦\ | ||
6018 | 嬉\ | ||
6019 | 勰\ | ||
6020 | 戮\ | ||
6021 | 蝥\ | ||
6022 | 缬\ | ||
6023 | 缮\ | ||
6024 | 缯\ | ||
6025 | 骣\ | ||
6026 | 畿\ | ||
6027 | 耩\ | ||
6028 | 耨\ | ||
6029 | 耪\ | ||
6030 | 璞\ | ||
6031 | 璟\ | ||
6032 | 靛\ | ||
6033 | 璠\ | ||
6034 | 璘\ | ||
6035 | 聱\ | ||
6036 | 螯\ | ||
6037 | 髻\ | ||
6038 | 髭\ | ||
6039 | 髹\ | ||
6040 | 擀\ | ||
6041 | 熹\ | ||
6042 | 甏\ | ||
6043 | 擞\ | ||
6044 | 縠\ | ||
6045 | 磬\ | ||
6046 | 颞\ | ||
6047 | 蕻\ | ||
6048 | 鞘\ | ||
6049 | 颟\ | ||
6050 | 薤\ | ||
6051 | 薨\ | ||
6052 | 檠\ | ||
6053 | 薏\ | ||
6054 | 薮\ | ||
6055 | 薜\ | ||
6056 | 薅\ | ||
6057 | 樾\ | ||
6058 | 橛\ | ||
6059 | 橇\ | ||
6060 | 樵\ | ||
6061 | 檎\ | ||
6062 | 橹\ | ||
6063 | 樽\ | ||
6064 | 樨\ | ||
6065 | 橼\ | ||
6066 | 墼\ | ||
6067 | 橐\ | ||
6068 | 翮\ | ||
6069 | 醛\ | ||
6070 | 醐\ | ||
6071 | 醍\ | ||
6072 | 醚\ | ||
6073 | 磲\ | ||
6074 | 赝\ | ||
6075 | 飙\ | ||
6076 | 殪\ | ||
6077 | 霖\ | ||
6078 | 霏\ | ||
6079 | 霓\ | ||
6080 | 錾\ | ||
6081 | 辚\ | ||
6082 | 臻\ | ||
6083 | 遽\ | ||
6084 | 氅\ | ||
6085 | 瞟\ | ||
6086 | 瞠\ | ||
6087 | 瞰\ | ||
6088 | 嚄\ | ||
6089 | 嚆\ | ||
6090 | 噤\ | ||
6091 | 暾\ | ||
6092 | 蹀\ | ||
6093 | 踹\ | ||
6094 | 踵\ | ||
6095 | 踽\ | ||
6096 | 蹉\ | ||
6097 | 蹁\ | ||
6098 | 螨\ | ||
6099 | 蟒\ | ||
6100 | 螈\ | ||
6101 | 螅\ | ||
6102 | 螭\ | ||
6103 | 螠\ | ||
6104 | 螟\ | ||
6105 | 噱\ | ||
6106 | 噬\ | ||
6107 | 噫\ | ||
6108 | 噻\ | ||
6109 | 噼\ | ||
6110 | 罹\ | ||
6111 | 圜\ | ||
6112 | 䦃\ | ||
6113 | 镖\ | ||
6114 | 镗\ | ||
6115 | 镘\ | ||
6116 | 镚\ | ||
6117 | 镛\ | ||
6118 | 镝\ | ||
6119 | 镞\ | ||
6120 | 镠\ | ||
6121 | 氇\ | ||
6122 | 氆\ | ||
6123 | 憩\ | ||
6124 | 穑\ | ||
6125 | 篝\ | ||
6126 | 篥\ | ||
6127 | 篦\ | ||
6128 | 篪\ | ||
6129 | 篙\ | ||
6130 | 盥\ | ||
6131 | 劓\ | ||
6132 | 翱\ | ||
6133 | 魉\ | ||
6134 | 魈\ | ||
6135 | 徼\ | ||
6136 | 歙\ | ||
6137 | 膳\ | ||
6138 | 膦\ | ||
6139 | 膙\ | ||
6140 | 鲮\ | ||
6141 | 鲱\ | ||
6142 | 鲲\ | ||
6143 | 鲳\ | ||
6144 | 鲴\ | ||
6145 | 鲵\ | ||
6146 | 鲷\ | ||
6147 | 鲻\ | ||
6148 | 獴\ | ||
6149 | 獭\ | ||
6150 | 獬\ | ||
6151 | 邂\ | ||
6152 | 鹧\ | ||
6153 | 廨\ | ||
6154 | 赟\ | ||
6155 | 瘰\ | ||
6156 | 廪\ | ||
6157 | 瘿\ | ||
6158 | 瘵\ | ||
6159 | 瘴\ | ||
6160 | 癃\ | ||
6161 | 瘳\ | ||
6162 | 斓\ | ||
6163 | 麇\ | ||
6164 | 麈\ | ||
6165 | 嬴\ | ||
6166 | 壅\ | ||
6167 | 羲\ | ||
6168 | 糗\ | ||
6169 | 瞥\ | ||
6170 | 甑\ | ||
6171 | 燎\ | ||
6172 | 燠\ | ||
6173 | 燔\ | ||
6174 | 燧\ | ||
6175 | 濑\ | ||
6176 | 濉\ | ||
6177 | 潞\ | ||
6178 | 澧\ | ||
6179 | 澹\ | ||
6180 | 澥\ | ||
6181 | 澶\ | ||
6182 | 濂\ | ||
6183 | 褰\ | ||
6184 | 寰\ | ||
6185 | 窸\ | ||
6186 | 褶\ | ||
6187 | 禧\ | ||
6188 | 嬖\ | ||
6189 | 犟\ | ||
6190 | 隰\ | ||
6191 | 嬗\ | ||
6192 | 颡\ | ||
6193 | 缱\ | ||
6194 | 缲\ | ||
6195 | 缳\ | ||
6196 | 璨\ | ||
6197 | 璩\ | ||
6198 | 璐\ | ||
6199 | 璪\ | ||
6200 | 螫\ | ||
6201 | 擤\ | ||
6202 | 壕\ | ||
6203 | 觳\ | ||
6204 | 罄\ | ||
6205 | 擢\ | ||
6206 | 薹\ | ||
6207 | 鞡\ | ||
6208 | 鞬\ | ||
6209 | 薷\ | ||
6210 | 薰\ | ||
6211 | 藓\ | ||
6212 | 藁\ | ||
6213 | 檄\ | ||
6214 | 檩\ | ||
6215 | 懋\ | ||
6216 | 醢\ | ||
6217 | 翳\ | ||
6218 | 礅\ | ||
6219 | 磴\ | ||
6220 | 鹩\ | ||
6221 | 龋\ | ||
6222 | 龌\ | ||
6223 | 豳\ | ||
6224 | 壑\ | ||
6225 | 黻\ | ||
6226 | 嚏\ | ||
6227 | 嚅\ | ||
6228 | 蹑\ | ||
6229 | 蹒\ | ||
6230 | 蹊\ | ||
6231 | 蟥\ | ||
6232 | 螬\ | ||
6233 | 螵\ | ||
6234 | 疃\ | ||
6235 | 螳\ | ||
6236 | 蟑\ | ||
6237 | 嚓\ | ||
6238 | 羁\ | ||
6239 | 罽\ | ||
6240 | 罾\ | ||
6241 | 嶷\ | ||
6242 | 黜\ | ||
6243 | 黝\ | ||
6244 | 髁\ | ||
6245 | 髀\ | ||
6246 | 镡\ | ||
6247 | 镢\ | ||
6248 | 镣\ | ||
6249 | 镦\ | ||
6250 | 镧\ | ||
6251 | 镩\ | ||
6252 | 镪\ | ||
6253 | 镫\ | ||
6254 | 罅\ | ||
6255 | 黏\ | ||
6256 | 簌\ | ||
6257 | 篾\ | ||
6258 | 篼\ | ||
6259 | 簖\ | ||
6260 | 簋\ | ||
6261 | 鼢\ | ||
6262 | 黛\ | ||
6263 | 儡\ | ||
6264 | 鹪\ | ||
6265 | 鼾\ | ||
6266 | 皤\ | ||
6267 | 魍\ | ||
6268 | 龠\ | ||
6269 | 繇\ | ||
6270 | 貘\ | ||
6271 | 邈\ | ||
6272 | 貔\ | ||
6273 | 臌\ | ||
6274 | 膻\ | ||
6275 | 臆\ | ||
6276 | 臃\ | ||
6277 | 鲼\ | ||
6278 | 鲽\ | ||
6279 | 鳀\ | ||
6280 | 鳃\ | ||
6281 | 鳅\ | ||
6282 | 鳇\ | ||
6283 | 鳊\ | ||
6284 | 螽\ | ||
6285 | 燮\ | ||
6286 | 鹫\ | ||
6287 | 襄\ | ||
6288 | 糜\ | ||
6289 | 縻\ | ||
6290 | 膺\ | ||
6291 | 癍\ | ||
6292 | 麋\ | ||
6293 | 懑\ | ||
6294 | 濡\ | ||
6295 | 濮\ | ||
6296 | 濞\ | ||
6297 | 濠\ | ||
6298 | 濯\ | ||
6299 | 蹇\ | ||
6300 | 謇\ | ||
6301 | 邃\ | ||
6302 | 襁\ | ||
6303 | 檗\ | ||
6304 | 擘\ | ||
6305 | 孺\ | ||
6306 | 隳\ | ||
6307 | 嬷\ | ||
6308 | 蟊\ | ||
6309 | 鹬\ | ||
6310 | 鍪\ | ||
6311 | 鏊\ | ||
6312 | 鳌\ | ||
6313 | 鬈\ | ||
6314 | 鬃\ | ||
6315 | 瞽\ | ||
6316 | 鞯\ | ||
6317 | 鞨\ | ||
6318 | 鞫\ | ||
6319 | 鞧\ | ||
6320 | 鞣\ | ||
6321 | 藜\ | ||
6322 | 藠\ | ||
6323 | 藩\ | ||
6324 | 醪\ | ||
6325 | 蹙\ | ||
6326 | 礓\ | ||
6327 | 燹\ | ||
6328 | 餮\ | ||
6329 | 瞿\ | ||
6330 | 曛\ | ||
6331 | 颢\ | ||
6332 | 曜\ | ||
6333 | 躇\ | ||
6334 | 蹚\ | ||
6335 | 鹭\ | ||
6336 | 蟛\ | ||
6337 | 蟪\ | ||
6338 | 蟠\ | ||
6339 | 蟮\ | ||
6340 | 鹮\ | ||
6341 | 黠\ | ||
6342 | 黟\ | ||
6343 | 髅\ | ||
6344 | 髂\ | ||
6345 | 镬\ | ||
6346 | 镭\ | ||
6347 | 镯\ | ||
6348 | 馥\ | ||
6349 | 簟\ | ||
6350 | 簪\ | ||
6351 | 鼬\ | ||
6352 | 雠\ | ||
6353 | 艟\ | ||
6354 | 鳎\ | ||
6355 | 鳏\ | ||
6356 | 鳐\ | ||
6357 | 癞\ | ||
6358 | 癔\ | ||
6359 | 癜\ | ||
6360 | 癖\ | ||
6361 | 糨\ | ||
6362 | 蹩\ | ||
6363 | 鎏\ | ||
6364 | 懵\ | ||
6365 | 彝\ | ||
6366 | 邋\ | ||
6367 | 鬏\ | ||
6368 | 攉\ | ||
6369 | 攒\ | ||
6370 | 鞲\ | ||
6371 | 鞴\ | ||
6372 | 藿\ | ||
6373 | 蘧\ | ||
6374 | 蘅\ | ||
6375 | 麓\ | ||
6376 | 醮\ | ||
6377 | 醯\ | ||
6378 | 酃\ | ||
6379 | 霪\ | ||
6380 | 霭\ | ||
6381 | 霨\ | ||
6382 | 黼\ | ||
6383 | 嚯\ | ||
6384 | 蹰\ | ||
6385 | 蹶\ | ||
6386 | 蹽\ | ||
6387 | 蹼\ | ||
6388 | 蹴\ | ||
6389 | 蹾\ | ||
6390 | 蹿\ | ||
6391 | 蠖\ | ||
6392 | 蠓\ | ||
6393 | 蟾\ | ||
6394 | 蠊\ | ||
6395 | 黢\ | ||
6396 | 髋\ | ||
6397 | 髌\ | ||
6398 | 镲\ | ||
6399 | 籀\ | ||
6400 | 籁\ | ||
6401 | 齁\ | ||
6402 | 魑\ | ||
6403 | 艨\ | ||
6404 | 鳓\ | ||
6405 | 鳔\ | ||
6406 | 鳕\ | ||
6407 | 鳗\ | ||
6408 | 鳙\ | ||
6409 | 麒\ | ||
6410 | 鏖\ | ||
6411 | 羸\ | ||
6412 | 㸆\ | ||
6413 | 瀚\ | ||
6414 | 瀣\ | ||
6415 | 瀛\ | ||
6416 | 襦\ | ||
6417 | 谶\ | ||
6418 | 襞\ | ||
6419 | 骥\ | ||
6420 | 缵\ | ||
6421 | 瓒\ | ||
6422 | 攘\ | ||
6423 | 蘩\ | ||
6424 | 蘖\ | ||
6425 | 醴\ | ||
6426 | 霰\ | ||
6427 | 酆\ | ||
6428 | 矍\ | ||
6429 | 曦\ | ||
6430 | 躅\ | ||
6431 | 鼍\ | ||
6432 | 巉\ | ||
6433 | 黩\ | ||
6434 | 黥\ | ||
6435 | 黪\ | ||
6436 | 镳\ | ||
6437 | 镴\ | ||
6438 | 黧\ | ||
6439 | 纂\ | ||
6440 | 璺\ | ||
6441 | 鼯\ | ||
6442 | 臜\ | ||
6443 | 鳜\ | ||
6444 | 鳝\ | ||
6445 | 鳟\ | ||
6446 | 獾\ | ||
6447 | 孀\ | ||
6448 | 骧\ | ||
6449 | 瓘\ | ||
6450 | 鼙\ | ||
6451 | 醺\ | ||
6452 | 礴\ | ||
6453 | 颦\ | ||
6454 | 曩\ | ||
6455 | 鳢\ | ||
6456 | 癫\ | ||
6457 | 麝\ | ||
6458 | 夔\ | ||
6459 | 爝\ | ||
6460 | 灏\ | ||
6461 | 禳\ | ||
6462 | 鐾\ | ||
6463 | 羼\ | ||
6464 | 蠡\ | ||
6465 | 耱\ | ||
6466 | 懿\ | ||
6467 | 蘸\ | ||
6468 | 鹳\ | ||
6469 | 霾\ | ||
6470 | 氍\ | ||
6471 | 饕\ | ||
6472 | 躐\ | ||
6473 | 髑\ | ||
6474 | 镵\ | ||
6475 | 穰\ | ||
6476 | 饔\ | ||
6477 | 鬻\ | ||
6478 | 鬟\ | ||
6479 | 趱\ | ||
6480 | 攫\ | ||
6481 | 攥\ | ||
6482 | 颧\ | ||
6483 | 躜\ | ||
6484 | 鼹\ | ||
6485 | 癯\ | ||
6486 | 麟\ | ||
6487 | 蠲\ | ||
6488 | 蠹\ | ||
6489 | 躞\ | ||
6490 | 衢\ | ||
6491 | 鑫\ | ||
6492 | 灞\ | ||
6493 | 襻\ | ||
6494 | 纛\ | ||
6495 | 鬣\ | ||
6496 | 攮\ | ||
6497 | 囔\ | ||
6498 | 馕\ | ||
6499 | 戆\ | ||
6500 | 爨\ | ||
6501 | 齉\ | ||
6502 | 亍\ | ||
6503 | 尢\ | ||
6504 | 彳\ | ||
6505 | 卬\ | ||
6506 | 殳\ | ||
6507 | 𠙶\ | ||
6508 | 毌\ | ||
6509 | 邘\ | ||
6510 | 戋\ | ||
6511 | 圢\ | ||
6512 | 氕\ | ||
6513 | 伋\ | ||
6514 | 仝\ | ||
6515 | 冮\ | ||
6516 | 氿\ | ||
6517 | 汈\ | ||
6518 | 氾\ | ||
6519 | 忉\ | ||
6520 | 宄\ | ||
6521 | \ | ||
6522 | 讱\ | ||
6523 | 扞\ | ||
6524 | 圲\ | ||
6525 | 圫\ | ||
6526 | 芏\ | ||
6527 | 芃\ | ||
6528 | 朳\ | ||
6529 | 朸\ | ||
6530 | 𨙸\ | ||
6531 | 邨\ | ||
6532 | 吒\ | ||
6533 | 吖\ | ||
6534 | 屼\ | ||
6535 | 屾\ | ||
6536 | 辿\ | ||
6537 | 钆\ | ||
6538 | 仳\ | ||
6539 | 伣\ | ||
6540 | 伈\ | ||
6541 | 癿\ | ||
6542 | 甪\ | ||
6543 | 邠\ | ||
6544 | 犴\ | ||
6545 | 冱\ | ||
6546 | 邡\ | ||
6547 | 闫\ | ||
6548 | \ | ||
6549 | 汋\ | ||
6550 | 䜣\ | ||
6551 | 讻\ | ||
6552 | \ | ||
6553 | 孖\ | ||
6554 | \ | ||
6555 | 纩\ | ||
6556 | 玒\ | ||
6557 | 玓\ | ||
6558 | 玘\ | ||
6559 | 玚\ | ||
6560 | 刬\ | ||
6561 | \ | ||
6562 | 坜\ | ||
6563 | 坉\ | ||
6564 | 扽\ | ||
6565 | \ | ||
6566 | 坋\ | ||
6567 | 扺\ | ||
6568 | 㧑\ | ||
6569 | 毐\ | ||
6570 | 芰\ | ||
6571 | 芣\ | ||
6572 | 苊\ | ||
6573 | 苉\ | ||
6574 | 芘\ | ||
6575 | 芴\ | ||
6576 | 芠\ | ||
6577 | \ | ||
6578 | 芤\ | ||
6579 | 杕\ | ||
6580 | 杙\ | ||
6581 | 杄\ | ||
6582 | 杧\ | ||
6583 | 杩\ | ||
6584 | 尪\ | ||
6585 | 尨\ | ||
6586 | 轪\ | ||
6587 | \ | ||
6588 | 坒\ | ||
6589 | 芈\ | ||
6590 | 旴\ | ||
6591 | 旵\ | ||
6592 | 呙\ | ||
6593 | 㕮\ | ||
6594 | 岍\ | ||
6595 | \ | ||
6596 | 岠\ | ||
6597 | 岜\ | ||
6598 | 呇\ | ||
6599 | 冏\ | ||
6600 | 觃\ | ||
6601 | 岙\ | ||
6602 | 伾\ | ||
6603 | 㑇\ | ||
6604 | 伭\ | ||
6605 | 佖\ | ||
6606 | 伲\ | ||
6607 | 佁\ | ||
6608 | 飏\ | ||
6609 | 狃\ | ||
6610 | 闶\ | ||
6611 | 汧\ | ||
6612 | 汫\ | ||
6613 | 𣲘\ | ||
6614 | 𣲗\ | ||
6615 | 沄\ | ||
6616 | 沘\ | ||
6617 | \ | ||
6618 | 汭\ | ||
6619 | 㳇\ | ||
6620 | 沇\ | ||
6621 | 忮\ | ||
6622 | 忳\ | ||
6623 | 忺\ | ||
6624 | \ | ||
6625 | 祃\ | ||
6626 | 诇\ | ||
6627 | 邲\ | ||
6628 | 诎\ | ||
6629 | 诐\ | ||
6630 | 屃\ | ||
6631 | \ | ||
6632 | 岊\ | ||
6633 | 阽\ | ||
6634 | 䢺\ | ||
6635 | 阼\ | ||
6636 | 妧\ | ||
6637 | 妘\ | ||
6638 | 𨚕\ | ||
6639 | 纮\ | ||
6640 | 驲\ | ||
6641 | \ | ||
6642 | 纻\ | ||
6643 | \ | ||
6644 | \ | ||
6645 | 纼\ | ||
6646 | 玤\ | ||
6647 | 玞\ | ||
6648 | 玱\ | ||
6649 | 玟\ | ||
6650 | 邽\ | ||
6651 | 邿\ | ||
6652 | 坥\ | ||
6653 | 坰\ | ||
6654 | 坬\ | ||
6655 | 坽\ | ||
6656 | 弆\ | ||
6657 | 耵\ | ||
6658 | 䢼\ | ||
6659 | 𦭜\ | ||
6660 | 茋\ | ||
6661 | 苧\ | ||
6662 | 苾\ | ||
6663 | 苠\ | ||
6664 | 枅\ | ||
6665 | 㭎\ | ||
6666 | 枘\ | ||
6667 | 枍\ | ||
6668 | 矼\ | ||
6669 | 矻\ | ||
6670 | 匼\ | ||
6671 | \ | ||
6672 | \ | ||
6673 | \ | ||
6674 | 旿\ | ||
6675 | 昇\ | ||
6676 | 昄\ | ||
6677 | 昒\ | ||
6678 | 昈\ | ||
6679 | 咉\ | ||
6680 | 咇\ | ||
6681 | 咍\ | ||
6682 | 岵\ | ||
6683 | 岽\ | ||
6684 | 岨\ | ||
6685 | 岞\ | ||
6686 | 峂\ | ||
6687 | 㟃\ | ||
6688 | 囷\ | ||
6689 | \ | ||
6690 | 钐\ | ||
6691 | 钔\ | ||
6692 | 钖\ | ||
6693 | 牥\ | ||
6694 | 佴\ | ||
6695 | 垈\ | ||
6696 | 侁\ | ||
6697 | 侹\ | ||
6698 | 佸\ | ||
6699 | 佺\ | ||
6700 | 隹\ | ||
6701 | 㑊\ | ||
6702 | 侂\ | ||
6703 | 佽\ | ||
6704 | 侘\ | ||
6705 | 郈\ | ||
6706 | 舠\ | ||
6707 | 郐\ | ||
6708 | 郃\ | ||
6709 | 攽\ | ||
6710 | 肭\ | ||
6711 | 肸\ | ||
6712 | 肷\ | ||
6713 | 狉\ | ||
6714 | 狝\ | ||
6715 | 饳\ | ||
6716 | 忞\ | ||
6717 | 於\ | ||
6718 | 炌\ | ||
6719 | 炆\ | ||
6720 | 泙\ | ||
6721 | 沺\ | ||
6722 | 泂\ | ||
6723 | 泜\ | ||
6724 | 泃\ | ||
6725 | 泇\ | ||
6726 | 怊\ | ||
6727 | 峃\ | ||
6728 | 穸\ | ||
6729 | 祋\ | ||
6730 | 祊\ | ||
6731 | 詷\ | ||
6732 | \ | ||
6733 | \ | ||
6734 | 鸤\ | ||
6735 | 弢\ | ||
6736 | 弨\ | ||
6737 | 陑\ | ||
6738 | \ | ||
6739 | 陎\ | ||
6740 | \ | ||
6741 | 卺\ | ||
6742 | 乸\ | ||
6743 | 妭\ | ||
6744 | 姈\ | ||
6745 | 娙\ | ||
6746 | 迳\ | ||
6747 | 叕\ | ||
6748 | \ | ||
6749 | 驵\ | ||
6750 | \ | ||
6751 | 䌹\ | ||
6752 | 驺\ | ||
6753 | 𫠊\ | ||
6754 | 绋\ | ||
6755 | 绐\ | ||
6756 | 砉\ | ||
6757 | 耔\ | ||
6758 | 㛃\ | ||
6759 | 玶\ | ||
6760 | 珇\ | ||
6761 | 珅\ | ||
6762 | \ | ||
6763 | 珋\ | ||
6764 | 玹\ | ||
6765 | 珌\ | ||
6766 | 玿\ | ||
6767 | 韨\ | ||
6768 | 垚\ | ||
6769 | 垯\ | ||
6770 | 垙\ | ||
6771 | 垲\ | ||
6772 | 埏\ | ||
6773 | 垍\ | ||
6774 | 耇\ | ||
6775 | \ | ||
6776 | 垎\ | ||
6777 | 垴\ | ||
6778 | 垟\ | ||
6779 | 垞\ | ||
6780 | 挓\ | ||
6781 | 垵\ | ||
6782 | 垏\ | ||
6783 | 拶\ | ||
6784 | 荖\ | ||
6785 | 荁\ | ||
6786 | 荙\ | ||
6787 | 荛\ | ||
6788 | 茈\ | ||
6789 | 茽\ | ||
6790 | 荄\ | ||
6791 | 茺\ | ||
6792 | \ | ||
6793 | 荓\ | ||
6794 | 茳\ | ||
6795 | 𦰡\ | ||
6796 | 茛\ | ||
6797 | 荭\ | ||
6798 | 㭕\ | ||
6799 | 柷\ | ||
6800 | 柃\ | ||
6801 | 柊\ | ||
6802 | 枹\ | ||
6803 | 栐\ | ||
6804 | 柖\ | ||
6805 | 郚\ | ||
6806 | 剅\ | ||
6807 | 䴓\ | ||
6808 | 迺\ | ||
6809 | 厖\ | ||
6810 | 砆\ | ||
6811 | 砑\ | ||
6812 | 砄\ | ||
6813 | 耏\ | ||
6814 | 奓\ | ||
6815 | 䶮\ | ||
6816 | 轵\ | ||
6817 | 轷\ | ||
6818 | 轹\ | ||
6819 | 轺\ | ||
6820 | 昺\ | ||
6821 | \ | ||
6822 | 昽\ | ||
6823 | 盷\ | ||
6824 | 咡\ | ||
6825 | 咺\ | ||
6826 | 昳\ | ||
6827 | 昣\ | ||
6828 | 哒\ | ||
6829 | 昤\ | ||
6830 | 昫\ | ||
6831 | 昡\ | ||
6832 | 咥\ | ||
6833 | 昪\ | ||
6834 | 虷\ | ||
6835 | 虸\ | ||
6836 | 哃\ | ||
6837 | 峘\ | ||
6838 | 耑\ | ||
6839 | 峛\ | ||
6840 | \ | ||
6841 | 峗\ | ||
6842 | 峧\ | ||
6843 | 帡\ | ||
6844 | 钘\ | ||
6845 | \ | ||
6846 | 钜\ | ||
6847 | \ | ||
6848 | \ | ||
6849 | \ | ||
6850 | 钪\ | ||
6851 | 钬\ | ||
6852 | 钭\ | ||
6853 | 矧\ | ||
6854 | 秬\ | ||
6855 | 俫\ | ||
6856 | 舁\ | ||
6857 | 俜\ | ||
6858 | 俙\ | ||
6859 | 俍\ | ||
6860 | 垕\ | ||
6861 | 衎\ | ||
6862 | 舣\ | ||
6863 | 弇\ | ||
6864 | 侴\ | ||
6865 | 鸧\ | ||
6866 | 䏡\ | ||
6867 | 胠\ | ||
6868 | 𦙶\ | ||
6869 | 胈\ | ||
6870 | 胩\ | ||
6871 | 胣\ | ||
6872 | 朏\ | ||
6873 | 飐\ | ||
6874 | 訄\ | ||
6875 | 饻\ | ||
6876 | 庤\ | ||
6877 | 疢\ | ||
6878 | 炣\ | ||
6879 | 炟\ | ||
6880 | 㶲\ | ||
6881 | 洭\ | ||
6882 | 洘\ | ||
6883 | 洓\ | ||
6884 | 洿\ | ||
6885 | 㳚\ | ||
6886 | 泚\ | ||
6887 | 浈\ | ||
6888 | 浉\ | ||
6889 | 洸\ | ||
6890 | 洑\ | ||
6891 | 洢\ | ||
6892 | 洈\ | ||
6893 | 洚\ | ||
6894 | 洺\ | ||
6895 | 洨\ | ||
6896 | 浐\ | ||
6897 | 㳘\ | ||
6898 | 洴\ | ||
6899 | 洣\ | ||
6900 | 恔\ | ||
6901 | 宬\ | ||
6902 | 窀\ | ||
6903 | 扂\ | ||
6904 | 袆\ | ||
6905 | 祏\ | ||
6906 | 祐\ | ||
6907 | 祕\ | ||
6908 | 叚\ | ||
6909 | 陧\ | ||
6910 | 陞\ | ||
6911 | 娀\ | ||
6912 | 姞\ | ||
6913 | 姱\ | ||
6914 | 姤\ | ||
6915 | 姶\ | ||
6916 | 姽\ | ||
6917 | 枲\ | ||
6918 | 绖\ | ||
6919 | 骃\ | ||
6920 | \ | ||
6921 | \ | ||
6922 | \ | ||
6923 | \ | ||
6924 | 彖\ | ||
6925 | 骉\ | ||
6926 | 恝\ | ||
6927 | 珪\ | ||
6928 | 珛\ | ||
6929 | 珹\ | ||
6930 | 琊\ | ||
6931 | 玼\ | ||
6932 | 珖\ | ||
6933 | \ | ||
6934 | 珽\ | ||
6935 | 珦\ | ||
6936 | 珫\ | ||
6937 | 珒\ | ||
6938 | \ | ||
6939 | 珢\ | ||
6940 | 珕\ | ||
6941 | 珝\ | ||
6942 | \ | ||
6943 | 埗\ | ||
6944 | 垾\ | ||
6945 | 垺\ | ||
6946 | 埆\ | ||
6947 | 垿\ | ||
6948 | 埌\ | ||
6949 | 埇\ | ||
6950 | 莰\ | ||
6951 | 茝\ | ||
6952 | \ | ||
6953 | 鄀\ | ||
6954 | 莶\ | ||
6955 | 莝\ | ||
6956 | 䓖\ | ||
6957 | 莙\ | ||
6958 | 栻\ | ||
6959 | 桠\ | ||
6960 | \ | ||
6961 | 桄\ | ||
6962 | 梠\ | ||
6963 | 栴\ | ||
6964 | 梴\ | ||
6965 | 栒\ | ||
6966 | 酎\ | ||
6967 | 酏\ | ||
6968 | \ | ||
6969 | 砵\ | ||
6970 | 砠\ | ||
6971 | 砫\ | ||
6972 | 砬\ | ||
6973 | 硁\ | ||
6974 | 恧\ | ||
6975 | 翃\ | ||
6976 | 郪\ | ||
6977 | 𨐈\ | ||
6978 | 辀\ | ||
6979 | 辁\ | ||
6980 | \ | ||
6981 | 剕\ | ||
6982 | 赀\ | ||
6983 | 哢\ | ||
6984 | 晅\ | ||
6985 | 晊\ | ||
6986 | 唝\ | ||
6987 | 哳\ | ||
6988 | 哱\ | ||
6989 | 冔\ | ||
6990 | 晔\ | ||
6991 | 晐\ | ||
6992 | 晖\ | ||
6993 | 畖\ | ||
6994 | 蚄\ | ||
6995 | 蚆\ | ||
6996 | \ | ||
6997 | 帱\ | ||
6998 | 崁\ | ||
6999 | 峿\ | ||
7000 | \ | ||
7001 | 崄\ | ||
7002 | 帨\ | ||
7003 | 崀\ | ||
7004 | 赆\ | ||
7005 | \ | ||
7006 | 钷\ | ||
7007 | \ | ||
7008 | \ | ||
7009 | \ | ||
7010 | \ | ||
7011 | 眚\ | ||
7012 | 甡\ | ||
7013 | 笫\ | ||
7014 | 倻\ | ||
7015 | 倴\ | ||
7016 | 脩\ | ||
7017 | 倮\ | ||
7018 | 倕\ | ||
7019 | 倞\ | ||
7020 | \ | ||
7021 | 倓\ | ||
7022 | 倧\ | ||
7023 | 衃\ | ||
7024 | 虒\ | ||
7025 | 舭\ | ||
7026 | 舯\ | ||
7027 | 舥\ | ||
7028 | 瓞\ | ||
7029 | 鬯\ | ||
7030 | 鸰\ | ||
7031 | 脎\ | ||
7032 | 朓\ | ||
7033 | 胲\ | ||
7034 | 虓\ | ||
7035 | 鱽\ | ||
7036 | 狴\ | ||
7037 | 峱\ | ||
7038 | 狻\ | ||
7039 | 眢\ | ||
7040 | \ | ||
7041 | 勍\ | ||
7042 | 痄\ | ||
7043 | 疰\ | ||
7044 | 痃\ | ||
7045 | 竘\ | ||
7046 | 羖\ | ||
7047 | 羓\ | ||
7048 | 桊\ | ||
7049 | 敉\ | ||
7050 | 烠\ | ||
7051 | 烔\ | ||
7052 | 烶\ | ||
7053 | 烻\ | ||
7054 | \ | ||
7055 | 涍\ | ||
7056 | 浡\ | ||
7057 | 浭\ | ||
7058 | 浬\ | ||
7059 | 涄\ | ||
7060 | 涢\ | ||
7061 | 涐\ | ||
7062 | 浰\ | ||
7063 | 浟\ | ||
7064 | 浛\ | ||
7065 | 浼\ | ||
7066 | 浲\ | ||
7067 | 涘\ | ||
7068 | 悈\ | ||
7069 | 悃\ | ||
7070 | 悢\ | ||
7071 | \ | ||
7072 | 宧\ | ||
7073 | 窅\ | ||
7074 | 窊\ | ||
7075 | 窎\ | ||
7076 | 扅\ | ||
7077 | 扆\ | ||
7078 | 袪\ | ||
7079 | 袗\ | ||
7080 | 袯\ | ||
7081 | 祧\ | ||
7082 | 隺\ | ||
7083 | 堲\ | ||
7084 | 疍\ | ||
7085 | 𨺙\ | ||
7086 | 陴\ | ||
7087 | 烝\ | ||
7088 | 砮\ | ||
7089 | 㛚\ | ||
7090 | 哿\ | ||
7091 | 翀\ | ||
7092 | 翂\ | ||
7093 | 剟\ | ||
7094 | \ | ||
7095 | \ | ||
7096 | 绤\ | ||
7097 | 骍\ | ||
7098 | \ | ||
7099 | 䂮\ | ||
7100 | 琎\ | ||
7101 | 珸\ | ||
7102 | 珵\ | ||
7103 | 琄\ | ||
7104 | 琈\ | ||
7105 | 琀\ | ||
7106 | 珺\ | ||
7107 | 掭\ | ||
7108 | 堎\ | ||
7109 | 堐\ | ||
7110 | 埼\ | ||
7111 | 掎\ | ||
7112 | 埫\ | ||
7113 | 堌\ | ||
7114 | 晢\ | ||
7115 | \ | ||
7116 | 掞\ | ||
7117 | 埪\ | ||
7118 | 壸\ | ||
7119 | 㙍\ | ||
7120 | 聍\ | ||
7121 | 菝\ | ||
7122 | 萚\ | ||
7123 | 菥\ | ||
7124 | 莿\ | ||
7125 | 䓫\ | ||
7126 | 勚\ | ||
7127 | 䓬\ | ||
7128 | 萆\ | ||
7129 | 菂\ | ||
7130 | 菍\ | ||
7131 | 菼\ | ||
7132 | 萣\ | ||
7133 | 䓨\ | ||
7134 | 菉\ | ||
7135 | 䓛\ | ||
7136 | 梼\ | ||
7137 | 梽\ | ||
7138 | 桲\ | ||
7139 | 梾\ | ||
7140 | 桯\ | ||
7141 | 梣\ | ||
7142 | 梌\ | ||
7143 | 桹\ | ||
7144 | 敔\ | ||
7145 | 厣\ | ||
7146 | 硔\ | ||
7147 | \ | ||
7148 | 硙\ | ||
7149 | 硚\ | ||
7150 | 硊\ | ||
7151 | 硍\ | ||
7152 | 勔\ | ||
7153 | 䴕\ | ||
7154 | 龁\ | ||
7155 | 逴\ | ||
7156 | 唪\ | ||
7157 | 啫\ | ||
7158 | 翈\ | ||
7159 | 㫰\ | ||
7160 | 晙\ | ||
7161 | 畤\ | ||
7162 | \ | ||
7163 | 趼\ | ||
7164 | 跂\ | ||
7165 | 蛃\ | ||
7166 | 蚲\ | ||
7167 | \ | ||
7168 | 蚺\ | ||
7169 | 啴\ | ||
7170 | 䎃\ | ||
7171 | 崧\ | ||
7172 | 崟\ | ||
7173 | 崞\ | ||
7174 | 崒\ | ||
7175 | 崌\ | ||
7176 | 崡\ | ||
7177 | 铏\ | ||
7178 | \ | ||
7179 | \ | ||
7180 | 铕\ | ||
7181 | \ | ||
7182 | 铖\ | ||
7183 | 铘\ | ||
7184 | 铚\ | ||
7185 | 铞\ | ||
7186 | 铥\ | ||
7187 | 铴\ | ||
7188 | 牻\ | ||
7189 | 牿\ | ||
7190 | 稆\ | ||
7191 | 笱\ | ||
7192 | 笯\ | ||
7193 | 偰\ | ||
7194 | 偡\ | ||
7195 | 鸺\ | ||
7196 | 偭\ | ||
7197 | 偲\ | ||
7198 | 偁\ | ||
7199 | 㿠\ | ||
7200 | 鄅\ | ||
7201 | 偓\ | ||
7202 | 徛\ | ||
7203 | 衒\ | ||
7204 | 舳\ | ||
7205 | 舲\ | ||
7206 | 鸼\ | ||
7207 | 悆\ | ||
7208 | 鄃\ | ||
7209 | 瓻\ | ||
7210 | 䝙\ | ||
7211 | 脶\ | ||
7212 | 脞\ | ||
7213 | 脟\ | ||
7214 | 䏲\ | ||
7215 | 鱾\ | ||
7216 | 猇\ | ||
7217 | 猊\ | ||
7218 | 猄\ | ||
7219 | 觖\ | ||
7220 | 𠅤\ | ||
7221 | 庱\ | ||
7222 | 庼\ | ||
7223 | 庳\ | ||
7224 | 痓\ | ||
7225 | 䴔\ | ||
7226 | 竫\ | ||
7227 | 堃\ | ||
7228 | 阌\ | ||
7229 | 羝\ | ||
7230 | 羕\ | ||
7231 | 焆\ | ||
7232 | 烺\ | ||
7233 | 焌\ | ||
7234 | 淏\ | ||
7235 | \ | ||
7236 | 淟\ | ||
7237 | 淜\ | ||
7238 | 淴\ | ||
7239 | 淯\ | ||
7240 | 湴\ | ||
7241 | 涴\ | ||
7242 | \ | ||
7243 | 㥄\ | ||
7244 | 惛\ | ||
7245 | 惔\ | ||
7246 | 悰\ | ||
7247 | 惙\ | ||
7248 | 寁\ | ||
7249 | 逭\ | ||
7250 | \ | ||
7251 | \ | ||
7252 | 袼\ | ||
7253 | 裈\ | ||
7254 | 祲\ | ||
7255 | \ | ||
7256 | \ | ||
7257 | 谞\ | ||
7258 | 艴\ | ||
7259 | 弸\ | ||
7260 | 弶\ | ||
7261 | \ | ||
7262 | 隃\ | ||
7263 | 婞\ | ||
7264 | 娵\ | ||
7265 | 婼\ | ||
7266 | 媖\ | ||
7267 | 婳\ | ||
7268 | 婍\ | ||
7269 | 婌\ | ||
7270 | 婫\ | ||
7271 | 婤\ | ||
7272 | 婘\ | ||
7273 | 婠\ | ||
7274 | \ | ||
7275 | \ | ||
7276 | \ | ||
7277 | \ | ||
7278 | 绹\ | ||
7279 | \ | ||
7280 | \ | ||
7281 | 骕\ | ||
7282 | \ | ||
7283 | 絜\ | ||
7284 | 珷\ | ||
7285 | 琲\ | ||
7286 | 琡\ | ||
7287 | 琟\ | ||
7288 | 琔\ | ||
7289 | 琭\ | ||
7290 | 堾\ | ||
7291 | 堼\ | ||
7292 | 揕\ | ||
7293 | 㙘\ | ||
7294 | 堧\ | ||
7295 | 喆\ | ||
7296 | 堨\ | ||
7297 | 塅\ | ||
7298 | 堠\ | ||
7299 | 絷\ | ||
7300 | \ | ||
7301 | 𡎚\ | ||
7302 | 葜\ | ||
7303 | 惎\ | ||
7304 | 萳\ | ||
7305 | 葙\ | ||
7306 | 靬\ | ||
7307 | 葴\ | ||
7308 | 蒇\ | ||
7309 | 蒈\ | ||
7310 | 鄚\ | ||
7311 | 蒉\ | ||
7312 | 蓇\ | ||
7313 | 萩\ | ||
7314 | 蒐\ | ||
7315 | 葰\ | ||
7316 | 葎\ | ||
7317 | 鄑\ | ||
7318 | 蒎\ | ||
7319 | 葖\ | ||
7320 | 蒄\ | ||
7321 | 萹\ | ||
7322 | 棤\ | ||
7323 | 棽\ | ||
7324 | 棫\ | ||
7325 | 椓\ | ||
7326 | 椑\ | ||
7327 | \ | ||
7328 | 鹀\ | ||
7329 | 椆\ | ||
7330 | 棓\ | ||
7331 | 棬\ | ||
7332 | 棪\ | ||
7333 | 椀\ | ||
7334 | 楗\ | ||
7335 | \ | ||
7336 | 甦\ | ||
7337 | 酦\ | ||
7338 | 觌\ | ||
7339 | 奡\ | ||
7340 | 皕\ | ||
7341 | 硪\ | ||
7342 | 欹\ | ||
7343 | 詟\ | ||
7344 | \ | ||
7345 | 辌\ | ||
7346 | 棐\ | ||
7347 | 龂\ | ||
7348 | \ | ||
7349 | 黹\ | ||
7350 | 牚\ | ||
7351 | 睎\ | ||
7352 | 晫\ | ||
7353 | 晪\ | ||
7354 | 晱\ | ||
7355 | 𧿹\ | ||
7356 | 蛑\ | ||
7357 | 畯\ | ||
7358 | 斝\ | ||
7359 | 喤\ | ||
7360 | 崶\ | ||
7361 | 嵁\ | ||
7362 | 嵽\ | ||
7363 | 崾\ | ||
7364 | 嵅\ | ||
7365 | 崿\ | ||
7366 | 嵚\ | ||
7367 | 翙\ | ||
7368 | \ | ||
7369 | 圌\ | ||
7370 | 圐\ | ||
7371 | 赑\ | ||
7372 | 淼\ | ||
7373 | 赒\ | ||
7374 | \ | ||
7375 | 铹\ | ||
7376 | \ | ||
7377 | 铽\ | ||
7378 | 𨱇\ | ||
7379 | \ | ||
7380 | 锊\ | ||
7381 | 锍\ | ||
7382 | 锎\ | ||
7383 | \ | ||
7384 | 锓\ | ||
7385 | 犇\ | ||
7386 | 颋\ | ||
7387 | 稌\ | ||
7388 | 筀\ | ||
7389 | 筘\ | ||
7390 | 筜\ | ||
7391 | 筥\ | ||
7392 | 筅\ | ||
7393 | 傃\ | ||
7394 | 傉\ | ||
7395 | 翛\ | ||
7396 | 傒\ | ||
7397 | 傕\ | ||
7398 | 舾\ | ||
7399 | 畬\ | ||
7400 | \ | ||
7401 | 脿\ | ||
7402 | 腘\ | ||
7403 | 䐃\ | ||
7404 | 腙\ | ||
7405 | 腒\ | ||
7406 | \ | ||
7407 | 鲃\ | ||
7408 | 猰\ | ||
7409 | \ | ||
7410 | 猯\ | ||
7411 | 㺄\ | ||
7412 | 馉\ | ||
7413 | 凓\ | ||
7414 | 鄗\ | ||
7415 | \ | ||
7416 | 廋\ | ||
7417 | 廆\ | ||
7418 | 鄌\ | ||
7419 | 粢\ | ||
7420 | 遆\ | ||
7421 | 旐\ | ||
7422 | \ | ||
7423 | 焞\ | ||
7424 | \ | ||
7425 | 欻\ | ||
7426 | 𣸣\ | ||
7427 | 溚\ | ||
7428 | 溁\ | ||
7429 | 湝\ | ||
7430 | 渰\ | ||
7431 | 湓\ | ||
7432 | 㴔\ | ||
7433 | 渟\ | ||
7434 | 溠\ | ||
7435 | 渼\ | ||
7436 | 溇\ | ||
7437 | 湣\ | ||
7438 | 湑\ | ||
7439 | 溞\ | ||
7440 | 愐\ | ||
7441 | 愃\ | ||
7442 | 敩\ | ||
7443 | 甯\ | ||
7444 | 棨\ | ||
7445 | 扊\ | ||
7446 | 裣\ | ||
7447 | 祼\ | ||
7448 | 婻\ | ||
7449 | 媆\ | ||
7450 | 媞\ | ||
7451 | 㛹\ | ||
7452 | 媓\ | ||
7453 | 媂\ | ||
7454 | 媄\ | ||
7455 | 毵\ | ||
7456 | 矞\ | ||
7457 | \ | ||
7458 | \ | ||
7459 | 缊\ | ||
7460 | 缐\ | ||
7461 | 骙\ | ||
7462 | 瑃\ | ||
7463 | 瑓\ | ||
7464 | 瑅\ | ||
7465 | 瑆\ | ||
7466 | 䴖\ | ||
7467 | 瑖\ | ||
7468 | 瑝\ | ||
7469 | 瑔\ | ||
7470 | 瑀\ | ||
7471 | 𤧛\ | ||
7472 | 瑳\ | ||
7473 | 瑂\ | ||
7474 | 嶅\ | ||
7475 | 瑑\ | ||
7476 | 遘\ | ||
7477 | 髢\ | ||
7478 | 塥\ | ||
7479 | 堽\ | ||
7480 | 赪\ | ||
7481 | 摛\ | ||
7482 | 塝\ | ||
7483 | 搒\ | ||
7484 | 搌\ | ||
7485 | 蒱\ | ||
7486 | 蒨\ | ||
7487 | 蓏\ | ||
7488 | 蔀\ | ||
7489 | 蓢\ | ||
7490 | 蓂\ | ||
7491 | 蒻\ | ||
7492 | 蓣\ | ||
7493 | 椹\ | ||
7494 | 楪\ | ||
7495 | 榃\ | ||
7496 | 榅\ | ||
7497 | 楒\ | ||
7498 | 楞\ | ||
7499 | 楩\ | ||
7500 | 榇\ | ||
7501 | 椸\ | ||
7502 | 楙\ | ||
7503 | 歅\ | ||
7504 | \ | ||
7505 | 碃\ | ||
7506 | 碏\ | ||
7507 | \ | ||
7508 | 碈\ | ||
7509 | 䃅\ | ||
7510 | 硿\ | ||
7511 | 鄠\ | ||
7512 | 辒\ | ||
7513 | \ | ||
7514 | \ | ||
7515 | 龆\ | ||
7516 | 觜\ | ||
7517 | 䣘\ | ||
7518 | 暕\ | ||
7519 | 鹍\ | ||
7520 | \ | ||
7521 | 㬊\ | ||
7522 | 暅\ | ||
7523 | 跱\ | ||
7524 | 蜐\ | ||
7525 | 蜎\ | ||
7526 | 嵲\ | ||
7527 | 赗\ | ||
7528 | 骱\ | ||
7529 | 锖\ | ||
7530 | \ | ||
7531 | 锘\ | ||
7532 | 锳\ | ||
7533 | 锧\ | ||
7534 | 锪\ | ||
7535 | \ | ||
7536 | 锫\ | ||
7537 | 锬\ | ||
7538 | \ | ||
7539 | 稑\ | ||
7540 | 稙\ | ||
7541 | 䅟\ | ||
7542 | \ | ||
7543 | 筻\ | ||
7544 | 筼\ | ||
7545 | 筶\ | ||
7546 | 筦\ | ||
7547 | 筤\ | ||
7548 | 傺\ | ||
7549 | 鹎\ | ||
7550 | 僇\ | ||
7551 | 艅\ | ||
7552 | 艉\ | ||
7553 | 谼\ | ||
7554 | 貆\ | ||
7555 | 腽\ | ||
7556 | 腨\ | ||
7557 | 腯\ | ||
7558 | 鲉\ | ||
7559 | 鲊\ | ||
7560 | 鲌\ | ||
7561 | 䲟\ | ||
7562 | \ | ||
7563 | \ | ||
7564 | 鲏\ | ||
7565 | 雊\ | ||
7566 | 猺\ | ||
7567 | 飔\ | ||
7568 | 觟\ | ||
7569 | 𦝼\ | ||
7570 | 馌\ | ||
7571 | 裛\ | ||
7572 | 廒\ | ||
7573 | 瘀\ | ||
7574 | 瘅\ | ||
7575 | 鄘\ | ||
7576 | 鹒\ | ||
7577 | 鄜\ | ||
7578 | 麀\ | ||
7579 | 鄣\ | ||
7580 | 阘\ | ||
7581 | \ | ||
7582 | 煁\ | ||
7583 | 煃\ | ||
7584 | 煴\ | ||
7585 | 煋\ | ||
7586 | 煟\ | ||
7587 | 煓\ | ||
7588 | 滠\ | ||
7589 | 溍\ | ||
7590 | 溹\ | ||
7591 | 滆\ | ||
7592 | 滉\ | ||
7593 | 溦\ | ||
7594 | 溵\ | ||
7595 | 漷\ | ||
7596 | 滧\ | ||
7597 | 滘\ | ||
7598 | 滍\ | ||
7599 | 愭\ | ||
7600 | 慥\ | ||
7601 | 慆\ | ||
7602 | 塱\ | ||
7603 | \ | ||
7604 | 裼\ | ||
7605 | 禋\ | ||
7606 | 禔\ | ||
7607 | 禘\ | ||
7608 | 禒\ | ||
7609 | 谫\ | ||
7610 | 鹔\ | ||
7611 | \ | ||
7612 | 愍\ | ||
7613 | 嫄\ | ||
7614 | 媱\ | ||
7615 | 戤\ | ||
7616 | 勠\ | ||
7617 | 戣\ | ||
7618 | \ | ||
7619 | \ | ||
7620 | 缞\ | ||
7621 | 耤\ | ||
7622 | 瑧\ | ||
7623 | \ | ||
7624 | 瑨\ | ||
7625 | 瑱\ | ||
7626 | 瑷\ | ||
7627 | 瑢\ | ||
7628 | 斠\ | ||
7629 | 摏\ | ||
7630 | 墕\ | ||
7631 | 墈\ | ||
7632 | 墐\ | ||
7633 | 墘\ | ||
7634 | 摴\ | ||
7635 | 銎\ | ||
7636 | 𡐓\ | ||
7637 | 墚\ | ||
7638 | 撖\ | ||
7639 | \ | ||
7640 | 靽\ | ||
7641 | 鞁\ | ||
7642 | 蔌\ | ||
7643 | 蔈\ | ||
7644 | 蓰\ | ||
7645 | 蔹\ | ||
7646 | 蔊\ | ||
7647 | 嘏\ | ||
7648 | 榰\ | ||
7649 | 榑\ | ||
7650 | 槚\ | ||
7651 | 𣗋\ | ||
7652 | 槜\ | ||
7653 | 榍\ | ||
7654 | 疐\ | ||
7655 | \ | ||
7656 | 酺\ | ||
7657 | 酾\ | ||
7658 | 酲\ | ||
7659 | 酴\ | ||
7660 | 碶\ | ||
7661 | 䃎\ | ||
7662 | \ | ||
7663 | 碨\ | ||
7664 | 𥔲\ | ||
7665 | 碹\ | ||
7666 | 碥\ | ||
7667 | 劂\ | ||
7668 | \ | ||
7669 | 䴗\ | ||
7670 | 夥\ | ||
7671 | 瞍\ | ||
7672 | 鹖\ | ||
7673 | 㬎\ | ||
7674 | 跽\ | ||
7675 | 蜾\ | ||
7676 | 幖\ | ||
7677 | 嶍\ | ||
7678 | 圙\ | ||
7679 | 𨱏\ | ||
7680 | 锺\ | ||
7681 | 锼\ | ||
7682 | 锽\ | ||
7683 | \ | ||
7684 | 锾\ | ||
7685 | 锿\ | ||
7686 | 镃\ | ||
7687 | 镄\ | ||
7688 | 镅\ | ||
7689 | 馝\ | ||
7690 | 鹙\ | ||
7691 | 箨\ | ||
7692 | 箖\ | ||
7693 | 劄\ | ||
7694 | 僬\ | ||
7695 | 僦\ | ||
7696 | 僔\ | ||
7697 | 僎\ | ||
7698 | 槃\ | ||
7699 | 㙦\ | ||
7700 | 鲒\ | ||
7701 | 鲕\ | ||
7702 | \ | ||
7703 | 鲖\ | ||
7704 | 鲗\ | ||
7705 | 鲘\ | ||
7706 | 鲙\ | ||
7707 | \ | ||
7708 | \ | ||
7709 | 𩽾\ | ||
7710 | 夐\ | ||
7711 | 獍\ | ||
7712 | 飗\ | ||
7713 | \ | ||
7714 | 凘\ | ||
7715 | 廑\ | ||
7716 | 廙\ | ||
7717 | 瘗\ | ||
7718 | 瘥\ | ||
7719 | 瘕\ | ||
7720 | 鲝\ | ||
7721 | 鄫\ | ||
7722 | 熇\ | ||
7723 | 漹\ | ||
7724 | 漖\ | ||
7725 | 潆\ | ||
7726 | 漤\ | ||
7727 | 潩\ | ||
7728 | 漼\ | ||
7729 | 漴\ | ||
7730 | 㽏\ | ||
7731 | 漈\ | ||
7732 | 漋\ | ||
7733 | 漻\ | ||
7734 | 慬\ | ||
7735 | 窬\ | ||
7736 | 窭\ | ||
7737 | 㮾\ | ||
7738 | \ | ||
7739 | 褕\ | ||
7740 | 禛\ | ||
7741 | 禚\ | ||
7742 | 隩\ | ||
7743 | 嫕\ | ||
7744 | 嫭\ | ||
7745 | 嫜\ | ||
7746 | 嫪\ | ||
7747 | \ | ||
7748 | 㻬\ | ||
7749 | 麹\ | ||
7750 | 璆\ | ||
7751 | 漦\ | ||
7752 | 叇\ | ||
7753 | 墣\ | ||
7754 | 墦\ | ||
7755 | 墡\ | ||
7756 | 劐\ | ||
7757 | 薁\ | ||
7758 | 蕰\ | ||
7759 | 蔃\ | ||
7760 | 鼒\ | ||
7761 | 槱\ | ||
7762 | 鹝\ | ||
7763 | 磏\ | ||
7764 | 磉\ | ||
7765 | 殣\ | ||
7766 | 慭\ | ||
7767 | 霅\ | ||
7768 | 暵\ | ||
7769 | 暲\ | ||
7770 | 暶\ | ||
7771 | 踦\ | ||
7772 | 踣\ | ||
7773 | 䗖\ | ||
7774 | 蝘\ | ||
7775 | 蝲\ | ||
7776 | 蝤\ | ||
7777 | 噇\ | ||
7778 | 噂\ | ||
7779 | 噀\ | ||
7780 | 罶\ | ||
7781 | 嶲\ | ||
7782 | 嶓\ | ||
7783 | 㠇\ | ||
7784 | 嶟\ | ||
7785 | 嶒\ | ||
7786 | 镆\ | ||
7787 | 镈\ | ||
7788 | 镋\ | ||
7789 | 镎\ | ||
7790 | \ | ||
7791 | 镕\ | ||
7792 | 稹\ | ||
7793 | 儇\ | ||
7794 | 皞\ | ||
7795 | 皛\ | ||
7796 | 䴘\ | ||
7797 | 艎\ | ||
7798 | 艏\ | ||
7799 | 鹟\ | ||
7800 | 𩾃\ | ||
7801 | 鲦\ | ||
7802 | 鲪\ | ||
7803 | 鲬\ | ||
7804 | 橥\ | ||
7805 | 觭\ | ||
7806 | 鹠\ | ||
7807 | 鹡\ | ||
7808 | 糇\ | ||
7809 | 糈\ | ||
7810 | 翦\ | ||
7811 | 鹢\ | ||
7812 | 鹣\ | ||
7813 | 熛\ | ||
7814 | 潖\ | ||
7815 | 潵\ | ||
7816 | 㵐\ | ||
7817 | 澂\ | ||
7818 | 澛\ | ||
7819 | 瑬\ | ||
7820 | 潽\ | ||
7821 | 潾\ | ||
7822 | 潏\ | ||
7823 | 憭\ | ||
7824 | 憕\ | ||
7825 | \ | ||
7826 | 戭\ | ||
7827 | 褯\ | ||
7828 | 禤\ | ||
7829 | \ | ||
7830 | 嫽\ | ||
7831 | 遹\ | ||
7832 | \ | ||
7833 | 璥\ | ||
7834 | 璲\ | ||
7835 | 璒\ | ||
7836 | 憙\ | ||
7837 | 擐\ | ||
7838 | 鄹\ | ||
7839 | 薳\ | ||
7840 | 鞔\ | ||
7841 | 黇\ | ||
7842 | \ | ||
7843 | 蕗\ | ||
7844 | 薢\ | ||
7845 | 蕹\ | ||
7846 | 橞\ | ||
7847 | 橑\ | ||
7848 | 橦\ | ||
7849 | 醑\ | ||
7850 | 觱\ | ||
7851 | 磡\ | ||
7852 | 𥕢\ | ||
7853 | 磜\ | ||
7854 | 豮\ | ||
7855 | \ | ||
7856 | \ | ||
7857 | \ | ||
7858 | 鹾\ | ||
7859 | 虤\ | ||
7860 | 暿\ | ||
7861 | 曌\ | ||
7862 | 曈\ | ||
7863 | 㬚\ | ||
7864 | 蹅\ | ||
7865 | 踶\ | ||
7866 | 䗛\ | ||
7867 | 螗\ | ||
7868 | 疁\ | ||
7869 | 㠓\ | ||
7870 | 幪\ | ||
7871 | \ | ||
7872 | 嶦\ | ||
7873 | \ | ||
7874 | 𨱑\ | ||
7875 | \ | ||
7876 | 馞\ | ||
7877 | 穄\ | ||
7878 | 篚\ | ||
7879 | 篯\ | ||
7880 | 簉\ | ||
7881 | 鼽\ | ||
7882 | 衠\ | ||
7883 | 盦\ | ||
7884 | 螣\ | ||
7885 | 縢\ | ||
7886 | 鲭\ | ||
7887 | 鲯\ | ||
7888 | 鲰\ | ||
7889 | 鲺\ | ||
7890 | 鲹\ | ||
7891 | \ | ||
7892 | 亸\ | ||
7893 | 癀\ | ||
7894 | 瘭\ | ||
7895 | \ | ||
7896 | 羱\ | ||
7897 | 糒\ | ||
7898 | 燋\ | ||
7899 | 熻\ | ||
7900 | 燊\ | ||
7901 | 燚\ | ||
7902 | 燏\ | ||
7903 | 濩\ | ||
7904 | 濋\ | ||
7905 | 澪\ | ||
7906 | 澽\ | ||
7907 | 澴\ | ||
7908 | 澭\ | ||
7909 | 澼\ | ||
7910 | 憷\ | ||
7911 | 憺\ | ||
7912 | 懔\ | ||
7913 | 黉\ | ||
7914 | 嬛\ | ||
7915 | 鹨\ | ||
7916 | 翯\ | ||
7917 | \ | ||
7918 | 璱\ | ||
7919 | 𤩽\ | ||
7920 | 璬\ | ||
7921 | 璮\ | ||
7922 | 髽\ | ||
7923 | 擿\ | ||
7924 | 薿\ | ||
7925 | 薸\ | ||
7926 | 檑\ | ||
7927 | 櫆\ | ||
7928 | 檞\ | ||
7929 | 醨\ | ||
7930 | 繄\ | ||
7931 | 磹\ | ||
7932 | 磻\ | ||
7933 | 瞫\ | ||
7934 | 瞵\ | ||
7935 | 蹐\ | ||
7936 | 蟏\ | ||
7937 | 㘎\ | ||
7938 | \ | ||
7939 | 镤\ | ||
7940 | \ | ||
7941 | \ | ||
7942 | 镥\ | ||
7943 | 镨\ | ||
7944 | \ | ||
7945 | 𨱔\ | ||
7946 | \ | ||
7947 | \ | ||
7948 | 矰\ | ||
7949 | 穙\ | ||
7950 | 穜\ | ||
7951 | 穟\ | ||
7952 | 簕\ | ||
7953 | 簃\ | ||
7954 | 簏\ | ||
7955 | 儦\ | ||
7956 | 魋\ | ||
7957 | 斶\ | ||
7958 | 艚\ | ||
7959 | \ | ||
7960 | 谿\ | ||
7961 | 䲠\ | ||
7962 | \ | ||
7963 | 鲾\ | ||
7964 | \ | ||
7965 | 鲿\ | ||
7966 | 鳁\ | ||
7967 | 鳂\ | ||
7968 | 鳈\ | ||
7969 | 鳉\ | ||
7970 | 獯\ | ||
7971 | 䗪\ | ||
7972 | 馘\ | ||
7973 | 襕\ | ||
7974 | 襚\ | ||
7975 | \ | ||
7976 | 螱\ | ||
7977 | 甓\ | ||
7978 | 嬬\ | ||
7979 | 嬥\ | ||
7980 | 𦈡\ | ||
7981 | \ | ||
7982 | 瓀\ | ||
7983 | 釐\ | ||
7984 | 鬶\ | ||
7985 | 爇\ | ||
7986 | 鞳\ | ||
7987 | 鞮\ | ||
7988 | \ | ||
7989 | 藟\ | ||
7990 | 藦\ | ||
7991 | 藨\ | ||
7992 | 鹲\ | ||
7993 | 檫\ | ||
7994 | 黡\ | ||
7995 | 礞\ | ||
7996 | 礌\ | ||
7997 | 𥖨\ | ||
7998 | 蹢\ | ||
7999 | 蹜\ | ||
8000 | 蟫\ | ||
8001 | 䗴\ | ||
8002 | 嚚\ | ||
8003 | 髃\ | ||
8004 | 镮\ | ||
8005 | 镱\ | ||
8006 | 酂\ | ||
8007 | 馧\ | ||
8008 | 簠\ | ||
8009 | 簝\ | ||
8010 | 簰\ | ||
8011 | 鼫\ | ||
8012 | 鼩\ | ||
8013 | 皦\ | ||
8014 | 臑\ | ||
8015 | 䲢\ | ||
8016 | 鳑\ | ||
8017 | 鳒\ | ||
8018 | 鹱\ | ||
8019 | 鹯\ | ||
8020 | 癗\ | ||
8021 | 𦒍\ | ||
8022 | 旞\ | ||
8023 | 翷\ | ||
8024 | 冁\ | ||
8025 | 䎖\ | ||
8026 | 瀔\ | ||
8027 | 瀍\ | ||
8028 | 瀌\ | ||
8029 | 襜\ | ||
8030 | 䴙\ | ||
8031 | \ | ||
8032 | 嚭\ | ||
8033 | 㰀\ | ||
8034 | 鬷\ | ||
8035 | 醭\ | ||
8036 | 蹯\ | ||
8037 | 蠋\ | ||
8038 | 翾\ | ||
8039 | 鳘\ | ||
8040 | 儳\ | ||
8041 | 儴\ | ||
8042 | 鼗\ | ||
8043 | 鰶\ | ||
8044 | 𩾌\ | ||
8045 | 鳚\ | ||
8046 | 鳛\ | ||
8047 | 麑\ | ||
8048 | 麖\ | ||
8049 | 蠃\ | ||
8050 | 彟\ | ||
8051 | 嬿\ | ||
8052 | 鬒\ | ||
8053 | 蘘\ | ||
8054 | 欂\ | ||
8055 | 醵\ | ||
8056 | 颥\ | ||
8057 | 甗\ | ||
8058 | 𨟠\ | ||
8059 | 巇\ | ||
8060 | 酅\ | ||
8061 | 髎\ | ||
8062 | 犨\ | ||
8063 | \ | ||
8064 | 𨭉\ | ||
8065 | 㸌\ | ||
8066 | 爔\ | ||
8067 | 瀱\ | ||
8068 | 瀹\ | ||
8069 | 瀼\ | ||
8070 | 瀵\ | ||
8071 | 襫\ | ||
8072 | 孅\ | ||
8073 | 骦\ | ||
8074 | \ | ||
8075 | 耰\ | ||
8076 | 𤫉\ | ||
8077 | 瓖\ | ||
8078 | 鬘\ | ||
8079 | 趯\ | ||
8080 | \ | ||
8081 | 罍\ | ||
8082 | 鼱\ | ||
8083 | 鳠\ | ||
8084 | 鳡\ | ||
8085 | 鳣\ | ||
8086 | 爟\ | ||
8087 | 爚\ | ||
8088 | 灈\ | ||
8089 | 韂\ | ||
8090 | 糵\ | ||
8091 | 蘼\ | ||
8092 | 礵\ | ||
8093 | 鹴\ | ||
8094 | 躔\ | ||
8095 | 皭\ | ||
8096 | 龢\ | ||
8097 | 鳤\ | ||
8098 | 亹\ | ||
8099 | 籥\ | ||
8100 | 鼷\ | ||
8101 | 鱲\ | ||
8102 | 玃\ | ||
8103 | 醾\ | ||
8104 | 齇\ | ||
8105 | 觿\ | ||
8106 | 蠼\ | ||
8107 | ,\ | ||
8108 | 。\ | ||
8109 | 、\ | ||
8110 | “\ | ||
8111 | ”\ | ||
8112 | :\ | ||
8113 | .\ | ||
8114 | ,\ | ||
8115 | ;\ | ||
8116 | ?\ | ||
8117 | )\ | ||
8118 | (\ | ||
8119 | -\ | ||
8120 | )\ | ||
8121 | (\ | ||
8122 | 》\ | ||
8123 | 《\ | ||
8124 | !\ | ||
8125 | [\ | ||
8126 | ]\ | ||
8127 | %\ | ||
8128 | "\ | ||
8129 | …\ | ||
8130 | /\ | ||
8131 | ’\ | ||
8132 | ‘\ | ||
8133 | _\ | ||
8134 | =\ | ||
8135 | +\ | ||
8136 | □\ | ||
8137 | '\ | ||
8138 | 【\ | ||
8139 | 】\ | ||
8140 | ~\ | ||
8141 | *\ | ||
8142 | ★\ | ||
8143 | ―\ | ||
8144 | ●\ | ||
8145 | &\ | ||
8146 | ■\ | ||
8147 | 「\ | ||
8148 | 」\ | ||
8149 | ~\ | ||
8150 | ☆\ | ||
8151 | #\ | ||
8152 | >\ | ||
8153 | {\ | ||
8154 | →\ | ||
8155 | }\ | ||
8156 | @\ | ||
8157 | ℃\ | ||
8158 | |\ | ||
8159 | ◆\ | ||
8160 | \\ | ||
8161 | 〉\ | ||
8162 | 〈\ | ||
8163 | 〕\ | ||
8164 | 〔\ | ||
8165 | ━\ | ||
8166 | β\ | ||
8167 | $\ | ||
8168 | °\ | ||
8169 | √\ | ||
8170 | ※\ | ||
8171 | ′\ | ||
8172 | ±\ | ||
8173 | ▲\ | ||
8174 | `\ | ||
8175 | ^\ | ||
8176 | ÷\ | ||
8177 | ┐\ | ||
8178 | ≥\ | ||
8179 | ┌\ | ||
8180 | α\ | ||
8181 | ¥\ | ||
8182 | ≤\ | ||
8183 | 『\ | ||
8184 | <\ | ||
8185 | 』\ | ||
8186 | ‰\ | ||
8187 | П\ | ||
8188 | ∩\ | ||
8189 | ◇\ | ||
8190 | ∈\ | ||
8191 | ↓\ | ||
8192 | ∵\ | ||
8193 | ≠\ | ||
8194 | ®\ | ||
8195 | △\ | ||
8196 | ▽\ | ||
8197 | ·\ | ||
8198 | 0\ | ||
8199 | 1\ | ||
8200 | 2\ | ||
8201 | 3\ | ||
8202 | 4\ | ||
8203 | 5\ | ||
8204 | 6\ | ||
8205 | 7\ | ||
8206 | 8\ | ||
8207 | 9\ | ||
8208 | a\ | ||
8209 | b\ | ||
8210 | c\ | ||
8211 | d\ | ||
8212 | e\ | ||
8213 | f\ | ||
8214 | g\ | ||
8215 | h\ | ||
8216 | i\ | ||
8217 | j\ | ||
8218 | k\ | ||
8219 | l\ | ||
8220 | m\ | ||
8221 | n\ | ||
8222 | o\ | ||
8223 | p\ | ||
8224 | q\ | ||
8225 | r\ | ||
8226 | s\ | ||
8227 | t\ | ||
8228 | u\ | ||
8229 | v\ | ||
8230 | w\ | ||
8231 | x\ | ||
8232 | y\ | ||
8233 | z\ | ||
8234 | A\ | ||
8235 | B\ | ||
8236 | C\ | ||
8237 | D\ | ||
8238 | E\ | ||
8239 | F\ | ||
8240 | G\ | ||
8241 | H\ | ||
8242 | I\ | ||
8243 | J\ | ||
8244 | K\ | ||
8245 | L\ | ||
8246 | M\ | ||
8247 | N\ | ||
8248 | O\ | ||
8249 | P\ | ||
8250 | Q\ | ||
8251 | R\ | ||
8252 | S\ | ||
8253 | T\ | ||
8254 | U\ | ||
8255 | V\ | ||
8256 | W\ | ||
8257 | X\ | ||
8258 | Y\ | ||
8259 | Z""" |
1 | import cv2 | ||
2 | import time | ||
3 | import numpy as np | ||
4 | from .alphabets import alphabet | ||
5 | import tritonclient.grpc as grpcclient | ||
6 | |||
7 | |||
8 | def sort_poly(p): | ||
9 | # Find the minimum coordinate using (Xi+Yi) | ||
10 | min_axis = np.argmin(np.sum(p, axis=1)) | ||
11 | # Sort the box coordinates | ||
12 | p = p[[min_axis, (min_axis + 1) % 4, (min_axis + 2) % 4, (min_axis + 3) % 4]] | ||
13 | if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]): | ||
14 | return p | ||
15 | else: | ||
16 | return p[[0, 3, 2, 1]] | ||
17 | |||
18 | def client_init(url="localhost:8001", | ||
19 | ssl=False, private_key=None, root_certificates=None, certificate_chain=None, | ||
20 | verbose=False): | ||
21 | triton_client = grpcclient.InferenceServerClient( | ||
22 | url=url, | ||
23 | verbose=verbose, | ||
24 | ssl=ssl, | ||
25 | root_certificates=root_certificates, | ||
26 | private_key=private_key, | ||
27 | certificate_chain=certificate_chain) | ||
28 | return triton_client | ||
29 | |||
30 | class textRecServer: | ||
31 | """_summary_ | ||
32 | """ | ||
33 | def __init__(self): | ||
34 | super().__init__() | ||
35 | self.charactersS = ' ' + alphabet | ||
36 | self.batchsize = 8 | ||
37 | |||
38 | self.input_name = 'INPUT__0' | ||
39 | self.output_name = 'OUTPUT__0' | ||
40 | self.model_name = 'text_rec_torch' | ||
41 | self.np_type = np.float32 | ||
42 | self.quant_type = "FP32" | ||
43 | self.compression_algorithm = None | ||
44 | self.outputs = [] | ||
45 | self.outputs.append(grpcclient.InferRequestedOutput(self.output_name)) | ||
46 | |||
47 | def preprocess_one_image(self, image): | ||
48 | _, w, _ = image.shape | ||
49 | image = self._transform(image, w) | ||
50 | return image | ||
51 | |||
52 | def predict_batch(self, im, boxes): | ||
53 | """Summary | ||
54 | |||
55 | Args: | ||
56 | im (TYPE): RGB | ||
57 | boxes (TYPE): Description | ||
58 | |||
59 | Returns: | ||
60 | TYPE: Description | ||
61 | """ | ||
62 | |||
63 | triton_client = client_init("localhost:8001") | ||
64 | count_boxes = len(boxes) | ||
65 | boxes = sorted(boxes, | ||
66 | key=lambda box: int(32.0 * (np.linalg.norm(box[0] - box[1])) / (np.linalg.norm(box[3] - box[0]))), | ||
67 | reverse=True) | ||
68 | |||
69 | results = {} | ||
70 | labels = [] | ||
71 | rectime = 0.0 | ||
72 | if len(boxes) != 0: | ||
73 | for i in range(len(boxes) // self.batchsize + int(len(boxes) % self.batchsize != 0)): | ||
74 | box = boxes[min(len(boxes)-1, i * self.batchsize)] | ||
75 | w, h = [int(np.linalg.norm(box[0] - box[1])), int(np.linalg.norm(box[3] - box[0]))] | ||
76 | width = max(32, min(int(32.0 * w / h), 960)) | ||
77 | if width < 32: | ||
78 | continue | ||
79 | slices = [] | ||
80 | for index, box in enumerate(boxes[i * self.batchsize:(i + 1) * self.batchsize]): | ||
81 | _box = [n for a in box for n in a] | ||
82 | if i * self.batchsize + index < count_boxes: | ||
83 | results[i * self.batchsize + index] = [list(map(int, _box))] | ||
84 | w, h = [int(np.linalg.norm(box[0] - box[1])), int(np.linalg.norm(box[3] - box[0]))] | ||
85 | pts1 = np.float32(box) | ||
86 | pts2 = np.float32([[0, 0], [w, 0], [w, h], [0, h]]) | ||
87 | |||
88 | # 前处理优化 | ||
89 | xmin, ymin, _w, _h = cv2.boundingRect(pts1) | ||
90 | xmax, ymax = xmin+_w, ymin+_h | ||
91 | xmin, ymin = max(0, xmin), max(0, ymin) | ||
92 | im_sclice = im[int(ymin):int(ymax), int(xmin):int(xmax), :] | ||
93 | pts1[:, 0] -= xmin | ||
94 | pts1[:, 1] -= ymin | ||
95 | |||
96 | M = cv2.getPerspectiveTransform(pts1, pts2) | ||
97 | im_crop = cv2.warpPerspective(im_sclice, M, (w, h)) | ||
98 | im_crop = self._transform(im_crop, width) | ||
99 | slices.append(im_crop) | ||
100 | start_rec = time.time() | ||
101 | slices = self.np_type(slices) | ||
102 | slices = slices.transpose(0, 3, 1, 2) | ||
103 | slices = slices/127.5-1. | ||
104 | inputs = [] | ||
105 | inputs.append(grpcclient.InferInput(self.input_name, list(slices.shape), self.quant_type)) | ||
106 | inputs[0].set_data_from_numpy(slices) | ||
107 | |||
108 | # inference | ||
109 | preds = triton_client.infer( | ||
110 | model_name=self.model_name, | ||
111 | inputs=inputs, | ||
112 | outputs=self.outputs, | ||
113 | compression_algorithm=self.compression_algorithm | ||
114 | ) | ||
115 | preds = preds.as_numpy(self.output_name).copy() | ||
116 | preds = preds.transpose(1, 0) | ||
117 | tmp_labels = self.decode(preds) | ||
118 | rectime += (time.time() - start_rec) | ||
119 | labels.extend(tmp_labels) | ||
120 | |||
121 | for index, label in enumerate(labels[:count_boxes]): | ||
122 | label = label.replace(' ', '').replace('¥', '¥') | ||
123 | if label == '': | ||
124 | del results[index] | ||
125 | continue | ||
126 | results[index].append(label) | ||
127 | # 重新排序 | ||
128 | results = list(results.values()) | ||
129 | results = sorted(results, key=lambda x: x[0][1], reverse=False) # 按 y0 从小到大排 | ||
130 | keys = [str(i) for i in range(len(results))] | ||
131 | results = dict(zip(keys, results)) | ||
132 | else: | ||
133 | results = dict() | ||
134 | rectime = -1 | ||
135 | return results, rectime | ||
136 | |||
137 | def decode(self, preds): | ||
138 | res = [] | ||
139 | for t in preds: | ||
140 | length = len(t) | ||
141 | char_list = [] | ||
142 | for i in range(length): | ||
143 | if t[i] != 0 and (not (i > 0 and t[i-1] == t[i])): | ||
144 | char_list.append(self.charactersS[t[i]]) | ||
145 | res.append(u''.join(char_list)) | ||
146 | return res | ||
147 | |||
148 | def _transform(self, im, width): | ||
149 | height=32 | ||
150 | |||
151 | ori_h, ori_w = im.shape[:2] | ||
152 | ratio1 = width * 1.0 / ori_w | ||
153 | ratio2 = height * 1.0 / ori_h | ||
154 | if ratio1 < ratio2: | ||
155 | ratio = ratio1 | ||
156 | else: | ||
157 | ratio = ratio2 | ||
158 | new_w, new_h = int(ori_w * ratio), int(ori_h * ratio) | ||
159 | if new_w<4: | ||
160 | new_w = 4 | ||
161 | im = cv2.resize(im, (new_w, new_h)) | ||
162 | img = np.ones((height, width, 3), dtype=np.uint8)*230 | ||
163 | img[:im.shape[0], :im.shape[1], :] = im | ||
164 | return img |
1 | from . import text_detector | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : Lyu Kui | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Create Date : 2022-06-01 19:00:18 | ||
5 | # @Last Modified : 2022-07-15 11:41:25 | ||
6 | # @Description : | ||
7 | |||
8 | import os | ||
9 | import cv2 | ||
10 | import time | ||
11 | import pyclipper | ||
12 | import numpy as np | ||
13 | # import tensorflow as tf | ||
14 | from shapely.geometry import Polygon | ||
15 | |||
16 | # import grpc | ||
17 | # from tensorflow_serving.apis import predict_pb2 | ||
18 | # from tensorflow_serving.apis import prediction_service_pb2_grpc | ||
19 | |||
20 | import tritonclient.grpc as grpcclient | ||
21 | |||
22 | |||
23 | def resize_with_padding(src, limit_max=1024): | ||
24 | '''限制长边不大于 limit_max 短边等比例缩放,以 0 填充''' | ||
25 | img = src.copy() | ||
26 | |||
27 | h, w, _ = img.shape | ||
28 | max_side = max(h, w) | ||
29 | ratio = limit_max / max_side if max_side > limit_max else 1 | ||
30 | h, w = int(h * ratio), int(w * ratio) | ||
31 | proc = cv2.resize(img, (w, h)) | ||
32 | |||
33 | canvas = np.zeros((limit_max, limit_max, 3), dtype=np.float32) | ||
34 | canvas[0:h, 0:w, :] = proc | ||
35 | return canvas, ratio | ||
36 | |||
37 | def rectangle_boxes_zoom(boxes, offset=1): | ||
38 | '''Scale the rectangle boxes via offset | ||
39 | Input: | ||
40 | boxes: with shape (-1, 4, 2) | ||
41 | offset: how many pix do you wanna zoom, we recommend less than 5 | ||
42 | Output: | ||
43 | boxes: zoomed | ||
44 | ''' | ||
45 | boxes = np.array(boxes) | ||
46 | boxes += [[[-offset,-offset], [offset,-offset], [offset,offset], [-offset,offset]]] | ||
47 | return boxes | ||
48 | |||
49 | def polygons_from_probmap(preds, ratio): | ||
50 | # 二值化 | ||
51 | prob_map_pred = np.array(preds, dtype=np.uint8)[0,:,:,0] | ||
52 | # 输入:二值图、轮廓检索(层次)模式、轮廓渐进方法 | ||
53 | # 输出:轮廓、层级关系 | ||
54 | contours, hierarchy = cv2.findContours(prob_map_pred, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | ||
55 | |||
56 | boxes = [] | ||
57 | for contour in contours: | ||
58 | if len(contour) < 4: | ||
59 | continue | ||
60 | |||
61 | # Vatti clipping | ||
62 | polygon = Polygon(np.array(contour).reshape((-1, 2))).buffer(0) | ||
63 | polygon = polygon.convex_hull if polygon.type == 'MultiPolygon' else polygon # Note: 这里不是 bug 是我们故意而为之 | ||
64 | |||
65 | if polygon.area < 10: | ||
66 | continue | ||
67 | |||
68 | distance = polygon.area * 1.5 / polygon.length | ||
69 | offset = pyclipper.PyclipperOffset() | ||
70 | offset.AddPath(list(polygon.exterior.coords), pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) | ||
71 | expanded = np.array(offset.Execute(distance)[0]) # Note: 这里不是 bug 是我们故意而为之 | ||
72 | |||
73 | # Convert polygon to rectangle | ||
74 | rect = cv2.minAreaRect(expanded) | ||
75 | box = cv2.boxPoints(rect) | ||
76 | # make clock-wise order | ||
77 | box = np.roll(box, 4-box.sum(axis=1).argmin(), 0) | ||
78 | box = np.array(box/ratio, dtype=np.int32) | ||
79 | boxes.append(box) | ||
80 | |||
81 | return boxes | ||
82 | |||
83 | def predict(image): | ||
84 | |||
85 | image_resized, ratio = resize_with_padding(image, limit_max=1280) | ||
86 | input_data = np.expand_dims(image_resized/255., axis=0) | ||
87 | |||
88 | # options = [('grpc.max_send_message_length', 1000 * 1024 * 1024), | ||
89 | # ('grpc.max_receive_message_length', 1000 * 1024 * 1024)] | ||
90 | # channel = grpc.insecure_channel('localhost:8500', options=options) | ||
91 | # stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) | ||
92 | |||
93 | # request = predict_pb2.PredictRequest() | ||
94 | # request.model_spec.name = 'dbnet_model' | ||
95 | # request.model_spec.signature_name = 'serving_default' | ||
96 | # request.inputs['input_1'].CopyFrom(tf.make_tensor_proto(inputs)) | ||
97 | |||
98 | # result = stub.Predict(request, 100.0) # 100 secs timeout | ||
99 | |||
100 | # preds = tf.make_ndarray(result.outputs['tf.math.greater']) | ||
101 | |||
102 | triton_client = grpcclient.InferenceServerClient("localhost:8001") | ||
103 | |||
104 | # Initialize the data | ||
105 | inputs = [grpcclient.InferInput('input_1', input_data.shape, "FP32")] | ||
106 | inputs[0].set_data_from_numpy(input_data) | ||
107 | outputs = [grpcclient.InferRequestedOutput("tf.math.greater")] | ||
108 | |||
109 | # Inference | ||
110 | results = triton_client.infer( | ||
111 | model_name="dbnet_model", | ||
112 | inputs=inputs, | ||
113 | outputs=outputs | ||
114 | ) | ||
115 | # Get the output arrays from the results | ||
116 | preds = results.as_numpy("tf.math.greater") | ||
117 | |||
118 | boxes = polygons_from_probmap(preds, ratio) | ||
119 | #boxes = rectangle_boxes_zoom(boxes, offset=0) | ||
120 | |||
121 | return boxes |
ocr_engine/turnsole/ocr_engine/__init__.py
0 → 100644
1 | # import grpc | ||
2 | import turnsole | ||
3 | import numpy as np | ||
4 | # import tensorflow as tf | ||
5 | # from tensorflow_serving.apis import predict_pb2, prediction_service_pb2_grpc | ||
6 | |||
7 | import tritonclient.grpc as grpcclient | ||
8 | |||
9 | |||
10 | class ObjectDetection(): | ||
11 | |||
12 | """通用文件检测算法 | ||
13 | 输入图片输出检测结果 | ||
14 | |||
15 | API 文档请参阅: | ||
16 | """ | ||
17 | |||
18 | def __init__(self, confidence_threshold=0.5): | ||
19 | """初始化检测对象 | ||
20 | |||
21 | Args: | ||
22 | confidence_threshold (float, optional): 目标检测模型的分类置信度 | ||
23 | """ | ||
24 | |||
25 | self.lable2index = { | ||
26 | 'id_card_info': 0, | ||
27 | 'id_card_guohui': 1, | ||
28 | 'lssfz_front': 2, | ||
29 | 'lssfz_back': 3, | ||
30 | 'jzz_front': 4, | ||
31 | 'jzz_back': 5, | ||
32 | 'txz_front': 6, | ||
33 | 'txz_back': 7, | ||
34 | 'bank_card': 8, | ||
35 | 'vehicle_license_front': 9, | ||
36 | 'vehicle_license_back': 10, | ||
37 | 'driving_license_front': 11, | ||
38 | 'driving_license_back': 12, | ||
39 | 'vrc_page_12': 13, | ||
40 | 'vrc_page_34': 14, | ||
41 | } | ||
42 | self.index2lable = list(self.lable2index.keys()) | ||
43 | |||
44 | # def resize_and_pad_to_384(self, image, jitter=True): | ||
45 | # """长边在 256-384 之间随机取一个数,四边 pad 到 384 | ||
46 | |||
47 | # Args: | ||
48 | # image (TYPE): An image represented as a numpy ndarray. | ||
49 | # """ | ||
50 | # image_shape = tf.cast(tf.shape(image)[:2], dtype=tf.float32) | ||
51 | # max_side = tf.random.uniform( | ||
52 | # (), 256, 384, dtype=tf.float32) if jitter else 384. | ||
53 | # ratio = max_side / tf.reduce_max(image_shape) | ||
54 | # image_shape = tf.cast(ratio * image_shape, dtype=tf.int32) | ||
55 | # image = tf.image.resize(image, image_shape) | ||
56 | # image = tf.image.pad_to_bounding_box(image, 0, 0, 384, 384) | ||
57 | # return image, ratio | ||
58 | |||
59 | def process(self, image): | ||
60 | """Processes an image and returns a list of the detected object location and classes data. | ||
61 | |||
62 | Args: | ||
63 | image (TYPE): An image represented as a numpy ndarray. | ||
64 | """ | ||
65 | h, w, _ = image.shape | ||
66 | # image, ratio = self.resize_and_pad_to_384(image, jitter=False) | ||
67 | image, ratio = turnsole.resize_with_pad(image, target_height=384, target_width=384) | ||
68 | input_data = np.expand_dims(image/255., axis=0) | ||
69 | |||
70 | # options = [('grpc.max_send_message_length', 1000 * 1024 * 1024), | ||
71 | # ('grpc.max_receive_message_length', 1000 * 1024 * 1024)] | ||
72 | # channel = grpc.insecure_channel('localhost:8500', options=options) | ||
73 | # stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) | ||
74 | |||
75 | # request = predict_pb2.PredictRequest() | ||
76 | # request.model_spec.name = 'object_detection' | ||
77 | # request.model_spec.signature_name = 'serving_default' | ||
78 | # request.inputs['image'].CopyFrom(tf.make_tensor_proto(inputs, dtype='float32')) | ||
79 | # # 100 secs timeout | ||
80 | # result = stub.Predict(request, 100.0) | ||
81 | |||
82 | # # saved_model_cli show --dir saved_model/ --all # 查看 saved model 的输入输出 | ||
83 | # boxes = tf.make_ndarray(result.outputs['decode_predictions']) | ||
84 | # scores = tf.make_ndarray(result.outputs['decode_predictions_1']) | ||
85 | # classes = tf.make_ndarray(result.outputs['decode_predictions_2']) | ||
86 | # valid_detections = tf.make_ndarray( | ||
87 | # result.outputs['decode_predictions_3']) | ||
88 | |||
89 | triton_client = grpcclient.InferenceServerClient("localhost:8001") | ||
90 | |||
91 | # Initialize the data | ||
92 | inputs = [grpcclient.InferInput('image', input_data.shape, "FP32")] | ||
93 | inputs[0].set_data_from_numpy(input_data.astype('float32')) | ||
94 | outputs = [ | ||
95 | grpcclient.InferRequestedOutput("decode_predictions"), | ||
96 | grpcclient.InferRequestedOutput("decode_predictions_1"), | ||
97 | grpcclient.InferRequestedOutput("decode_predictions_2"), | ||
98 | grpcclient.InferRequestedOutput("decode_predictions_3") | ||
99 | ] | ||
100 | |||
101 | # Inference | ||
102 | results = triton_client.infer( | ||
103 | model_name="object_detection", | ||
104 | inputs=inputs, | ||
105 | outputs=outputs | ||
106 | ) | ||
107 | # Get the output arrays from the results | ||
108 | boxes = results.as_numpy("decode_predictions") | ||
109 | scores = results.as_numpy("decode_predictions_1") | ||
110 | classes = results.as_numpy("decode_predictions_2") | ||
111 | valid_detections = results.as_numpy("decode_predictions_3") | ||
112 | |||
113 | boxes = boxes[0][:valid_detections[0]] | ||
114 | scores = scores[0][:valid_detections[0]] | ||
115 | classes = classes[0][:valid_detections[0]] | ||
116 | |||
117 | object_list = [] | ||
118 | for box, score, class_index in zip(boxes, scores, classes): | ||
119 | xmin, ymin, xmax, ymax = box / ratio | ||
120 | xmin = max(0, int(xmin)) | ||
121 | ymin = max(0, int(ymin)) | ||
122 | xmax = min(w, int(xmax)) | ||
123 | ymax = min(h, int(ymax)) | ||
124 | class_label = self.index2lable[int(class_index)] | ||
125 | item = { | ||
126 | "label": class_label, | ||
127 | "confidence": float(score), | ||
128 | "location": { | ||
129 | "xmin": xmin, | ||
130 | "ymin": ymin, | ||
131 | "xmax": xmax, | ||
132 | "ymax": ymax | ||
133 | } | ||
134 | } | ||
135 | object_list.append(item) | ||
136 | |||
137 | return object_list | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : lk | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Create Date : 2022-06-28 14:38:57 | ||
5 | # @Last Modified : 2022-09-06 14:37:47 | ||
6 | # @Description : | ||
7 | |||
8 | from .utils import SignatureDetection | ||
9 | |||
10 | signature_detector = SignatureDetection() | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : lk | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Create Date : 2022-02-08 14:10:00 | ||
5 | # @Last Modified : 2022-09-06 14:45:10 | ||
6 | # @Description : | ||
7 | |||
8 | import turnsole | ||
9 | import numpy as np | ||
10 | # import tensorflow as tf | ||
11 | |||
12 | # import grpc | ||
13 | # from tensorflow_serving.apis import predict_pb2 | ||
14 | # from tensorflow_serving.apis import prediction_service_pb2_grpc | ||
15 | |||
16 | import tritonclient.grpc as grpcclient | ||
17 | |||
18 | |||
19 | # def resize_and_pad_to_1024(image, jitter=True): | ||
20 | # # 长边在 512-1024 之间随机取一个数,四边 pad 到 1024 | ||
21 | # image_shape = tf.cast(tf.shape(image)[:2], dtype=tf.float32) | ||
22 | # max_side = tf.random.uniform((), 512, 1024, dtype=tf.float32) if jitter else 1024. | ||
23 | # ratio = max_side / tf.reduce_max(image_shape) | ||
24 | # image_shape = tf.cast(ratio * image_shape, dtype=tf.int32) | ||
25 | # image = tf.image.resize(image, image_shape) | ||
26 | # image = tf.image.pad_to_bounding_box(image, 0, 0, 1024, 1024) | ||
27 | # return image, ratio | ||
28 | |||
29 | class SignatureDetection(): | ||
30 | |||
31 | """签字盖章检测算法 | ||
32 | 输入图片输出检测结果 | ||
33 | |||
34 | API 文档请参阅: | ||
35 | """ | ||
36 | |||
37 | def __init__(self, confidence_threshold=0.5): | ||
38 | """初始化检测对象 | ||
39 | |||
40 | Args: | ||
41 | confidence_threshold (float, optional): 目标检测模型的分类置信度 | ||
42 | """ | ||
43 | |||
44 | self.lable2index = { | ||
45 | 'circle': 0, | ||
46 | 'ellipse': 1, | ||
47 | 'rectangle': 2, | ||
48 | 'signature': 3, | ||
49 | 'qr_code': 4, | ||
50 | 'bar_code': 5 | ||
51 | } | ||
52 | self.index2lable = { | ||
53 | 0: 'circle', | ||
54 | 1: 'ellipse', | ||
55 | 2: 'rectangle', | ||
56 | 3: 'signature', | ||
57 | 4: 'qr_code', | ||
58 | 5: 'bar_code' | ||
59 | } | ||
60 | |||
61 | |||
62 | def process(self, image): | ||
63 | """Processes an image and returns a list of the detected signature location and classes data. | ||
64 | |||
65 | Args: | ||
66 | image (TYPE): An image represented as a numpy ndarray. | ||
67 | """ | ||
68 | h, w, _ = image.shape | ||
69 | |||
70 | # image, ratio = resize_and_pad_to_1024(image, jitter=False) | ||
71 | image, ratio = turnsole.resize_with_pad(image, target_height=1024, target_width=1024) | ||
72 | input_data = np.expand_dims(np.float32(image/255.), axis=0) | ||
73 | |||
74 | # options = [('grpc.max_send_message_length', 1000 * 1024 * 1024), | ||
75 | # ('grpc.max_receive_message_length', 1000 * 1024 * 1024)] | ||
76 | # channel = grpc.insecure_channel('localhost:8500', options=options) | ||
77 | # stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) | ||
78 | |||
79 | # request = predict_pb2.PredictRequest() | ||
80 | # request.model_spec.name = 'signature_model' | ||
81 | # request.model_spec.signature_name = 'serving_default' | ||
82 | # request.inputs['image'].CopyFrom(tf.make_tensor_proto(inputs, dtype='float32')) | ||
83 | # result = stub.Predict(request, 100.0) # 100 secs timeout | ||
84 | |||
85 | # # saved_model_cli show --dir saved_model/ --all # 查看 saved model 的输入输出 | ||
86 | # boxes = tf.make_ndarray(result.outputs['decode_predictions']) | ||
87 | # scores = tf.make_ndarray(result.outputs['decode_predictions_1']) | ||
88 | # classes = tf.make_ndarray(result.outputs['decode_predictions_2']) | ||
89 | # valid_detections = tf.make_ndarray(result.outputs['decode_predictions_3']) | ||
90 | |||
91 | triton_client = grpcclient.InferenceServerClient("localhost:8001") | ||
92 | |||
93 | # Initialize the data | ||
94 | inputs = [grpcclient.InferInput('image', input_data.shape, "FP32")] | ||
95 | inputs[0].set_data_from_numpy(input_data) | ||
96 | outputs = [ | ||
97 | grpcclient.InferRequestedOutput("decode_predictions"), | ||
98 | grpcclient.InferRequestedOutput("decode_predictions_1"), | ||
99 | grpcclient.InferRequestedOutput("decode_predictions_2"), | ||
100 | grpcclient.InferRequestedOutput("decode_predictions_3") | ||
101 | ] | ||
102 | |||
103 | # Inference | ||
104 | results = triton_client.infer( | ||
105 | model_name="signature_model", | ||
106 | inputs=inputs, | ||
107 | outputs=outputs | ||
108 | ) | ||
109 | # Get the output arrays from the results | ||
110 | boxes = results.as_numpy("decode_predictions") | ||
111 | scores = results.as_numpy("decode_predictions_1") | ||
112 | classes = results.as_numpy("decode_predictions_2") | ||
113 | valid_detections = results.as_numpy("decode_predictions_3") | ||
114 | |||
115 | boxes = boxes[0][:valid_detections[0]] | ||
116 | scores = scores[0][:valid_detections[0]] | ||
117 | classes = classes[0][:valid_detections[0]] | ||
118 | |||
119 | signature_list = [] | ||
120 | for box, score, class_index in zip(boxes, scores, classes): | ||
121 | xmin, ymin, xmax, ymax = box / ratio | ||
122 | class_label = self.index2lable[class_index] | ||
123 | item = { | ||
124 | "label": class_label, | ||
125 | "confidence": float(score), | ||
126 | "location": { | ||
127 | "xmin": max(0, int(xmin)), | ||
128 | "ymin": max(0, int(ymin)), | ||
129 | "xmax": min(w, int(xmax)), | ||
130 | "ymax": min(h, int(ymax)) | ||
131 | } | ||
132 | } | ||
133 | signature_list.append(item) | ||
134 | |||
135 | return signature_list |
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : Lyu Kui | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Create Date : 2022-06-16 11:01:36 | ||
5 | # @Last Modified : 2022-07-15 10:57:06 | ||
6 | # @Description : | ||
7 | |||
8 | from .read_data import base64_to_bgr | ||
9 | from .read_data import bytes_to_bgr | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : Lyu Kui | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Create Date : 2022-06-16 10:59:50 | ||
5 | # @Last Modified : 2022-08-03 14:59:15 | ||
6 | # @Description : | ||
7 | |||
8 | import cv2 | ||
9 | import base64 | ||
10 | import numpy as np | ||
11 | import tensorflow as tf | ||
12 | |||
13 | |||
14 | def base64_to_bgr(img64): | ||
15 | """把 base64 转换成图片 | ||
16 | 单通道的灰度图或四通道的透明图都将自动转换成三通道的 BGR 图 | ||
17 | |||
18 | Args: | ||
19 | img64 (TYPE): Description | ||
20 | |||
21 | Returns: | ||
22 | TYPE: image is a 3-D uint8 Tensor of shape [height, width, channels] where channels is BGR | ||
23 | """ | ||
24 | encoded_image = base64.b64decode(img64) | ||
25 | img_array = np.frombuffer(encoded_image, np.uint8) | ||
26 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
27 | return image | ||
28 | |||
29 | def bytes_to_bgr(buffer: bytes): | ||
30 | """Read a byte stream as a OpenCV image | ||
31 | |||
32 | Args: | ||
33 | buffer (TYPE): bytes of a decoded image | ||
34 | """ | ||
35 | img_array = np.frombuffer(buffer, np.uint8) | ||
36 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
37 | |||
38 | # image = tf.io.decode_image(buffer, channels=3) | ||
39 | # image = np.array(image)[...,::-1] | ||
40 | return image | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/turnsole/paths.py
0 → 100644
1 | # -*- coding: utf-8 -*- | ||
2 | # @Author : Lyu Kui | ||
3 | # @Email : 9428.al@gmail.com | ||
4 | # @Created Date : 2021-03-04 17:50:09 | ||
5 | # @Last Modified : 2021-03-10 14:03:02 | ||
6 | # @Description : | ||
7 | |||
8 | import os | ||
9 | |||
10 | image_types = (".jpg", ".jpeg", ".png", ".bmp", ".tif", ".tiff") | ||
11 | |||
12 | |||
13 | def list_images(basePath, contains=None): | ||
14 | # return the set of files that are valid | ||
15 | return list_files(basePath, validExts=image_types, contains=contains) | ||
16 | |||
17 | def list_files(basePath, validExts=None, contains=None): | ||
18 | # loop over the directory structure | ||
19 | for (rootDir, dirNames, filenames) in os.walk(basePath): | ||
20 | # loop over the filenames in the current directory | ||
21 | for filename in filenames: | ||
22 | # if the contains string is not none and the filename does not contain | ||
23 | # the supplied string, then ignore the file | ||
24 | if contains is not None and filename.find(contains) == -1: | ||
25 | continue | ||
26 | |||
27 | # determine the file extension of the current file | ||
28 | ext = filename[filename.rfind("."):].lower() | ||
29 | |||
30 | # check to see if the file is an image and should be processed | ||
31 | if validExts is None or ext.endswith(validExts): | ||
32 | # construct the path to the image and yield it | ||
33 | imagePath = os.path.join(rootDir, filename) | ||
34 | yield imagePath | ||
35 | |||
36 | def get_filename(filePath): | ||
37 | basename = os.path.basename(filePath) | ||
38 | fname, fextension = os.path.splitext(basename) | ||
39 | return fname | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/turnsole/pdf_tools.py
0 → 100644
1 | import cv2 | ||
2 | import fitz | ||
3 | import numpy as np | ||
4 | |||
5 | def pdf_to_images(pdf_path: str): | ||
6 | """PDF 转 OpenCV Image | ||
7 | |||
8 | Args: | ||
9 | pdf_path (str): Description | ||
10 | |||
11 | Returns: | ||
12 | TYPE: Description | ||
13 | """ | ||
14 | images = [] | ||
15 | doc = fitz.open(pdf_path) | ||
16 | # producer = doc.metadata.get('producer') | ||
17 | |||
18 | for pno in range(doc.page_count): | ||
19 | page = doc.load_page(pno) | ||
20 | |||
21 | all_texts = page.get_text().replace('\n', '').strip() | ||
22 | # 根据经验过滤掉特殊情况 | ||
23 | all_texts = all_texts.strip('Click to buy NOW!PDF-XChangewww.docu-track.comClick to buy NOW!PDF-XChangewww.docu-track.com') | ||
24 | blocks = page.get_text("dict")["blocks"] | ||
25 | imgblocks = [b for b in blocks if b["type"] == 1] | ||
26 | |||
27 | page_images = [] | ||
28 | # 如果一个字都没有, | ||
29 | if len(all_texts) == 0 and len(imgblocks) != 0: | ||
30 | # # 这些 producer 包含碎图,如果真的是碎图我们把碎图拼接一下 | ||
31 | # if producer in ['Microsoft: Print To PDF', | ||
32 | # 'GPL Ghostscript 8.71', | ||
33 | # 'doPDF Ver 7.3 Build 398 (Windows 7 Business Edition (SP 1) - Version: 6.1.7601 (x64))', | ||
34 | # '福昕阅读器PDF打印机 版本 11.0.114.4386']: | ||
35 | patches = [] | ||
36 | for imgblock in imgblocks: | ||
37 | contents = imgblock["image"] | ||
38 | img_array = np.frombuffer(contents, dtype=np.uint8) | ||
39 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
40 | patches.append(image) | ||
41 | try: | ||
42 | try: | ||
43 | image = np.concatenate(patches, axis=0) | ||
44 | page_images.append(image) | ||
45 | except: | ||
46 | image = np.concatenate(patches, axis=1) | ||
47 | page_images.append(image) | ||
48 | except: | ||
49 | # 当两张拼不到一块的时候我们可以认为他是两张图,如果超过两张那就不一定了 | ||
50 | if len(patches) == 2: | ||
51 | page_images = patches | ||
52 | else: | ||
53 | pix = page.get_pixmap(dpi=350) | ||
54 | contents = pix.tobytes(output="png") | ||
55 | img_array = np.frombuffer(contents, dtype=np.uint8) | ||
56 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
57 | page_images.append(image) | ||
58 | # else: | ||
59 | # for imgblock in imgblocks: | ||
60 | # contents = imgblock["image"] | ||
61 | # img_array = np.frombuffer(contents, dtype=np.uint8) | ||
62 | # image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
63 | # page_images.append(image) | ||
64 | else: | ||
65 | pix = page.get_pixmap(dpi=350) | ||
66 | contents = pix.tobytes(output="png") | ||
67 | img_array = np.frombuffer(contents, dtype=np.uint8) | ||
68 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
69 | page_images.append(image) | ||
70 | images.append(page_images) | ||
71 | return images | ||
72 |
ocr_engine/turnsole/video/__init__.py
0 → 100644
ocr_engine/turnsole/video/count_frames.py
0 → 100644
1 | # import the necessary packages | ||
2 | # from ..convenience import is_cv3 | ||
3 | import cv2 | ||
4 | |||
5 | def count_frames(path, override=False): | ||
6 | # grab a pointer to the video file and initialize the total | ||
7 | # number of frames read | ||
8 | video = cv2.VideoCapture(path) | ||
9 | total = 0 | ||
10 | |||
11 | # if the override flag is passed in, revert to the manual | ||
12 | # method of counting frames | ||
13 | if override: | ||
14 | total = count_frames_manual(video) | ||
15 | |||
16 | # otherwise, let's try the fast way first | ||
17 | else: | ||
18 | # lets try to determine the number of frames in a video | ||
19 | # via video properties; this method can be very buggy | ||
20 | # and might throw an error based on your OpenCV version | ||
21 | # or may fail entirely based on your which video codecs | ||
22 | # you have installed | ||
23 | try: | ||
24 | # # check if we are using OpenCV 3 | ||
25 | # if is_cv3(): | ||
26 | # total = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | ||
27 | |||
28 | # # otherwise, we are using OpenCV 2.4 | ||
29 | # else: | ||
30 | # total = int(video.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT)) | ||
31 | |||
32 | total = int(video.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT)) | ||
33 | |||
34 | # uh-oh, we got an error -- revert to counting manually | ||
35 | except: | ||
36 | total = count_frames_manual(video) | ||
37 | |||
38 | # release the video file pointer | ||
39 | video.release() | ||
40 | |||
41 | # return the total number of frames in the video | ||
42 | return total | ||
43 | |||
44 | def count_frames_manual(video): | ||
45 | # initialize the total number of frames read | ||
46 | total = 0 | ||
47 | |||
48 | # loop over the frames of the video | ||
49 | while True: | ||
50 | # grab the current frame | ||
51 | (grabbed, frame) = video.read() | ||
52 | |||
53 | # check to see if we have reached the end of the | ||
54 | # video | ||
55 | if not grabbed: | ||
56 | break | ||
57 | |||
58 | # increment the total number of frames read | ||
59 | total += 1 | ||
60 | |||
61 | # return the total number of frames in the video file | ||
62 | return total | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/turnsole/video/filevideostream.py
0 → 100644
1 | # import the necessary packages | ||
2 | from threading import Thread | ||
3 | import sys | ||
4 | import cv2 | ||
5 | import time | ||
6 | |||
7 | # import the Queue class from Python 3 | ||
8 | if sys.version_info >= (3, 0): | ||
9 | from queue import Queue | ||
10 | |||
11 | # otherwise, import the Queue class for Python 2.7 | ||
12 | else: | ||
13 | from Queue import Queue | ||
14 | |||
15 | |||
16 | class FileVideoStream: | ||
17 | def __init__(self, path, transform=None, queue_size=128): | ||
18 | # initialize the file video stream along with the boolean | ||
19 | # used to indicate if the thread should be stopped or not | ||
20 | self.stream = cv2.VideoCapture(path) | ||
21 | self.stopped = False | ||
22 | self.transform = transform | ||
23 | |||
24 | # initialize the queue used to store frames read from | ||
25 | # the video file | ||
26 | self.Q = Queue(maxsize=queue_size) | ||
27 | # intialize thread | ||
28 | self.thread = Thread(target=self.update, args=()) | ||
29 | self.thread.daemon = True | ||
30 | |||
31 | def start(self): | ||
32 | # start a thread to read frames from the file video stream | ||
33 | self.thread.start() | ||
34 | return self | ||
35 | |||
36 | def update(self): | ||
37 | # keep looping infinitely | ||
38 | while True: | ||
39 | # if the thread indicator variable is set, stop the | ||
40 | # thread | ||
41 | if self.stopped: | ||
42 | break | ||
43 | |||
44 | # otherwise, ensure the queue has room in it | ||
45 | if not self.Q.full(): | ||
46 | # read the next frame from the file | ||
47 | (grabbed, frame) = self.stream.read() | ||
48 | |||
49 | # if the `grabbed` boolean is `False`, then we have | ||
50 | # reached the end of the video file | ||
51 | if not grabbed: | ||
52 | self.stopped = True | ||
53 | break | ||
54 | |||
55 | # if there are transforms to be done, might as well | ||
56 | # do them on producer thread before handing back to | ||
57 | # consumer thread. ie. Usually the producer is so far | ||
58 | # ahead of consumer that we have time to spare. | ||
59 | # | ||
60 | # Python is not parallel but the transform operations | ||
61 | # are usually OpenCV native so release the GIL. | ||
62 | # | ||
63 | # Really just trying to avoid spinning up additional | ||
64 | # native threads and overheads of additional | ||
65 | # producer/consumer queues since this one was generally | ||
66 | # idle grabbing frames. | ||
67 | if self.transform: | ||
68 | frame = self.transform(frame) | ||
69 | |||
70 | # add the frame to the queue | ||
71 | self.Q.put(frame) | ||
72 | else: | ||
73 | time.sleep(0.1) # Rest for 10ms, we have a full queue | ||
74 | |||
75 | self.stream.release() | ||
76 | |||
77 | def read(self): | ||
78 | # return next frame in the queue | ||
79 | return self.Q.get() | ||
80 | |||
81 | # Insufficient to have consumer use while(more()) which does | ||
82 | # not take into account if the producer has reached end of | ||
83 | # file stream. | ||
84 | def running(self): | ||
85 | return self.more() or not self.stopped | ||
86 | |||
87 | def more(self): | ||
88 | # return True if there are still frames in the queue. If stream is not stopped, try to wait a moment | ||
89 | tries = 0 | ||
90 | while self.Q.qsize() == 0 and not self.stopped and tries < 5: | ||
91 | time.sleep(0.1) | ||
92 | tries += 1 | ||
93 | |||
94 | return self.Q.qsize() > 0 | ||
95 | |||
96 | def stop(self): | ||
97 | # indicate that the thread should be stopped | ||
98 | self.stopped = True | ||
99 | # wait until stream resources are released (producer thread might be still grabbing frame) | ||
100 | self.thread.join() |
ocr_engine/turnsole/video/fps.py
0 → 100644
1 | # import the necessary packages | ||
2 | import datetime | ||
3 | |||
4 | class FPS: | ||
5 | def __init__(self): | ||
6 | # store the start time, end time, and total number of frames | ||
7 | # that were examined between the start and end intervals | ||
8 | self._start = None | ||
9 | self._end = None | ||
10 | self._numFrames = 0 | ||
11 | |||
12 | def start(self): | ||
13 | # start the timer | ||
14 | self._start = datetime.datetime.now() | ||
15 | return self | ||
16 | |||
17 | def stop(self): | ||
18 | # stop the timer | ||
19 | self._end = datetime.datetime.now() | ||
20 | |||
21 | def update(self): | ||
22 | # increment the total number of frames examined during the | ||
23 | # start and end intervals | ||
24 | self._numFrames += 1 | ||
25 | |||
26 | def elapsed(self): | ||
27 | # return the total number of seconds between the start and | ||
28 | # end interval | ||
29 | return (self._end - self._start).total_seconds() | ||
30 | |||
31 | def fps(self): | ||
32 | # compute the (approximate) frames per second | ||
33 | return self._numFrames / self.elapsed() | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/turnsole/video/pivideostream.py
0 → 100644
1 | # import the necessary packages | ||
2 | from picamera.array import PiRGBArray | ||
3 | from picamera import PiCamera | ||
4 | from threading import Thread | ||
5 | import cv2 | ||
6 | |||
7 | class PiVideoStream: | ||
8 | def __init__(self, resolution=(320, 240), framerate=32, **kwargs): | ||
9 | # initialize the camera | ||
10 | self.camera = PiCamera() | ||
11 | |||
12 | # set camera parameters | ||
13 | self.camera.resolution = resolution | ||
14 | self.camera.framerate = framerate | ||
15 | |||
16 | # set optional camera parameters (refer to PiCamera docs) | ||
17 | for (arg, value) in kwargs.items(): | ||
18 | setattr(self.camera, arg, value) | ||
19 | |||
20 | # initialize the stream | ||
21 | self.rawCapture = PiRGBArray(self.camera, size=resolution) | ||
22 | self.stream = self.camera.capture_continuous(self.rawCapture, | ||
23 | format="bgr", use_video_port=True) | ||
24 | |||
25 | # initialize the frame and the variable used to indicate | ||
26 | # if the thread should be stopped | ||
27 | self.frame = None | ||
28 | self.stopped = False | ||
29 | |||
30 | def start(self): | ||
31 | # start the thread to read frames from the video stream | ||
32 | t = Thread(target=self.update, args=()) | ||
33 | t.daemon = True | ||
34 | t.start() | ||
35 | return self | ||
36 | |||
37 | def update(self): | ||
38 | # keep looping infinitely until the thread is stopped | ||
39 | for f in self.stream: | ||
40 | # grab the frame from the stream and clear the stream in | ||
41 | # preparation for the next frame | ||
42 | self.frame = f.array | ||
43 | self.rawCapture.truncate(0) | ||
44 | |||
45 | # if the thread indicator variable is set, stop the thread | ||
46 | # and resource camera resources | ||
47 | if self.stopped: | ||
48 | self.stream.close() | ||
49 | self.rawCapture.close() | ||
50 | self.camera.close() | ||
51 | return | ||
52 | |||
53 | def read(self): | ||
54 | # return the frame most recently read | ||
55 | return self.frame | ||
56 | |||
57 | def stop(self): | ||
58 | # indicate that the thread should be stopped | ||
59 | self.stopped = True |
ocr_engine/turnsole/video/videostream.py
0 → 100644
1 | # import the necessary packages | ||
2 | from .webcamvideostream import WebcamVideoStream | ||
3 | |||
4 | class VideoStream: | ||
5 | def __init__(self, src=0, usePiCamera=False, resolution=(320, 240), | ||
6 | framerate=32, **kwargs): | ||
7 | # check to see if the picamera module should be used | ||
8 | if usePiCamera: | ||
9 | # only import the picamera packages unless we are | ||
10 | # explicity told to do so -- this helps remove the | ||
11 | # requirement of `picamera[array]` from desktops or | ||
12 | # laptops that still want to use the `imutils` package | ||
13 | from .pivideostream import PiVideoStream | ||
14 | |||
15 | # initialize the picamera stream and allow the camera | ||
16 | # sensor to warmup | ||
17 | self.stream = PiVideoStream(resolution=resolution, | ||
18 | framerate=framerate, **kwargs) | ||
19 | |||
20 | # otherwise, we are using OpenCV so initialize the webcam | ||
21 | # stream | ||
22 | else: | ||
23 | self.stream = WebcamVideoStream(src=src) | ||
24 | |||
25 | def start(self): | ||
26 | # start the threaded video stream | ||
27 | return self.stream.start() | ||
28 | |||
29 | def update(self): | ||
30 | # grab the next frame from the stream | ||
31 | self.stream.update() | ||
32 | |||
33 | def read(self): | ||
34 | # return the current frame | ||
35 | return self.stream.read() | ||
36 | |||
37 | def stop(self): | ||
38 | # stop the thread and release any resources | ||
39 | self.stream.stop() |
1 | # import the necessary packages | ||
2 | from threading import Thread | ||
3 | import cv2 | ||
4 | |||
5 | class WebcamVideoStream: | ||
6 | def __init__(self, src=0, name="WebcamVideoStream"): | ||
7 | # initialize the video camera stream and read the first frame | ||
8 | # from the stream | ||
9 | self.stream = cv2.VideoCapture(src) | ||
10 | (self.grabbed, self.frame) = self.stream.read() | ||
11 | |||
12 | # initialize the thread name | ||
13 | self.name = name | ||
14 | |||
15 | # initialize the variable used to indicate if the thread should | ||
16 | # be stopped | ||
17 | self.stopped = False | ||
18 | |||
19 | def start(self): | ||
20 | # start the thread to read frames from the video stream | ||
21 | t = Thread(target=self.update, name=self.name, args=()) | ||
22 | t.daemon = True | ||
23 | t.start() | ||
24 | return self | ||
25 | |||
26 | def update(self): | ||
27 | # keep looping infinitely until the thread is stopped | ||
28 | while True: | ||
29 | # if the thread indicator variable is set, stop the thread | ||
30 | if self.stopped: | ||
31 | return | ||
32 | |||
33 | # otherwise, read the next frame from the stream | ||
34 | (self.grabbed, self.frame) = self.stream.read() | ||
35 | |||
36 | def read(self): | ||
37 | # return the frame most recently read | ||
38 | return self.frame | ||
39 | |||
40 | def stop(self): | ||
41 | # indicate that the thread should be stopped | ||
42 | self.stopped = True |
-
Please register or sign in to post a comment