update
Showing
59 changed files
with
11705 additions
and
1 deletions
ocr_engine/README.md
0 → 100644
| 1 | # turnsole | ||
| 2 | A series of convenience functions make your machine learning project easier | ||
| 3 | |||
| 4 | ## 安装方法 | ||
| 5 | |||
| 6 | ### Latest release | ||
| 7 | `pip install turnsole` | ||
| 8 | > 项目暂不开源,因此该安装方法暂时不保证能用 | ||
| 9 | |||
| 10 | ### Developer mode | ||
| 11 | |||
| 12 | `pip install -e .` | ||
| 13 | |||
| 14 | ## 快速上手 | ||
| 15 | ### PDF 操作 | ||
| 16 | #### 智能 PDF 文件转图片 | ||
| 17 | 智能的把 PDF 文件里面的插图找出来,例如没有插图就将整页 PDF 截图下来,也能智能的将碎图拼接在一起 | ||
| 18 | |||
| 19 | ##### Example: | ||
| 20 | <pre># pdf_path 表示 PDF 文件的路径,输出 images 按页码进行汇总输出 | ||
| 21 | images = turnsole.pdf_to_images(pdf_path)</pre> | ||
| 22 | |||
| 23 | ### 图像操作工具箱 | ||
| 24 | #### base64_to_bgr / bgr_to_base64 | ||
| 25 | 图像和 base64 互相转换 | ||
| 26 | |||
| 27 | ##### Example: | ||
| 28 | <pre>image = turnsole.base64_to_bgr(img64) | ||
| 29 | img64 = turnsole.bgr_to_base64(image)</pre> | ||
| 30 | |||
| 31 | ### image_crop | ||
| 32 | 根据 bbox 在 image 上进行切片,如果指定 perspective 为 True 则切片方式为透视变换(可以切旋转目标) | ||
| 33 | |||
| 34 | ##### Example: | ||
| 35 | <pre>im_slice_no_perspective = turnsole.image_crop(image, bbox) | ||
| 36 | im_slice = turnsole.image_crop(image, bbox, perspective=True)</pre> | ||
| 37 | |||
| 38 | ##### Output: | ||
| 39 | |||
| 40 | <img src="docs/images/image_crop.png?raw=true" alt="image crop example" style="max-width: 200px;"> | ||
| 41 | |||
| 42 | ### OCR 引擎模块 | ||
| 43 | OCR 引擎指的是一系列跟 OCR 相关的底层模型,我们提供了这些模型的函数式调用接口和标准 API | ||
| 44 | |||
| 45 | - [x] ADC :tada: | ||
| 46 | - [x] DBNet :tada: | ||
| 47 | - [x] CRNN :tada: | ||
| 48 | - [x] Object Detector :tada: | ||
| 49 | - [x] Signature Detector :tada: | ||
| 50 | |||
| 51 | #### 免费试用 | ||
| 52 | ```python | ||
| 53 | import requests | ||
| 54 | |||
| 55 | results = requests.post(url=r'http://139.196.149.46:9001/gen_ocr', files={'file': open(file_path, 'rb')}).json() | ||
| 56 | ocr_results = results['ocr_results'] | ||
| 57 | ``` | ||
| 58 | |||
| 59 | #### Prerequisites | ||
| 60 | 由于 OCR 引擎模块依赖于底层神经网络模型,因此需要先用 Docker 挂载底层神经网络模型 | ||
| 61 | |||
| 62 | 首先把 ./model_repository 文件夹和里面的模型放到项目根目录下再启动,如果没有相关模型找 [lvkui](lvkui@situdata.com) 要 | ||
| 63 | |||
| 64 | 使用起来非常简单,你只需要启动对应的 Docker 容器即可 | ||
| 65 | |||
| 66 | ```bash | ||
| 67 | docker run --gpus="device=0" --rm -p 8000:8000 -p 8001:8001 -p 8002:8002 -v $PWD/model_repository:/models nvcr.io/nvidia/tritonserver:21.10-py3 tritonserver --model-repository=/models | ||
| 68 | ``` | ||
| 69 | |||
| 70 | #### ADC | ||
| 71 | 通用文件摆正算法 | ||
| 72 | |||
| 73 | ``` | ||
| 74 | from turnsole.ocr_engine import angle_detector | ||
| 75 | |||
| 76 | image_rotated, direction = angle_detector.ADC(image, fine_degree=False) | ||
| 77 | ``` | ||
| 78 | |||
| 79 | #### DBNet | ||
| 80 | 通用文字检测算法 | ||
| 81 | |||
| 82 | ``` | ||
| 83 | from turnsole.ocr_engine import text_detector | ||
| 84 | |||
| 85 | boxes = text_detector.predict(image) | ||
| 86 | ``` | ||
| 87 | |||
| 88 | #### CRNN | ||
| 89 | 通用文字识别算法 | ||
| 90 | |||
| 91 | ``` | ||
| 92 | from turnsole.ocr_engine import text_recognizer | ||
| 93 | |||
| 94 | ocr_result, ocr_time = text_recognizer.predict_batch(image, boxes) | ||
| 95 | ``` | ||
| 96 | |||
| 97 | #### Object Detector | ||
| 98 | 通用文件检测算法 | ||
| 99 | |||
| 100 | ``` | ||
| 101 | from turnsole.ocr_engine import object_detector | ||
| 102 | |||
| 103 | object_list = object_detector.process(image) | ||
| 104 | ``` | ||
| 105 | |||
| 106 | #### Signature Detector | ||
| 107 | 签字盖章二维码检测算法 | ||
| 108 | |||
| 109 | ``` | ||
| 110 | from turnsole.ocr_engine import signature_detector | ||
| 111 | |||
| 112 | signature_list = signature_detector.process(image) | ||
| 113 | ``` | ||
| 114 | |||
| 115 | #### 标准 API | ||
| 116 | ``` | ||
| 117 | python api/ocr_engine_server.py | ||
| 118 | ``` | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/api/nohup.out
0 → 100644
| 1 | [2022-10-21 14:12:17 +0800] [8546] [INFO] Goin' Fast @ http://192.168.10.11:9001 | ||
| 2 | [2022-10-21 14:12:17 +0800] [8567] [INFO] Starting worker [8567] | ||
| 3 | [2022-10-21 14:12:17 +0800] [8568] [INFO] Starting worker [8568] | ||
| 4 | [2022-10-21 14:12:17 +0800] [8569] [INFO] Starting worker [8569] | ||
| 5 | [2022-10-21 14:12:17 +0800] [8570] [INFO] Starting worker [8570] | ||
| 6 | [2022-10-21 14:12:17 +0800] [8571] [INFO] Starting worker [8571] | ||
| 7 | [2022-10-21 14:12:17 +0800] [8572] [INFO] Starting worker [8572] | ||
| 8 | [2022-10-21 14:12:17 +0800] [8573] [INFO] Starting worker [8573] | ||
| 9 | [2022-10-21 14:12:17 +0800] [8576] [INFO] Starting worker [8576] | ||
| 10 | [2022-10-21 14:12:17 +0800] [8574] [INFO] Starting worker [8574] | ||
| 11 | [2022-10-21 14:12:17 +0800] [8575] [INFO] Starting worker [8575] | ||
| 12 | [2022-10-21 14:13:51 +0800] [8575] [ERROR] Exception occurred while handling uri: 'http://192.168.10.11:9001/gen_ocr' | ||
| 13 | Traceback (most recent call last): | ||
| 14 | File "/home/situ/miniconda3/envs/workenv/lib/python3.6/site-packages/sanic/app.py", line 944, in handle_request | ||
| 15 | response = await response | ||
| 16 | File "ocr_engine_server.py", line 37, in ocr_engine | ||
| 17 | boxes = text_detector.predict(image) | ||
| 18 | File "/home/situ/qfs/invoice_tamper/09_project/project/bank_bill_ocr/OCR_Engine/turnsole/ocr_engine/DBNet/text_detector.py", line 113, in predict | ||
| 19 | outputs=outputs | ||
| 20 | File "/home/situ/miniconda3/envs/workenv/lib/python3.6/site-packages/tritonclient/grpc/__init__.py", line 1431, in infer | ||
| 21 | raise_error_grpc(rpc_error) | ||
| 22 | File "/home/situ/miniconda3/envs/workenv/lib/python3.6/site-packages/tritonclient/grpc/__init__.py", line 62, in raise_error_grpc | ||
| 23 | raise get_error_grpc(rpc_error) from None | ||
| 24 | tritonclient.utils.InferenceServerException: [StatusCode.UNAVAILABLE] Request for unknown model: 'dbnet_model' is not found | ||
| 25 | [2022-10-21 14:13:51 +0800] - (sanic.access)[INFO][192.168.10.11:57260]: POST http://192.168.10.11:9001/gen_ocr 500 735 |
ocr_engine/api/ocr_engine_server.py
0 → 100644
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : Lyu Kui | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Create Date : 2022-06-05 20:49:51 | ||
| 5 | # @Last Modified : 2022-08-19 17:24:55 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | import os | ||
| 9 | |||
| 10 | os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | ||
| 11 | |||
| 12 | from sanic import Sanic | ||
| 13 | from sanic.response import json | ||
| 14 | |||
| 15 | from turnsole.ocr_engine import angle_detector | ||
| 16 | from turnsole.ocr_engine import text_detector | ||
| 17 | from turnsole.ocr_engine import text_recognizer | ||
| 18 | from turnsole.ocr_engine import object_detector | ||
| 19 | from turnsole.ocr_engine import signature_detector | ||
| 20 | |||
| 21 | from turnsole import bytes_to_bgr | ||
| 22 | |||
| 23 | app = Sanic("OCR_ENGINE") | ||
| 24 | app.config.REQUEST_MAX_SIZE = 1000000000 # 请求的大小(字节)/ 1GB | ||
| 25 | app.config.REQUEST_BUFFER_QUEUE_SIZE = 1000 # 请求流缓冲区队列大小 | ||
| 26 | app.config.REQUEST_TIMEOUT = 600 # 请求到达需要多长时间(秒) | ||
| 27 | app.config.RESPONSE_TIMEOUT = 600 # 处理响应需要多长时间(秒) | ||
| 28 | |||
| 29 | |||
| 30 | @app.post('/gen_ocr') | ||
| 31 | async def ocr_engine(request): | ||
| 32 | # request.files.get() 具有 type/body/name 三个属性 | ||
| 33 | file = request.files.get('file').body | ||
| 34 | # 将 bytes 转成 bgr 图片 | ||
| 35 | image = bytes_to_bgr(file) | ||
| 36 | # 文字检测 | ||
| 37 | boxes = text_detector.predict(image) | ||
| 38 | # 文字识别 | ||
| 39 | res, _ = text_recognizer.predict_batch(image[..., ::-1], boxes) | ||
| 40 | resp = {} | ||
| 41 | resp["ocr_results"] = res | ||
| 42 | return json(resp) | ||
| 43 | |||
| 44 | |||
| 45 | @app.post('/gen_ocr_with_rotation', ) | ||
| 46 | async def ocr_engine_with_rotation(request): | ||
| 47 | # request.files.get() 具有 type/body/name 三个属性 | ||
| 48 | file = request.files.get('file').body | ||
| 49 | # 将 bytes 转成 bgr 图片 | ||
| 50 | image = bytes_to_bgr(file) | ||
| 51 | # 方向检测 | ||
| 52 | image, direction = angle_detector.ADC(image.copy(), fine_degree=False) | ||
| 53 | # 文字检测 | ||
| 54 | boxes = text_detector.predict(image) | ||
| 55 | # 文字识别 | ||
| 56 | res, _ = text_recognizer.predict_batch(image[..., ::-1], boxes) | ||
| 57 | |||
| 58 | resp = {} | ||
| 59 | resp["ocr_results"] = res | ||
| 60 | resp["direction"] = direction | ||
| 61 | return json(resp) | ||
| 62 | |||
| 63 | |||
| 64 | @app.post("/object_detect") | ||
| 65 | async def object_detect(request): | ||
| 66 | # request.files.get() 具有 type/body/name 三个属性 | ||
| 67 | file = request.files.get('file').body | ||
| 68 | # 将 bytes 转成 bgr 图片 | ||
| 69 | image = bytes_to_bgr(file) | ||
| 70 | # 通用文件检测 | ||
| 71 | object_list = object_detector.process(image) | ||
| 72 | return json(object_list) | ||
| 73 | |||
| 74 | |||
| 75 | @app.post("/signature_detect") | ||
| 76 | async def signature_detect(request): | ||
| 77 | # request.files.get() 具有 type/body/name 三个属性 | ||
| 78 | file = request.files.get('file').body | ||
| 79 | # 将 bytes 转成 bgr 图片 | ||
| 80 | image = bytes_to_bgr(file) | ||
| 81 | # 签字盖章二维码条形码检测 | ||
| 82 | signature_list = signature_detector.process(image) | ||
| 83 | return json(signature_list) | ||
| 84 | |||
| 85 | |||
| 86 | if __name__ == "__main__": | ||
| 87 | # app.run(host="0.0.0.0", port=9001) | ||
| 88 | app.run(host="192.168.10.11", port=9002, workers=10) | ||
| 89 | # uvicorn server:app --port 9001 --workers 10 |
ocr_engine/demos/images/sunflower.bmp
0 → 100644
No preview for this file type
ocr_engine/demos/images/sunflower.gif
0 → 100644
9.68 KB
ocr_engine/demos/images/sunflower.jpg
0 → 100644
405 KB
ocr_engine/demos/images/sunflower.png
0 → 100644
461 KB
ocr_engine/demos/images/sunflower.tif
0 → 100644
No preview for this file type
ocr_engine/demos/img_ocr/001.jpg
0 → 100644
1.62 MB
ocr_engine/demos/img_ocr/002.jpg
0 → 100644
97.7 KB
ocr_engine/demos/img_ocr/003.jpg
0 → 100644
112 KB
ocr_engine/demos/img_ocr/004.jpg
0 → 100644
24.4 KB
ocr_engine/demos/img_ocr/005.jpg
0 → 100644
77.5 KB
ocr_engine/demos/read_frames_fast.py
0 → 100644
| 1 | # Modified from: | ||
| 2 | # https://www.pyimagesearch.com/2017/02/06/faster-video-file-fps-with-cv2-videocapture-and-opencv/ | ||
| 3 | |||
| 4 | # Performance: | ||
| 5 | # Python 2.7: 105.78 --> 131.75 | ||
| 6 | # Python 3.7: 15.36 --> 50.13 | ||
| 7 | |||
| 8 | # USAGE | ||
| 9 | # python read_frames_fast.py --video videos/jurassic_park_intro.mp4 | ||
| 10 | |||
| 11 | # import the necessary packages | ||
| 12 | from turnsole.video import FileVideoStream | ||
| 13 | from turnsole.video import FPS | ||
| 14 | import numpy as np | ||
| 15 | import argparse | ||
| 16 | import imutils | ||
| 17 | import time | ||
| 18 | import cv2 | ||
| 19 | |||
| 20 | def filterFrame(frame): | ||
| 21 | frame = imutils.resize(frame, width=450) | ||
| 22 | frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | ||
| 23 | frame = np.dstack([frame, frame, frame]) | ||
| 24 | return frame | ||
| 25 | |||
| 26 | # construct the argument parse and parse the arguments | ||
| 27 | ap = argparse.ArgumentParser() | ||
| 28 | ap.add_argument("-v", "--video", required=True, | ||
| 29 | help="path to input video file") | ||
| 30 | args = vars(ap.parse_args()) | ||
| 31 | |||
| 32 | # start the file video stream thread and allow the buffer to | ||
| 33 | # start to fill | ||
| 34 | print("[INFO] starting video file thread...") | ||
| 35 | fvs = FileVideoStream(args["video"], transform=filterFrame).start() | ||
| 36 | time.sleep(1.0) | ||
| 37 | |||
| 38 | # start the FPS timer | ||
| 39 | fps = FPS().start() | ||
| 40 | |||
| 41 | # loop over frames from the video file stream | ||
| 42 | while fvs.running(): | ||
| 43 | # grab the frame from the threaded video file stream, resize | ||
| 44 | # it, and convert it to grayscale (while still retaining 3 | ||
| 45 | # channels) | ||
| 46 | frame = fvs.read() | ||
| 47 | |||
| 48 | # Relocated filtering into producer thread with transform=filterFrame | ||
| 49 | # Python 2.7: FPS 92.11 -> 131.36 | ||
| 50 | # Python 3.7: FPS 41.44 -> 50.11 | ||
| 51 | #frame = filterFrame(frame) | ||
| 52 | |||
| 53 | # display the size of the queue on the frame | ||
| 54 | cv2.putText(frame, "Queue Size: {}".format(fvs.Q.qsize()), | ||
| 55 | (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 255, 0), 2) | ||
| 56 | |||
| 57 | # show the frame and update the FPS counter | ||
| 58 | cv2.imshow("Frame", frame) | ||
| 59 | |||
| 60 | cv2.waitKey(1) | ||
| 61 | if fvs.Q.qsize() < 2: # If we are low on frames, give time to producer | ||
| 62 | time.sleep(0.001) # Ensures producer runs now, so 2 is sufficient | ||
| 63 | fps.update() | ||
| 64 | |||
| 65 | # stop the timer and display FPS information | ||
| 66 | fps.stop() | ||
| 67 | print("[INFO] elasped time: {:.2f}".format(fps.elapsed())) | ||
| 68 | print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) | ||
| 69 | |||
| 70 | # do a bit of cleanup | ||
| 71 | cv2.destroyAllWindows() | ||
| 72 | fvs.stop() | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/demos/test_convenience.py
0 → 100644
ocr_engine/demos/test_model.py
0 → 100644
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : Lyu Kui | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Created Date : 2021-03-05 16:51:22 | ||
| 5 | # @Last Modified : 2021-03-05 18:15:53 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | from turnsole.model import EasyDet | ||
| 9 | |||
| 10 | if __name__ == '__main__': | ||
| 11 | model = EasyDet(phi=0) | ||
| 12 | model.summary() | ||
| 13 | |||
| 14 | import time | ||
| 15 | import numpy as np | ||
| 16 | |||
| 17 | x = np.random.random_sample((1, 640, 640, 3)) | ||
| 18 | # warm up | ||
| 19 | output = model.predict(x) | ||
| 20 | |||
| 21 | print('\n[INFO] Test start') | ||
| 22 | time_start = time.time() | ||
| 23 | for i in range(1000): | ||
| 24 | output = model.predict(x) | ||
| 25 | |||
| 26 | time_end = time.time() | ||
| 27 | print('[INFO] Time used: {:.2f} ms'.format((time_end - time_start)*1000/(i+1))) | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/demos/test_ocr_function.py
0 → 100644
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : Lyu Kui | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Create Date : 2022-07-22 13:10:47 | ||
| 5 | # @Last Modified : 2022-09-08 19:03:24 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | import os | ||
| 9 | os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | ||
| 10 | |||
| 11 | import cv2 | ||
| 12 | # from turnsole.ocr_engine import angle_detector | ||
| 13 | from turnsole.ocr_engine import object_detector | ||
| 14 | import matplotlib.pyplot as plt | ||
| 15 | |||
| 16 | |||
| 17 | if __name__ == "__main__": | ||
| 18 | |||
| 19 | base_dir = '/home/lk/MyProject/BMW/数据集/文件分类/身份证' | ||
| 20 | |||
| 21 | for (rootDir, dirNames, filenames) in os.walk(base_dir): | ||
| 22 | |||
| 23 | for filename in filenames: | ||
| 24 | |||
| 25 | if not filename.endswith('.jpg'): | ||
| 26 | continue | ||
| 27 | |||
| 28 | img_path = os.path.join(rootDir, filename) | ||
| 29 | print(img_path) | ||
| 30 | |||
| 31 | image = cv2.imread(img_path) | ||
| 32 | |||
| 33 | results = object_detector.process(image) | ||
| 34 | |||
| 35 | print(results) | ||
| 36 | |||
| 37 | for item in results: | ||
| 38 | xmin = item['location']['xmin'] | ||
| 39 | ymin = item['location']['ymin'] | ||
| 40 | xmax = item['location']['xmax'] | ||
| 41 | ymax = item['location']['ymax'] | ||
| 42 | cv2.rectangle(image, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2) | ||
| 43 | |||
| 44 | plt.imshow(image[...,::-1]) | ||
| 45 | plt.show() | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/demos/test_pdf_tools.py
0 → 100644
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : Lyu Kui | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Create Date : 2022-07-22 13:10:47 | ||
| 5 | # @Last Modified : 2022-08-24 15:39:55 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | |||
| 9 | import os | ||
| 10 | import cv2 | ||
| 11 | import fitz | ||
| 12 | from turnsole import pdf_to_images # pip install turnsole PyMuPDF opencv-python==4.4.0.44 | ||
| 13 | |||
| 14 | if __name__ == "__main__": | ||
| 15 | |||
| 16 | base_dir = '/PATH/TO/YOUR/WORKDIR' | ||
| 17 | |||
| 18 | for (rootDir, dirNames, filenames) in os.walk(base_dir): | ||
| 19 | |||
| 20 | for filename in filenames: | ||
| 21 | |||
| 22 | if not filename.endswith('.pdf'): | ||
| 23 | continue | ||
| 24 | |||
| 25 | pdf_path = os.path.join(rootDir, filename) | ||
| 26 | print(pdf_path) | ||
| 27 | |||
| 28 | images = pdf_to_images(pdf_path) | ||
| 29 | images = sum(images, []) | ||
| 30 | |||
| 31 | image_dir = os.path.join(rootDir, filename.replace('.pdf', '')) | ||
| 32 | if not os.path.exists(image_dir): | ||
| 33 | os.makedirs(image_dir) | ||
| 34 | |||
| 35 | for index, image in enumerate(images): | ||
| 36 | |||
| 37 | save_path = os.path.join(image_dir, filename.replace('.pdf', '')+'-'+str(index)+'.jpg') | ||
| 38 | cv2.imwrite(save_path, image) |
ocr_engine/docs/images/image_crop.png
0 → 100644
193 KB
ocr_engine/scripts/api_test.py
0 → 100644
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : Lyu Kui | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Create Date : 2022-05-06 22:02:01 | ||
| 5 | # @Last Modified : 2022-08-03 14:59:51 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | |||
| 9 | import os | ||
| 10 | import time | ||
| 11 | import random | ||
| 12 | import requests | ||
| 13 | import numpy as np | ||
| 14 | from threading import Thread | ||
| 15 | |||
| 16 | |||
| 17 | class API_test: | ||
| 18 | def __init__(self, file_dir, test_time, num_request): | ||
| 19 | |||
| 20 | self.file_paths = [] | ||
| 21 | for fn in os.listdir(file_dir): | ||
| 22 | file_path = os.path.join(file_dir, fn) | ||
| 23 | self.file_paths.append(file_path) | ||
| 24 | |||
| 25 | self.time_start = time.time() | ||
| 26 | self.test_time = test_time * 60 # 单位:秒 | ||
| 27 | threads = [] | ||
| 28 | for i in range(num_request): | ||
| 29 | t = Thread(target=self.update, args=()) | ||
| 30 | threads.append(t) | ||
| 31 | for t in threads: | ||
| 32 | print(f'[INFO] {t} is running') | ||
| 33 | t.start() | ||
| 34 | self.results = list() | ||
| 35 | self.index = 0 | ||
| 36 | |||
| 37 | def update(self): | ||
| 38 | while True: | ||
| 39 | file_path = random.choice(self.file_paths) | ||
| 40 | |||
| 41 | # 二进制方式打开图片文件 | ||
| 42 | data = open(file_path, 'rb') | ||
| 43 | |||
| 44 | t0 = time.time() | ||
| 45 | response = requests.post(url=r'http://localhost:9001/gen_ocr_with_rotation', files={'file': data}) | ||
| 46 | |||
| 47 | # 失败请求统计 | ||
| 48 | if response.status_code != 200: | ||
| 49 | print(response) | ||
| 50 | |||
| 51 | t1 = time.time() | ||
| 52 | self.results.append((t1-t0)) | ||
| 53 | |||
| 54 | time_cost = (time.time() - self.time_start) | ||
| 55 | time_remaining = self.test_time - time_cost | ||
| 56 | |||
| 57 | self.index += 1 | ||
| 58 | |||
| 59 | if time_remaining > 0: | ||
| 60 | print(f'\r[INFO] 剩余时间 {time_remaining} 秒, 平均响应时间 {np.mean(self.results)} 秒, TPS {len(self.results)/time_cost}, 吞吐量 {self.index}', end=' ', flush=True) | ||
| 61 | else: | ||
| 62 | break | ||
| 63 | |||
| 64 | |||
| 65 | if __name__ == '__main__': | ||
| 66 | |||
| 67 | imageDir = './demos/img_ocr' # 测试数据路径 | ||
| 68 | testTime = 10 # 加压时间, 单位:分钟 | ||
| 69 | numRequest = 10 # 并发数,单位:个 | ||
| 70 | |||
| 71 | API_test(imageDir, testTime, numRequest) |
ocr_engine/setup.cfg
0 → 100644
| 1 | [metadata] | ||
| 2 | name = turnsole | ||
| 3 | version = 0.0.27 | ||
| 4 | author = Kui Lyu | ||
| 5 | author_email = 9428.al@gmail.com | ||
| 6 | description = A series of convenience functions make your machine learning project easier | ||
| 7 | long_description = file: README.md | ||
| 8 | long_description_content_type = text/markdown | ||
| 9 | url = https://github.com/Antonio-hi/turnsole | ||
| 10 | project_urls = | ||
| 11 | Bug Tracker = https://github.com/Antonio-hi/turnsole/issues | ||
| 12 | classifiers = | ||
| 13 | Programming Language :: Python :: 3 | ||
| 14 | License :: OSI Approved :: MIT License | ||
| 15 | Operating System :: OS Independent | ||
| 16 | |||
| 17 | [options] | ||
| 18 | packages = find: | ||
| 19 | python_requires = >=3.6 | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/setup.py
0 → 100644
ocr_engine/turnsole.egg-info/PKG-INFO
0 → 100644
| 1 | Metadata-Version: 2.1 | ||
| 2 | Name: turnsole | ||
| 3 | Version: 0.0.27 | ||
| 4 | Summary: A series of convenience functions make your machine learning project easier | ||
| 5 | Home-page: https://github.com/Antonio-hi/turnsole | ||
| 6 | Author: Kui Lyu | ||
| 7 | Author-email: 9428.al@gmail.com | ||
| 8 | License: UNKNOWN | ||
| 9 | Project-URL: Bug Tracker, https://github.com/Antonio-hi/turnsole/issues | ||
| 10 | Platform: UNKNOWN | ||
| 11 | Classifier: Programming Language :: Python :: 3 | ||
| 12 | Classifier: License :: OSI Approved :: MIT License | ||
| 13 | Classifier: Operating System :: OS Independent | ||
| 14 | Requires-Python: >=3.6 | ||
| 15 | Description-Content-Type: text/markdown | ||
| 16 | License-File: LICENSE | ||
| 17 | |||
| 18 | # turnsole | ||
| 19 | A series of convenience functions make your machine learning project easier | ||
| 20 | |||
| 21 | ## 安装方法 | ||
| 22 | |||
| 23 | ### Latest release | ||
| 24 | `pip install turnsole` | ||
| 25 | > 项目暂不开源,因此该安装方法暂时不保证能用 | ||
| 26 | |||
| 27 | ### Developer mode | ||
| 28 | |||
| 29 | `pip install -e .` | ||
| 30 | |||
| 31 | ## 快速上手 | ||
| 32 | ### PDF 操作 | ||
| 33 | #### 智能 PDF 文件转图片 | ||
| 34 | 智能的把 PDF 文件里面的插图找出来,例如没有插图就将整页 PDF 截图下来,也能智能的将碎图拼接在一起 | ||
| 35 | |||
| 36 | ##### Example: | ||
| 37 | <pre># pdf_path 表示 PDF 文件的路径,输出 images 按页码进行汇总输出 | ||
| 38 | images = turnsole.pdf_to_images(pdf_path)</pre> | ||
| 39 | |||
| 40 | ### 图像操作工具箱 | ||
| 41 | #### base64_to_bgr / bgr_to_base64 | ||
| 42 | 图像和 base64 互相转换 | ||
| 43 | |||
| 44 | ##### Example: | ||
| 45 | <pre>image = turnsole.base64_to_bgr(img64) | ||
| 46 | img64 = turnsole.bgr_to_base64(image)</pre> | ||
| 47 | |||
| 48 | ### image_crop | ||
| 49 | 根据 bbox 在 image 上进行切片,如果指定 perspective 为 True 则切片方式为透视变换(可以切旋转目标) | ||
| 50 | |||
| 51 | ##### Example: | ||
| 52 | <pre>im_slice_no_perspective = turnsole.image_crop(image, bbox) | ||
| 53 | im_slice = turnsole.image_crop(image, bbox, perspective=True)</pre> | ||
| 54 | |||
| 55 | ##### Output: | ||
| 56 | |||
| 57 | <img src="docs/images/image_crop.png?raw=true" alt="image crop example" style="max-width: 200px;"> | ||
| 58 | |||
| 59 | ### OCR 引擎模块 | ||
| 60 | OCR 引擎指的是一系列跟 OCR 相关的底层模型,我们提供了这些模型的函数式调用接口和标准 API | ||
| 61 | |||
| 62 | - [x] ADC :tada: | ||
| 63 | - [x] DBNet :tada: | ||
| 64 | - [x] CRNN :tada: | ||
| 65 | - [x] Object Detector :tada: | ||
| 66 | - [x] Signature Detector :tada: | ||
| 67 | |||
| 68 | #### 免费试用 | ||
| 69 | ```python | ||
| 70 | import requests | ||
| 71 | |||
| 72 | results = requests.post(url=r'http://139.196.149.46:9001/gen_ocr', files={'file': open(file_path, 'rb')}).json() | ||
| 73 | ocr_results = results['ocr_results'] | ||
| 74 | ``` | ||
| 75 | |||
| 76 | #### Prerequisites | ||
| 77 | 由于 OCR 引擎模块依赖于底层神经网络模型,因此需要先用 Docker 挂载底层神经网络模型 | ||
| 78 | |||
| 79 | 首先把 ./model_repository 文件夹和里面的模型放到项目根目录下再启动,如果没有相关模型找 [lvkui](lvkui@situdata.com) 要 | ||
| 80 | |||
| 81 | 使用起来非常简单,你只需要启动对应的 Docker 容器即可 | ||
| 82 | |||
| 83 | ```bash | ||
| 84 | docker run --gpus="device=0" --rm -p 8000:8000 -p 8001:8001 -p 8002:8002 -v $PWD/model_repository:/models nvcr.io/nvidia/tritonserver:21.10-py3 tritonserver --model-repository=/models | ||
| 85 | ``` | ||
| 86 | |||
| 87 | #### ADC | ||
| 88 | 通用文件摆正算法 | ||
| 89 | |||
| 90 | ``` | ||
| 91 | from turnsole.ocr_engine import angle_detector | ||
| 92 | |||
| 93 | image_rotated, direction = angle_detector.ADC(image, fine_degree=False) | ||
| 94 | ``` | ||
| 95 | |||
| 96 | #### DBNet | ||
| 97 | 通用文字检测算法 | ||
| 98 | |||
| 99 | ``` | ||
| 100 | from turnsole.ocr_engine import text_detector | ||
| 101 | |||
| 102 | boxes = text_detector.predict(image) | ||
| 103 | ``` | ||
| 104 | |||
| 105 | #### CRNN | ||
| 106 | 通用文字识别算法 | ||
| 107 | |||
| 108 | ``` | ||
| 109 | from turnsole.ocr_engine import text_recognizer | ||
| 110 | |||
| 111 | ocr_result, ocr_time = text_recognizer.predict_batch(image, boxes) | ||
| 112 | ``` | ||
| 113 | |||
| 114 | #### Object Detector | ||
| 115 | 通用文件检测算法 | ||
| 116 | |||
| 117 | ``` | ||
| 118 | from turnsole.ocr_engine import object_detector | ||
| 119 | |||
| 120 | object_list = object_detector.process(image) | ||
| 121 | ``` | ||
| 122 | |||
| 123 | #### Signature Detector | ||
| 124 | 签字盖章二维码检测算法 | ||
| 125 | |||
| 126 | ``` | ||
| 127 | from turnsole.ocr_engine import signature_detector | ||
| 128 | |||
| 129 | signature_list = signature_detector.process(image) | ||
| 130 | ``` | ||
| 131 | |||
| 132 | #### 标准 API | ||
| 133 | ``` | ||
| 134 | python api/ocr_engine_server.py | ||
| 135 | ``` | ||
| 136 |
ocr_engine/turnsole.egg-info/SOURCES.txt
0 → 100644
| 1 | LICENSE | ||
| 2 | README.md | ||
| 3 | setup.cfg | ||
| 4 | setup.py | ||
| 5 | turnsole/__init__.py | ||
| 6 | turnsole/convenience.py | ||
| 7 | turnsole/encodings.py | ||
| 8 | turnsole/model.py | ||
| 9 | turnsole/paths.py | ||
| 10 | turnsole/pdf_tools.py | ||
| 11 | turnsole.egg-info/PKG-INFO | ||
| 12 | turnsole.egg-info/SOURCES.txt | ||
| 13 | turnsole.egg-info/dependency_links.txt | ||
| 14 | turnsole.egg-info/top_level.txt | ||
| 15 | turnsole/face_utils/__init__.py | ||
| 16 | turnsole/face_utils/agedetector.py | ||
| 17 | turnsole/face_utils/facedetector.py | ||
| 18 | turnsole/nets/__init__.py | ||
| 19 | turnsole/nets/efficientnet.py | ||
| 20 | turnsole/ocr_engine/__init__.py | ||
| 21 | turnsole/ocr_engine/ADC/__init__.py | ||
| 22 | turnsole/ocr_engine/ADC/angle_detector.py | ||
| 23 | turnsole/ocr_engine/CRNN/__init__.py | ||
| 24 | turnsole/ocr_engine/CRNN/alphabets.py | ||
| 25 | turnsole/ocr_engine/CRNN/text_rec.py | ||
| 26 | turnsole/ocr_engine/DBNet/__init__.py | ||
| 27 | turnsole/ocr_engine/DBNet/text_detector.py | ||
| 28 | turnsole/ocr_engine/object_det/__init__.py | ||
| 29 | turnsole/ocr_engine/object_det/utils.py | ||
| 30 | turnsole/ocr_engine/signature_det/__init__.py | ||
| 31 | turnsole/ocr_engine/signature_det/utils.py | ||
| 32 | turnsole/ocr_engine/utils/__init__.py | ||
| 33 | turnsole/ocr_engine/utils/read_data.py | ||
| 34 | turnsole/video/__init__.py | ||
| 35 | turnsole/video/count_frames.py | ||
| 36 | turnsole/video/filevideostream.py | ||
| 37 | turnsole/video/fps.py | ||
| 38 | turnsole/video/pivideostream.py | ||
| 39 | turnsole/video/videostream.py | ||
| 40 | turnsole/video/webcamvideostream.py | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/turnsole.egg-info/top_level.txt
0 → 100644
| 1 | turnsole |
ocr_engine/turnsole/__init__.py
0 → 100644
| 1 | try: | ||
| 2 | from . import ocr_engine | ||
| 3 | except: | ||
| 4 | # print('[INFO] OCR engine can not import successful') | ||
| 5 | pass | ||
| 6 | from .convenience import resize | ||
| 7 | from .convenience import resize_with_pad | ||
| 8 | from .convenience import image_crop | ||
| 9 | from .encodings import bytes_to_bgr | ||
| 10 | from .encodings import base64_to_image | ||
| 11 | from .encodings import base64_encode_file | ||
| 12 | from .encodings import base64_encode_image | ||
| 13 | from .encodings import base64_decode_image | ||
| 14 | from .encodings import base64_to_bgr | ||
| 15 | from .encodings import bgr_to_base64 | ||
| 16 | from .pdf_tools import pdf_to_images | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/turnsole/convenience.py
0 → 100644
| 1 | import cv2 | ||
| 2 | import numpy as np | ||
| 3 | |||
| 4 | def resize(image, width=None, height=None, inter=cv2.INTER_AREA): | ||
| 5 | # initialize the dimensions of the image to be resized and grab the image size | ||
| 6 | dim = None | ||
| 7 | (h, w) = image.shape[:2] | ||
| 8 | |||
| 9 | # if both the width and height are None, then return the original image | ||
| 10 | if width is None and height is None: | ||
| 11 | return image | ||
| 12 | |||
| 13 | # check to see if the width is None | ||
| 14 | if width is None: | ||
| 15 | # calculate the ratio of the height and construct the dimensions | ||
| 16 | r = height / float(h) | ||
| 17 | dim = (int(w * r), height) | ||
| 18 | |||
| 19 | # otherwise, the height is None | ||
| 20 | else: | ||
| 21 | # calculate the ratio of the width and construct the dimensions | ||
| 22 | r = width / float(w) | ||
| 23 | dim = (width, int(h * r)) | ||
| 24 | |||
| 25 | # resize the image | ||
| 26 | resized = cv2.resize(image, dim, interpolation=inter) | ||
| 27 | |||
| 28 | # return the resized image | ||
| 29 | return resized | ||
| 30 | |||
| 31 | def resize_with_pad(image, target_width, target_height): | ||
| 32 | """Resuzes and pads an image to a target width and height. | ||
| 33 | |||
| 34 | Resizes an image to a target width and height by keeping the aspect ratio the same | ||
| 35 | without distortion. | ||
| 36 | ratio must be less than 1.0. | ||
| 37 | width and height will pad with zeroes. | ||
| 38 | |||
| 39 | Args: | ||
| 40 | image (Array): RGB/BGR | ||
| 41 | target_width (Int): Target width. | ||
| 42 | target_height (Int): Target height. | ||
| 43 | |||
| 44 | Returns: | ||
| 45 | Array: Resized and padded image. The image paded with zeroes. | ||
| 46 | Float: Image resized ratio. The ratio must be less than 1.0. | ||
| 47 | """ | ||
| 48 | height, width, _ = image.shape | ||
| 49 | |||
| 50 | min_ratio = min(target_height/height, target_width/width) | ||
| 51 | ratio = min_ratio if min_ratio < 1.0 else 1.0 | ||
| 52 | |||
| 53 | # To shrink an image, it will generally look best with INTER_AREA interpolation. | ||
| 54 | resized = cv2.resize(image, None, fx=ratio, fy=ratio, interpolation=cv2.INTER_AREA) | ||
| 55 | h, w, _ = resized.shape | ||
| 56 | canvas = np.zeros((target_height, target_width, 3), image.dtype) | ||
| 57 | canvas[:h, :w, :] = resized | ||
| 58 | return canvas, ratio | ||
| 59 | |||
| 60 | def image_crop(image, bbox, perspective=False): | ||
| 61 | """根据 Bbox 在 image 上进行切片,如果指定 perspective 为 True 则切片方式为透视变换(可以切旋转目标) | ||
| 62 | |||
| 63 | Args: | ||
| 64 | image (array): 三通道图片,切片结果保持原图颜色通道 | ||
| 65 | bbox (array/list): 支持两点矩形框和四点旋转矩形框 | ||
| 66 | 支持以下两种格式: | ||
| 67 | 1. bbox = [xmin, ymin, xmax, ymax] | ||
| 68 | 2. bbox = [x0, y0, x1, y1, x2, y2, x3, y3] | ||
| 69 | perspective (bool, optional): 是否切出旋转目标. Defaults to False. | ||
| 70 | |||
| 71 | Returns: | ||
| 72 | array: 小切图,和原图颜色通道一致 | ||
| 73 | """ | ||
| 74 | # 按照 bbox 的正外接矩形切图 | ||
| 75 | bbox = np.array(bbox, dtype=np.int32).reshape((-1, 2)) | ||
| 76 | xmin, ymin, xmax, ymax = [min(bbox[:, 0]), | ||
| 77 | min(bbox[:, 1]), | ||
| 78 | max(bbox[:, 0]), | ||
| 79 | max(bbox[:, 1])] | ||
| 80 | xmin, ymin = max(0, xmin), max(0, ymin) | ||
| 81 | im_slice = image[ymin:ymax, xmin:xmax, :] | ||
| 82 | |||
| 83 | if perspective and bbox.shape[0] == 4: | ||
| 84 | # 获得旋转矩形的宽和高 | ||
| 85 | w, h = [int(np.linalg.norm(bbox[0] - bbox[1])), | ||
| 86 | int(np.linalg.norm(bbox[3] - bbox[0]))] | ||
| 87 | # 把 bbox 平移到正切图的对应位置上 | ||
| 88 | bbox[:, 0] -= xmin | ||
| 89 | bbox[:, 1] -= ymin | ||
| 90 | # 执行透视切图 | ||
| 91 | pts1 = np.float32(bbox) | ||
| 92 | pts2 = np.float32([[0, 0], [w, 0], [w, h], [0, h]]) | ||
| 93 | M = cv2.getPerspectiveTransform(pts1, pts2) | ||
| 94 | im_slice = cv2.warpPerspective(im_slice, M, (w, h)) | ||
| 95 | |||
| 96 | return im_slice |
ocr_engine/turnsole/encodings.py
0 → 100644
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : Antonio-hi | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Create Date : 2021-08-09 19:08:49 | ||
| 5 | # @Last Modified : 2021-08-10 10:11:06 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | # import the necessary packages | ||
| 9 | import numpy as np | ||
| 10 | import base64 | ||
| 11 | import json | ||
| 12 | import sys | ||
| 13 | import cv2 | ||
| 14 | import os | ||
| 15 | |||
| 16 | def base64_encode_image(a): | ||
| 17 | # return a JSON-encoded list of the base64 encoded image, image data type, and image shape | ||
| 18 | # return json.dumps([base64_encode_array(a), str(a.dtype), a.shape]) | ||
| 19 | return json.dumps([base64_encode_array(a).decode("utf-8"), str(a.dtype), | ||
| 20 | a.shape]) | ||
| 21 | |||
| 22 | def base64_decode_image(a): | ||
| 23 | # grab the array, data type, and shape from the JSON-decoded object | ||
| 24 | (a, dtype, shape) = json.loads(a) | ||
| 25 | |||
| 26 | # set the correct data type and reshape the matrix into an image | ||
| 27 | a = base64_decode_array(a, dtype).reshape(shape) | ||
| 28 | |||
| 29 | # return the loaded image | ||
| 30 | return a | ||
| 31 | |||
| 32 | def base64_encode_array(a): | ||
| 33 | # return the base64 encoded array | ||
| 34 | return base64.b64encode(a) | ||
| 35 | |||
| 36 | def base64_decode_array(a, dtype): | ||
| 37 | # decode and return the array | ||
| 38 | return np.frombuffer(base64.b64decode(a), dtype=dtype) | ||
| 39 | |||
| 40 | def base64_encode_file(image_path): | ||
| 41 | filename = os.path.basename(image_path) | ||
| 42 | # encode image file to base64 string | ||
| 43 | with open(image_path, 'rb') as f: | ||
| 44 | buffer = f.read() | ||
| 45 | # convert bytes buffer string then encode to base64 string | ||
| 46 | img64_bytes = base64.b64encode(buffer) | ||
| 47 | img64_str = img64_bytes.decode('utf-8') # bytes to str | ||
| 48 | return json.dumps({"filename" : filename, "img64": img64_str}) | ||
| 49 | |||
| 50 | def base64_to_image(img64): | ||
| 51 | image_buffer = base64_decode_array(img64, dtype=np.uint8) | ||
| 52 | # In the case of color images, the decoded images will have the channels stored in B G R order. | ||
| 53 | image = cv2.imdecode(image_buffer, cv2.IMREAD_COLOR) | ||
| 54 | return image | ||
| 55 | |||
| 56 | def bytes_to_bgr(buffer: bytes): | ||
| 57 | """Read a byte stream as a OpenCV image | ||
| 58 | |||
| 59 | Args: | ||
| 60 | buffer (TYPE): bytes of a decoded image | ||
| 61 | """ | ||
| 62 | img_array = np.frombuffer(buffer, np.uint8) | ||
| 63 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
| 64 | return image | ||
| 65 | |||
| 66 | def base64_to_bgr(img64): | ||
| 67 | """把 base64 转换成图片 | ||
| 68 | 单通道的灰度图或四通道的透明图都将自动转换成三通道的 BGR 图 | ||
| 69 | |||
| 70 | Args: | ||
| 71 | img64 (TYPE): Description | ||
| 72 | |||
| 73 | Returns: | ||
| 74 | TYPE: image is a 3-D uint8 Tensor of shape [height, width, channels] where channels is BGR | ||
| 75 | """ | ||
| 76 | encoded_image = base64.b64decode(img64) | ||
| 77 | img_array = np.frombuffer(encoded_image, np.uint8) | ||
| 78 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
| 79 | return image | ||
| 80 | |||
| 81 | def bgr_to_base64(image): | ||
| 82 | """ 把图片转换成 base64 格式,过程中把图片以 JPEG 格式进行了压缩,通常这会导致图像质量变差 | ||
| 83 | |||
| 84 | Args: | ||
| 85 | image (TYPE): image is a 3-D uint8 or uint16 Tensor of shape [height, width, channels] where channels is BGR | ||
| 86 | |||
| 87 | Returns: | ||
| 88 | TYPE: base64 格式的图片 | ||
| 89 | """ | ||
| 90 | retval, encoded_image = cv2.imencode('.jpg', image) # Encodes an image(BGR) into a memory buffer. | ||
| 91 | img64 = base64.b64encode(encoded_image) | ||
| 92 | return img64.decode('utf-8') | ||
| 93 | |||
| 94 | |||
| 95 | if __name__ == '__main__': | ||
| 96 | |||
| 97 | image_path = '/home/lk/Repository/Project/turnsole/demos/images/sunflower.jpg' | ||
| 98 | |||
| 99 | # 1)将图片文件转换成 base64 base64编码的字符串(理论上支持任意文件) | ||
| 100 | json_str = base64_encode_file(image_path) | ||
| 101 | |||
| 102 | img64_dict = json.loads(json_str) | ||
| 103 | |||
| 104 | suffix = os.path.splitext(img64_dict['filename'])[-1].lower() | ||
| 105 | if suffix not in ['.jpg', '.jpeg', '.png', '.bmp']: | ||
| 106 | print(f'[INFO] 暂不支持格式为 {suffix} 的文件!') | ||
| 107 | |||
| 108 | # 2)将 base64 编码的字符串转成图片 | ||
| 109 | image = base64_to_image(img64_dict['img64']) | ||
| 110 | |||
| 111 | inputs = image/255. | ||
| 112 | |||
| 113 | # 3)自创的, 将 array 转 base64 编码再转回array, 中间不经历图片操作, 还能保持 array 的数据类型 | ||
| 114 | base64_encode_json_string = base64_encode_image(inputs) | ||
| 115 | |||
| 116 | inputs = base64_decode_image(base64_encode_json_string) | ||
| 117 | |||
| 118 | print(inputs) | ||
| 119 | |||
| 120 | # 3、字符串前加 b | ||
| 121 | # 例: response = b'<h1>Hello World!</h1>' # b' ' 表示这是一个 bytes 对象 | ||
| 122 | |||
| 123 | # 作用: | ||
| 124 | |||
| 125 | # b" "前缀表示:后面字符串是bytes 类型。 | ||
| 126 | |||
| 127 | # 用处: | ||
| 128 | |||
| 129 | # 网络编程中,服务器和浏览器只认bytes 类型数据。 | ||
| 130 | |||
| 131 | # 如:send 函数的参数和 recv 函数的返回值都是 bytes 类型 | ||
| 132 | |||
| 133 | # 附: | ||
| 134 | |||
| 135 | # 在 Python3 中,bytes 和 str 的互相转换方式是 | ||
| 136 | # str.encode('utf-8') | ||
| 137 | # bytes.decode('utf-8') |
ocr_engine/turnsole/face_utils/__init__.py
0 → 100644
File mode changed
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : lk | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Create Date : 2021-08-11 17:10:16 | ||
| 5 | # @Last Modified : 2021-08-12 16:14:53 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | import os | ||
| 9 | import tensorflow as tf | ||
| 10 | |||
| 11 | class AgeDetector: | ||
| 12 | def __init__(self, model_path): | ||
| 13 | self.age_map = { | ||
| 14 | 0: '0-2', | ||
| 15 | 1: '4-6', | ||
| 16 | 2: '8-13', | ||
| 17 | 3: '15-20', | ||
| 18 | 4: '25-32', | ||
| 19 | 5: '38-43', | ||
| 20 | 6: '48-53', | ||
| 21 | 7: '60+' | ||
| 22 | } | ||
| 23 | |||
| 24 | self.model = tf.keras.models.load_model(filepath=model_path, | ||
| 25 | compile=False) | ||
| 26 | self.inference_model = self.build_inference_model() | ||
| 27 | |||
| 28 | def build_inference_model(self): | ||
| 29 | image = self.model.input | ||
| 30 | x = tf.keras.applications.mobilenet_v2.preprocess_input(image) | ||
| 31 | predictions = self.model(x, training=False) | ||
| 32 | inference_model = tf.keras.Model(inputs=image, outputs=predictions) | ||
| 33 | return inference_model | ||
| 34 | |||
| 35 | def predict_batch(self, images): | ||
| 36 | # 输入一个人脸图片列表,列表不应为空 | ||
| 37 | images = tf.stack([tf.image.resize(image, [96, 96]) for image in images], axis=0) | ||
| 38 | preds = self.inference_model.predict(images) | ||
| 39 | indexes = tf.argmax(preds, axis=-1) | ||
| 40 | classes = [self.age_map[index.numpy()] for index in indexes] | ||
| 41 | return classes | ||
| 42 | |||
| 43 | if __name__ == '__main__': | ||
| 44 | |||
| 45 | import cv2 | ||
| 46 | from turnsole import paths | ||
| 47 | |||
| 48 | age_det = AGE_DETECTION(model_path='./ckpt/age_detector.h5') | ||
| 49 | |||
| 50 | data_dir = '/home/lk/Project/Face_Age_Gender/data/Emotion/emotion/010003_female_yellow_22' | ||
| 51 | |||
| 52 | for image_path in paths.list_images(data_dir): | ||
| 53 | image = cv2.imread(image_path) | ||
| 54 | classes = age_det.predict_batch([image]) | ||
| 55 | |||
| 56 | print(classes) | ||
| 57 |
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : Antonio-hi | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Create Date : 2021-08-11 18:28:36 | ||
| 5 | # @Last Modified : 2021-08-12 19:27:59 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | import os | ||
| 9 | import time | ||
| 10 | import numpy as np | ||
| 11 | import tensorflow as tf | ||
| 12 | |||
| 13 | def convert_to_corners(boxes): | ||
| 14 | """Changes the box format to corner coordinates | ||
| 15 | |||
| 16 | Arguments: | ||
| 17 | boxes: A tensor of rank 2 or higher with a shape of `(..., num_boxes, 4)` | ||
| 18 | representing bounding boxes where each box is of the format | ||
| 19 | `[x, y, width, height]`. | ||
| 20 | |||
| 21 | Returns: | ||
| 22 | converted boxes with shape same as that of boxes. | ||
| 23 | """ | ||
| 24 | return tf.concat( | ||
| 25 | [boxes[..., :2] - boxes[..., 2:] / 2.0, boxes[..., :2] + boxes[..., 2:] / 2.0], | ||
| 26 | axis=-1, | ||
| 27 | ) | ||
| 28 | |||
| 29 | class AnchorBox: | ||
| 30 | """Generates anchor boxes. | ||
| 31 | |||
| 32 | This class has operations to generate anchor boxes for feature maps at | ||
| 33 | strides `[8, 16, 32, 64, 128]`. Where each anchor each box is of the | ||
| 34 | format `[x, y, width, height]`. | ||
| 35 | |||
| 36 | Attributes: | ||
| 37 | aspect_ratios: A list of float values representing the aspect ratios of | ||
| 38 | the anchor boxes at each location on the feature map | ||
| 39 | scales: A list of float values representing the scale of the anchor boxes | ||
| 40 | at each location on the feature map. | ||
| 41 | num_anchors: The number of anchor boxes at each location on feature map | ||
| 42 | areas: A list of float values representing the areas of the anchor | ||
| 43 | boxes for each feature map in the feature pyramid. | ||
| 44 | strides: A list of float value representing the strides for each feature | ||
| 45 | map in the feature pyramid. | ||
| 46 | """ | ||
| 47 | |||
| 48 | def __init__(self): | ||
| 49 | self.aspect_ratios = [0.5, 1.0, 2.0] | ||
| 50 | self.scales = [2 ** x for x in [0, 1 / 3, 2 / 3]] | ||
| 51 | |||
| 52 | self._num_anchors = len(self.aspect_ratios) * len(self.scales) | ||
| 53 | self._strides = [2 ** i for i in range(3, 8)] | ||
| 54 | self._areas = [x ** 2 for x in [32.0, 64.0, 128.0, 256.0, 512.0]] | ||
| 55 | self._anchor_dims = self._compute_dims() | ||
| 56 | |||
| 57 | def _compute_dims(self): | ||
| 58 | """Computes anchor box dimensions for all ratios and scales at all levels | ||
| 59 | of the feature pyramid. | ||
| 60 | """ | ||
| 61 | anchor_dims_all = [] | ||
| 62 | for area in self._areas: | ||
| 63 | anchor_dims = [] | ||
| 64 | for ratio in self.aspect_ratios: | ||
| 65 | anchor_height = tf.math.sqrt(area / ratio) | ||
| 66 | anchor_width = area / anchor_height | ||
| 67 | dims = tf.reshape( | ||
| 68 | tf.stack([anchor_width, anchor_height], axis=-1), [1, 1, 2] | ||
| 69 | ) | ||
| 70 | for scale in self.scales: | ||
| 71 | anchor_dims.append(scale * dims) | ||
| 72 | anchor_dims_all.append(tf.stack(anchor_dims, axis=-2)) | ||
| 73 | return anchor_dims_all | ||
| 74 | |||
| 75 | def _get_anchors(self, feature_height, feature_width, level): | ||
| 76 | """Generates anchor boxes for a given feature map size and level | ||
| 77 | |||
| 78 | Arguments: | ||
| 79 | feature_height: An integer representing the height of the feature map. | ||
| 80 | feature_width: An integer representing the width of the feature map. | ||
| 81 | level: An integer representing the level of the feature map in the | ||
| 82 | feature pyramid. | ||
| 83 | |||
| 84 | Returns: | ||
| 85 | anchor boxes with the shape | ||
| 86 | `(feature_height * feature_width * num_anchors, 4)` | ||
| 87 | """ | ||
| 88 | rx = tf.range(feature_width, dtype=tf.float32) + 0.5 | ||
| 89 | ry = tf.range(feature_height, dtype=tf.float32) + 0.5 | ||
| 90 | centers = tf.stack(tf.meshgrid(rx, ry), axis=-1) * self._strides[level - 3] | ||
| 91 | centers = tf.expand_dims(centers, axis=-2) | ||
| 92 | centers = tf.tile(centers, [1, 1, self._num_anchors, 1]) | ||
| 93 | dims = tf.tile( | ||
| 94 | self._anchor_dims[level - 3], [feature_height, feature_width, 1, 1] | ||
| 95 | ) | ||
| 96 | anchors = tf.concat([centers, dims], axis=-1) | ||
| 97 | return tf.reshape( | ||
| 98 | anchors, [feature_height * feature_width * self._num_anchors, 4] | ||
| 99 | ) | ||
| 100 | |||
| 101 | def get_anchors(self, image_height, image_width): | ||
| 102 | """Generates anchor boxes for all the feature maps of the feature pyramid. | ||
| 103 | |||
| 104 | Arguments: | ||
| 105 | image_height: Height of the input image. | ||
| 106 | image_width: Width of the input image. | ||
| 107 | |||
| 108 | Returns: | ||
| 109 | anchor boxes for all the feature maps, stacked as a single tensor | ||
| 110 | with shape `(total_anchors, 4)` | ||
| 111 | """ | ||
| 112 | anchors = [ | ||
| 113 | self._get_anchors( | ||
| 114 | tf.math.ceil(image_height / 2 ** i), | ||
| 115 | tf.math.ceil(image_width / 2 ** i), | ||
| 116 | i, | ||
| 117 | ) | ||
| 118 | for i in range(3, 8) | ||
| 119 | ] | ||
| 120 | return tf.concat(anchors, axis=0) | ||
| 121 | |||
| 122 | class DecodePredictions(tf.keras.layers.Layer): | ||
| 123 | """A Keras layer that decodes predictions of the RetinaNet model. | ||
| 124 | |||
| 125 | Attributes: | ||
| 126 | num_classes: Number of classes in the dataset | ||
| 127 | confidence_threshold: Minimum class probability, below which detections | ||
| 128 | are pruned. | ||
| 129 | nms_iou_threshold: IOU threshold for the NMS operation | ||
| 130 | max_detections_per_class: Maximum number of detections to retain per | ||
| 131 | class. | ||
| 132 | max_detections: Maximum number of detections to retain across all | ||
| 133 | classes. | ||
| 134 | box_variance: The scaling factors used to scale the bounding box | ||
| 135 | predictions. | ||
| 136 | """ | ||
| 137 | |||
| 138 | def __init__( | ||
| 139 | self, | ||
| 140 | num_classes=80, | ||
| 141 | confidence_threshold=0.05, | ||
| 142 | nms_iou_threshold=0.5, | ||
| 143 | max_detections_per_class=100, | ||
| 144 | max_detections=100, | ||
| 145 | box_variance=[0.1, 0.1, 0.2, 0.2], | ||
| 146 | **kwargs | ||
| 147 | ): | ||
| 148 | super(DecodePredictions, self).__init__(**kwargs) | ||
| 149 | self.num_classes = num_classes | ||
| 150 | self.confidence_threshold = confidence_threshold | ||
| 151 | self.nms_iou_threshold = nms_iou_threshold | ||
| 152 | self.max_detections_per_class = max_detections_per_class | ||
| 153 | self.max_detections = max_detections | ||
| 154 | |||
| 155 | self._anchor_box = AnchorBox() | ||
| 156 | self._box_variance = tf.convert_to_tensor( | ||
| 157 | [0.1, 0.1, 0.2, 0.2], dtype=tf.float32 | ||
| 158 | ) | ||
| 159 | |||
| 160 | def _decode_box_predictions(self, anchor_boxes, box_predictions): | ||
| 161 | boxes = box_predictions * self._box_variance | ||
| 162 | boxes = tf.concat( | ||
| 163 | [ | ||
| 164 | boxes[:, :, :2] * anchor_boxes[:, :, 2:] + anchor_boxes[:, :, :2], | ||
| 165 | tf.math.exp(boxes[:, :, 2:]) * anchor_boxes[:, :, 2:], | ||
| 166 | ], | ||
| 167 | axis=-1, | ||
| 168 | ) | ||
| 169 | boxes_transformed = convert_to_corners(boxes) | ||
| 170 | return boxes_transformed | ||
| 171 | |||
| 172 | def _decode_landm_predictions(self, anchor_boxes, landm_predictions): # anchor_boxes shape=(1, 138105, 4) | ||
| 173 | landmarks = tf.reshape(landm_predictions, | ||
| 174 | [tf.shape(landm_predictions)[0], tf.shape(anchor_boxes)[1], 5, 2]) | ||
| 175 | anchor_boxes = tf.broadcast_to( | ||
| 176 | input=tf.expand_dims(anchor_boxes, 2), | ||
| 177 | shape=[tf.shape(landm_predictions)[0], tf.shape(anchor_boxes)[1], 5, 4]) | ||
| 178 | landmarks *= (self._box_variance[:2] * anchor_boxes[:, :, :, 2:]) | ||
| 179 | landmarks += anchor_boxes[:, :, :, :2] | ||
| 180 | return landmarks | ||
| 181 | |||
| 182 | def call(self, images, predictions): | ||
| 183 | image_shape = tf.cast(tf.shape(images), dtype=tf.float32) | ||
| 184 | anchor_boxes = self._anchor_box.get_anchors(image_shape[1], image_shape[2]) | ||
| 185 | |||
| 186 | box_predictions = predictions[:, :, :4] | ||
| 187 | cls_predictions = tf.nn.sigmoid(predictions[:, :, 4]) | ||
| 188 | landm_predictions = predictions[:, :, 5:15] | ||
| 189 | |||
| 190 | boxes = self._decode_box_predictions(anchor_boxes[None, ...], box_predictions) | ||
| 191 | landmarks = self._decode_landm_predictions(anchor_boxes[None, ...], landm_predictions) | ||
| 192 | |||
| 193 | selected_indices = tf.image.non_max_suppression( | ||
| 194 | boxes=boxes[0], | ||
| 195 | scores=cls_predictions[0], | ||
| 196 | max_output_size=self.max_detections, | ||
| 197 | iou_threshold=0.5, | ||
| 198 | score_threshold=self.confidence_threshold | ||
| 199 | ) | ||
| 200 | selected_boxes = tf.gather(boxes[0], selected_indices) | ||
| 201 | selected_landmarks = tf.gather(landmarks[0], selected_indices) | ||
| 202 | |||
| 203 | return selected_boxes, selected_landmarks | ||
| 204 | |||
| 205 | class FaceDetector: | ||
| 206 | def __init__(self, model_path, confidence_threshold=0.5): | ||
| 207 | self.confidence_threshold = confidence_threshold | ||
| 208 | self.model = tf.keras.models.load_model(filepath=model_path, | ||
| 209 | compile=False) | ||
| 210 | self.inference_model = self.build_inference_model() | ||
| 211 | |||
| 212 | def build_inference_model(self): | ||
| 213 | image = self.model.input | ||
| 214 | x = tf.keras.applications.mobilenet_v2.preprocess_input(image) | ||
| 215 | predictions = self.model(x, training=False) | ||
| 216 | detections = DecodePredictions(confidence_threshold=self.confidence_threshold)(image, predictions) | ||
| 217 | inference_model = tf.keras.Model(inputs=image, outputs=detections) | ||
| 218 | return inference_model | ||
| 219 | |||
| 220 | def resize_and_pad_image( | ||
| 221 | self, image, min_side=128.0, max_side=1333.0, jitter=[256, 960], stride=128.0 | ||
| 222 | ): | ||
| 223 | """Resizes and pads image while preserving aspect ratio. | ||
| 224 | |||
| 225 | Returns: | ||
| 226 | image: Resized and padded image. | ||
| 227 | image_shape: Shape of the image before padding. | ||
| 228 | ratio: The scaling factor used to resize the image | ||
| 229 | """ | ||
| 230 | image_shape = tf.cast(tf.shape(image)[:2], dtype=tf.float32) | ||
| 231 | if jitter is not None: | ||
| 232 | min_side = tf.random.uniform((), jitter[0], jitter[1], dtype=tf.float32) | ||
| 233 | ratio = min_side / tf.reduce_min(image_shape) | ||
| 234 | if ratio * tf.reduce_max(image_shape) > max_side: | ||
| 235 | ratio = max_side / tf.reduce_max(image_shape) | ||
| 236 | image_shape = ratio * image_shape # tf.float32 | ||
| 237 | image = tf.image.resize(image, tf.cast(image_shape, dtype=tf.int32)) | ||
| 238 | padded_image_shape = tf.cast( | ||
| 239 | tf.math.ceil(image_shape / stride) * stride, dtype=tf.int32 | ||
| 240 | ) | ||
| 241 | image = tf.image.pad_to_bounding_box( | ||
| 242 | image, 0, 0, padded_image_shape[0], padded_image_shape[1] | ||
| 243 | ) | ||
| 244 | return image, image_shape, ratio | ||
| 245 | |||
| 246 | def predict(self, image, min_side=128): | ||
| 247 | |||
| 248 | # input a image return boxes and landmarks | ||
| 249 | image, _, ratio = self.resize_and_pad_image(image, min_side=min_side, jitter=None) | ||
| 250 | |||
| 251 | detections = self.inference_model.predict(tf.expand_dims(image, axis=0)) | ||
| 252 | boxes, landmarks = detections | ||
| 253 | |||
| 254 | boxes = np.array(boxes/ratio, dtype=np.int32) | ||
| 255 | landmarks = np.array(landmarks/ratio, dtype=np.int32) | ||
| 256 | return boxes, landmarks | ||
| 257 | |||
| 258 | # 格式转换 | ||
| 259 | results = { | ||
| 260 | 'boxes': boxes.tolist(), | ||
| 261 | 'landmarks': landmarks.tolist(), | ||
| 262 | } | ||
| 263 | return results | ||
| 264 | |||
| 265 | if __name__ == '__main__': | ||
| 266 | import cv2 | ||
| 267 | |||
| 268 | facedetector = FaceDetector(model_path='./model/facedetector.h5') | ||
| 269 | |||
| 270 | image_path = '/home/lk/Project/Face_Age_Gender/data/WIDER/WIDER_train/images/28--Sports_Fan/28_Sports_Fan_Sports_Fan_28_615.jpg' | ||
| 271 | # image_path = '/home/lk/Project/Face_Age_Gender/data/Emotion/emotion/010021_female_yellow_22/angry.jpg' | ||
| 272 | |||
| 273 | image = cv2.imread(image_path) | ||
| 274 | |||
| 275 | x = facedetector.predict(image, min_side=256) | ||
| 276 | |||
| 277 | print(x) | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/turnsole/model.py
0 → 100644
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : Lyu Kui | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Created Date : 2021-02-24 13:58:46 | ||
| 5 | # @Last Modified : 2021-03-05 18:14:17 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | import tensorflow as tf | ||
| 9 | |||
| 10 | from .nets.efficientnet import EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3 | ||
| 11 | from .nets.efficientnet import EfficientNetB4, EfficientNetB5, EfficientNetB6, EfficientNetB7 | ||
| 12 | |||
| 13 | def load_backbone(phi, input_tensor, weights='imagenet'): | ||
| 14 | if phi == 0: | ||
| 15 | model = EfficientNetB0(include_top=False, | ||
| 16 | weights=weights, | ||
| 17 | input_tensor=input_tensor) | ||
| 18 | # 从这些层提取特征 | ||
| 19 | layer_names = [ | ||
| 20 | 'block2b_add', # 1/4 | ||
| 21 | 'block3b_add', # 1/8 | ||
| 22 | 'block5c_add', # 1/16 | ||
| 23 | 'block7a_project_bn', # 1/32 | ||
| 24 | ] | ||
| 25 | elif phi == 1: | ||
| 26 | model = EfficientNetB1(include_top=False, | ||
| 27 | weights=weights, | ||
| 28 | input_tensor=input_tensor) | ||
| 29 | layer_names = [ | ||
| 30 | 'block2c_add', # 1/4 | ||
| 31 | 'block3c_add', # 1/8 | ||
| 32 | 'block5d_add', # 1/16 | ||
| 33 | 'block7b_add', # 1/32 | ||
| 34 | ] | ||
| 35 | elif phi == 2: | ||
| 36 | model = EfficientNetB2(include_top=False, | ||
| 37 | weights=weights, | ||
| 38 | input_tensor=input_tensor) | ||
| 39 | layer_names = [ | ||
| 40 | 'block2c_add', # 1/4 | ||
| 41 | 'block3c_add', # 1/8 | ||
| 42 | 'block5d_add', # 1/16 | ||
| 43 | 'block7b_add', # 1/32 | ||
| 44 | ] | ||
| 45 | elif phi == 3: | ||
| 46 | model = EfficientNetB3(include_top=False, | ||
| 47 | weights=weights, | ||
| 48 | input_tensor=input_tensor) | ||
| 49 | layer_names = [ | ||
| 50 | 'block2c_add', # 1/4 | ||
| 51 | 'block3c_add', # 1/8 | ||
| 52 | 'block5e_add', # 1/16 | ||
| 53 | 'block7b_add', # 1/32 | ||
| 54 | ] | ||
| 55 | elif phi == 4: | ||
| 56 | model = EfficientNetB4(include_top=False, | ||
| 57 | weights=weights, | ||
| 58 | input_tensor=input_tensor) | ||
| 59 | layer_names = [ | ||
| 60 | 'block2c_add', # 1/4 | ||
| 61 | 'block3d_add', # 1/8 | ||
| 62 | 'block5f_add', # 1/16 | ||
| 63 | 'block7b_add', # 1/32 | ||
| 64 | ] | ||
| 65 | elif phi == 5: | ||
| 66 | model = EfficientNetB5(include_top=False, | ||
| 67 | weights=weights, | ||
| 68 | input_tensor=input_tensor) | ||
| 69 | layer_names = [ | ||
| 70 | 'block2e_add', # 1/4 | ||
| 71 | 'block3e_add', # 1/8 | ||
| 72 | 'block5g_add', # 1/16 | ||
| 73 | 'block7c_add', # 1/32 | ||
| 74 | ] | ||
| 75 | elif phi == 6: | ||
| 76 | model = EfficientNetB6(include_top=False, | ||
| 77 | weights=weights, | ||
| 78 | input_tensor=input_tensor) | ||
| 79 | layer_names = [ | ||
| 80 | 'block2f_add', # 1/4 | ||
| 81 | 'block3f_add', # 1/8 | ||
| 82 | 'block5h_add', # 1/16 | ||
| 83 | 'block7c_add', # 1/32 | ||
| 84 | ] | ||
| 85 | elif phi == 7: | ||
| 86 | model = EfficientNetB7(include_top=False, | ||
| 87 | weights=weights, | ||
| 88 | input_tensor=input_tensor) | ||
| 89 | layer_names = [ | ||
| 90 | 'block2g_add', # 1/4 | ||
| 91 | 'block3g_add', # 1/8 | ||
| 92 | 'block5j_add', # 1/16 | ||
| 93 | 'block7d_add', # 1/32 | ||
| 94 | ] | ||
| 95 | |||
| 96 | skips = [model.get_layer(name).output for name in layer_names] | ||
| 97 | return model, skips | ||
| 98 | |||
| 99 | def EasyDet(phi=0, input_size=(None, None, 3), weights='imagenet'): | ||
| 100 | image_input = tf.keras.layers.Input(shape=input_size) | ||
| 101 | |||
| 102 | backbone, skips = load_backbone(phi=phi, input_tensor=image_input, weights=weights) | ||
| 103 | C2, C3, C4, C5 = skips | ||
| 104 | |||
| 105 | in2 = tf.keras.layers.Conv2D(256, (1, 1), padding='same', kernel_initializer='he_normal', name='in2')(C2) | ||
| 106 | in3 = tf.keras.layers.Conv2D(256, (1, 1), padding='same', kernel_initializer='he_normal', name='in3')(C3) | ||
| 107 | in4 = tf.keras.layers.Conv2D(256, (1, 1), padding='same', kernel_initializer='he_normal', name='in4')(C4) | ||
| 108 | in5 = tf.keras.layers.Conv2D(256, (1, 1), padding='same', kernel_initializer='he_normal', name='in5')(C5) | ||
| 109 | |||
| 110 | # 1 / 32 * 8 = 1 / 4 | ||
| 111 | P5 = tf.keras.layers.UpSampling2D(size=(8, 8))( | ||
| 112 | tf.keras.layers.Conv2D(64, (3, 3), padding='same', kernel_initializer='he_normal')(in5)) | ||
| 113 | # 1 / 16 * 4 = 1 / 4 | ||
| 114 | out4 = tf.keras.layers.Add()([in4, tf.keras.layers.UpSampling2D(size=(2, 2))(in5)]) | ||
| 115 | P4 = tf.keras.layers.UpSampling2D(size=(4, 4))( | ||
| 116 | tf.keras.layers.Conv2D(64, (3, 3), padding='same', kernel_initializer='he_normal')(out4)) | ||
| 117 | # 1 / 8 * 2 = 1 / 4 | ||
| 118 | out3 = tf.keras.layers.Add()([in3, tf.keras.layers.UpSampling2D(size=(2, 2))(out4)]) | ||
| 119 | P3 = tf.keras.layers.UpSampling2D(size=(2, 2))( | ||
| 120 | tf.keras.layers.Conv2D(64, (3, 3), padding='same', kernel_initializer='he_normal')(out3)) | ||
| 121 | # 1 / 4 | ||
| 122 | P2 = tf.keras.layers.Conv2D(64, (3, 3), padding='same', kernel_initializer='he_normal')( | ||
| 123 | tf.keras.layers.Add()([in2, tf.keras.layers.UpSampling2D(size=(2, 2))(out3)])) | ||
| 124 | # (b, 1/4, 1/4, 256) | ||
| 125 | fuse = tf.keras.layers.Concatenate()([P2, P3, P4, P5]) | ||
| 126 | |||
| 127 | model = tf.keras.models.Model(inputs=image_input, outputs=fuse) | ||
| 128 | return model | ||
| 129 | |||
| 130 | |||
| 131 | if __name__ == '__main__': | ||
| 132 | model = EasyDet(phi=0) | ||
| 133 | model.summary() | ||
| 134 | |||
| 135 | import time | ||
| 136 | import numpy as np | ||
| 137 | |||
| 138 | x = np.random.random_sample((1, 640, 640, 3)) | ||
| 139 | # warm up | ||
| 140 | output = model.predict(x) | ||
| 141 | |||
| 142 | print('\n[INFO] Test start') | ||
| 143 | time_start = time.time() | ||
| 144 | for i in range(1000): | ||
| 145 | output = model.predict(x) | ||
| 146 | |||
| 147 | time_end = time.time() | ||
| 148 | print('[INFO] Time used: {:.2f} ms'.format((time_end - time_start)*1000/(i+1))) |
ocr_engine/turnsole/nets/__init__.py
0 → 100644
File mode changed
ocr_engine/turnsole/nets/efficientnet.py
0 → 100644
| 1 | # Copyright 2019 The TensorFlow Authors. All Rights Reserved. | ||
| 2 | # | ||
| 3 | # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| 4 | # you may not use this file except in compliance with the License. | ||
| 5 | # You may obtain a copy of the License at | ||
| 6 | # | ||
| 7 | # http://www.apache.org/licenses/LICENSE-2.0 | ||
| 8 | # | ||
| 9 | # Unless required by applicable law or agreed to in writing, software | ||
| 10 | # distributed under the License is distributed on an "AS IS" BASIS, | ||
| 11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| 12 | # See the License for the specific language governing permissions and | ||
| 13 | # limitations under the License. | ||
| 14 | # ============================================================================== | ||
| 15 | # pylint: disable=invalid-name | ||
| 16 | # pylint: disable=missing-docstring | ||
| 17 | """EfficientNet models for Keras. | ||
| 18 | Reference: | ||
| 19 | - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]( | ||
| 20 | https://arxiv.org/abs/1905.11946) (ICML 2019) | ||
| 21 | """ | ||
| 22 | from __future__ import absolute_import | ||
| 23 | from __future__ import division | ||
| 24 | from __future__ import print_function | ||
| 25 | |||
| 26 | import copy | ||
| 27 | import math | ||
| 28 | |||
| 29 | from tensorflow.keras import layers | ||
| 30 | |||
| 31 | from tensorflow.python.keras import backend | ||
| 32 | from tensorflow.python.keras.applications import imagenet_utils | ||
| 33 | from tensorflow.python.keras.engine import training | ||
| 34 | # from tensorflow.python.keras.layers import VersionAwareLayers | ||
| 35 | from tensorflow.python.keras.utils import data_utils | ||
| 36 | from tensorflow.python.keras.utils import layer_utils | ||
| 37 | from tensorflow.python.lib.io import file_io | ||
| 38 | from tensorflow.python.util.tf_export import keras_export | ||
| 39 | |||
| 40 | |||
| 41 | BASE_WEIGHTS_PATH = 'https://storage.googleapis.com/keras-applications/' | ||
| 42 | |||
| 43 | WEIGHTS_HASHES = { | ||
| 44 | 'b0': ('902e53a9f72be733fc0bcb005b3ebbac', | ||
| 45 | '50bc09e76180e00e4465e1a485ddc09d'), | ||
| 46 | 'b1': ('1d254153d4ab51201f1646940f018540', | ||
| 47 | '74c4e6b3e1f6a1eea24c589628592432'), | ||
| 48 | 'b2': ('b15cce36ff4dcbd00b6dd88e7857a6ad', | ||
| 49 | '111f8e2ac8aa800a7a99e3239f7bfb39'), | ||
| 50 | 'b3': ('ffd1fdc53d0ce67064dc6a9c7960ede0', | ||
| 51 | 'af6d107764bb5b1abb91932881670226'), | ||
| 52 | 'b4': ('18c95ad55216b8f92d7e70b3a046e2fc', | ||
| 53 | 'ebc24e6d6c33eaebbd558eafbeedf1ba'), | ||
| 54 | 'b5': ('ace28f2a6363774853a83a0b21b9421a', | ||
| 55 | '38879255a25d3c92d5e44e04ae6cec6f'), | ||
| 56 | 'b6': ('165f6e37dce68623721b423839de8be5', | ||
| 57 | '9ecce42647a20130c1f39a5d4cb75743'), | ||
| 58 | 'b7': ('8c03f828fec3ef71311cd463b6759d99', | ||
| 59 | 'cbcfe4450ddf6f3ad90b1b398090fe4a'), | ||
| 60 | } | ||
| 61 | |||
| 62 | DEFAULT_BLOCKS_ARGS = [{ | ||
| 63 | 'kernel_size': 3, | ||
| 64 | 'repeats': 1, | ||
| 65 | 'filters_in': 32, | ||
| 66 | 'filters_out': 16, | ||
| 67 | 'expand_ratio': 1, | ||
| 68 | 'id_skip': True, | ||
| 69 | 'strides': 1, | ||
| 70 | 'se_ratio': 0.25 | ||
| 71 | }, { | ||
| 72 | 'kernel_size': 3, | ||
| 73 | 'repeats': 2, | ||
| 74 | 'filters_in': 16, | ||
| 75 | 'filters_out': 24, | ||
| 76 | 'expand_ratio': 6, | ||
| 77 | 'id_skip': True, | ||
| 78 | 'strides': 2, | ||
| 79 | 'se_ratio': 0.25 | ||
| 80 | }, { | ||
| 81 | 'kernel_size': 5, | ||
| 82 | 'repeats': 2, | ||
| 83 | 'filters_in': 24, | ||
| 84 | 'filters_out': 40, | ||
| 85 | 'expand_ratio': 6, | ||
| 86 | 'id_skip': True, | ||
| 87 | 'strides': 2, | ||
| 88 | 'se_ratio': 0.25 | ||
| 89 | }, { | ||
| 90 | 'kernel_size': 3, | ||
| 91 | 'repeats': 3, | ||
| 92 | 'filters_in': 40, | ||
| 93 | 'filters_out': 80, | ||
| 94 | 'expand_ratio': 6, | ||
| 95 | 'id_skip': True, | ||
| 96 | 'strides': 2, | ||
| 97 | 'se_ratio': 0.25 | ||
| 98 | }, { | ||
| 99 | 'kernel_size': 5, | ||
| 100 | 'repeats': 3, | ||
| 101 | 'filters_in': 80, | ||
| 102 | 'filters_out': 112, | ||
| 103 | 'expand_ratio': 6, | ||
| 104 | 'id_skip': True, | ||
| 105 | 'strides': 1, | ||
| 106 | 'se_ratio': 0.25 | ||
| 107 | }, { | ||
| 108 | 'kernel_size': 5, | ||
| 109 | 'repeats': 4, | ||
| 110 | 'filters_in': 112, | ||
| 111 | 'filters_out': 192, | ||
| 112 | 'expand_ratio': 6, | ||
| 113 | 'id_skip': True, | ||
| 114 | 'strides': 2, | ||
| 115 | 'se_ratio': 0.25 | ||
| 116 | }, { | ||
| 117 | 'kernel_size': 3, | ||
| 118 | 'repeats': 1, | ||
| 119 | 'filters_in': 192, | ||
| 120 | 'filters_out': 320, | ||
| 121 | 'expand_ratio': 6, | ||
| 122 | 'id_skip': True, | ||
| 123 | 'strides': 1, | ||
| 124 | 'se_ratio': 0.25 | ||
| 125 | }] | ||
| 126 | |||
| 127 | CONV_KERNEL_INITIALIZER = { | ||
| 128 | 'class_name': 'VarianceScaling', | ||
| 129 | 'config': { | ||
| 130 | 'scale': 2.0, | ||
| 131 | 'mode': 'fan_out', | ||
| 132 | 'distribution': 'truncated_normal' | ||
| 133 | } | ||
| 134 | } | ||
| 135 | |||
| 136 | DENSE_KERNEL_INITIALIZER = { | ||
| 137 | 'class_name': 'VarianceScaling', | ||
| 138 | 'config': { | ||
| 139 | 'scale': 1. / 3., | ||
| 140 | 'mode': 'fan_out', | ||
| 141 | 'distribution': 'uniform' | ||
| 142 | } | ||
| 143 | } | ||
| 144 | |||
| 145 | # layers = VersionAwareLayers() | ||
| 146 | |||
| 147 | BASE_DOCSTRING = """Instantiates the {name} architecture. | ||
| 148 | Reference: | ||
| 149 | - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]( | ||
| 150 | https://arxiv.org/abs/1905.11946) (ICML 2019) | ||
| 151 | Optionally loads weights pre-trained on ImageNet. | ||
| 152 | Note that the data format convention used by the model is | ||
| 153 | the one specified in your Keras config at `~/.keras/keras.json`. | ||
| 154 | If you have never configured it, it defaults to `"channels_last"`. | ||
| 155 | Arguments: | ||
| 156 | include_top: Whether to include the fully-connected | ||
| 157 | layer at the top of the network. Defaults to True. | ||
| 158 | weights: One of `None` (random initialization), | ||
| 159 | 'imagenet' (pre-training on ImageNet), | ||
| 160 | or the path to the weights file to be loaded. Defaults to 'imagenet'. | ||
| 161 | input_tensor: Optional Keras tensor | ||
| 162 | (i.e. output of `layers.Input()`) | ||
| 163 | to use as image input for the model. | ||
| 164 | input_shape: Optional shape tuple, only to be specified | ||
| 165 | if `include_top` is False. | ||
| 166 | It should have exactly 3 inputs channels. | ||
| 167 | pooling: Optional pooling mode for feature extraction | ||
| 168 | when `include_top` is `False`. Defaults to None. | ||
| 169 | - `None` means that the output of the model will be | ||
| 170 | the 4D tensor output of the | ||
| 171 | last convolutional layer. | ||
| 172 | - `avg` means that global average pooling | ||
| 173 | will be applied to the output of the | ||
| 174 | last convolutional layer, and thus | ||
| 175 | the output of the model will be a 2D tensor. | ||
| 176 | - `max` means that global max pooling will | ||
| 177 | be applied. | ||
| 178 | classes: Optional number of classes to classify images | ||
| 179 | into, only to be specified if `include_top` is True, and | ||
| 180 | if no `weights` argument is specified. Defaults to 1000 (number of | ||
| 181 | ImageNet classes). | ||
| 182 | classifier_activation: A `str` or callable. The activation function to use | ||
| 183 | on the "top" layer. Ignored unless `include_top=True`. Set | ||
| 184 | `classifier_activation=None` to return the logits of the "top" layer. | ||
| 185 | Defaults to 'softmax'. | ||
| 186 | Returns: | ||
| 187 | A `keras.Model` instance. | ||
| 188 | """ | ||
| 189 | |||
| 190 | |||
| 191 | def EfficientNet( | ||
| 192 | width_coefficient, | ||
| 193 | depth_coefficient, | ||
| 194 | default_size, | ||
| 195 | dropout_rate=0.2, | ||
| 196 | drop_connect_rate=0.2, | ||
| 197 | depth_divisor=8, | ||
| 198 | activation='swish', | ||
| 199 | blocks_args='default', | ||
| 200 | model_name='efficientnet', | ||
| 201 | include_top=True, | ||
| 202 | weights='imagenet', | ||
| 203 | input_tensor=None, | ||
| 204 | input_shape=None, | ||
| 205 | pooling=None, | ||
| 206 | classes=1000, | ||
| 207 | classifier_activation='softmax'): | ||
| 208 | """Instantiates the EfficientNet architecture using given scaling coefficients. | ||
| 209 | Reference: | ||
| 210 | - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks]( | ||
| 211 | https://arxiv.org/abs/1905.11946) (ICML 2019) | ||
| 212 | Optionally loads weights pre-trained on ImageNet. | ||
| 213 | Note that the data format convention used by the model is | ||
| 214 | the one specified in your Keras config at `~/.keras/keras.json`. | ||
| 215 | Arguments: | ||
| 216 | width_coefficient: float, scaling coefficient for network width. | ||
| 217 | depth_coefficient: float, scaling coefficient for network depth. | ||
| 218 | default_size: integer, default input image size. | ||
| 219 | dropout_rate: float, dropout rate before final classifier layer. | ||
| 220 | drop_connect_rate: float, dropout rate at skip connections. | ||
| 221 | depth_divisor: integer, a unit of network width. | ||
| 222 | activation: activation function. | ||
| 223 | blocks_args: list of dicts, parameters to construct block modules. | ||
| 224 | model_name: string, model name. | ||
| 225 | include_top: whether to include the fully-connected | ||
| 226 | layer at the top of the network. | ||
| 227 | weights: one of `None` (random initialization), | ||
| 228 | 'imagenet' (pre-training on ImageNet), | ||
| 229 | or the path to the weights file to be loaded. | ||
| 230 | input_tensor: optional Keras tensor | ||
| 231 | (i.e. output of `layers.Input()`) | ||
| 232 | to use as image input for the model. | ||
| 233 | input_shape: optional shape tuple, only to be specified | ||
| 234 | if `include_top` is False. | ||
| 235 | It should have exactly 3 inputs channels. | ||
| 236 | pooling: optional pooling mode for feature extraction | ||
| 237 | when `include_top` is `False`. | ||
| 238 | - `None` means that the output of the model will be | ||
| 239 | the 4D tensor output of the | ||
| 240 | last convolutional layer. | ||
| 241 | - `avg` means that global average pooling | ||
| 242 | will be applied to the output of the | ||
| 243 | last convolutional layer, and thus | ||
| 244 | the output of the model will be a 2D tensor. | ||
| 245 | - `max` means that global max pooling will | ||
| 246 | be applied. | ||
| 247 | classes: optional number of classes to classify images | ||
| 248 | into, only to be specified if `include_top` is True, and | ||
| 249 | if no `weights` argument is specified. | ||
| 250 | classifier_activation: A `str` or callable. The activation function to use | ||
| 251 | on the "top" layer. Ignored unless `include_top=True`. Set | ||
| 252 | `classifier_activation=None` to return the logits of the "top" layer. | ||
| 253 | Returns: | ||
| 254 | A `keras.Model` instance. | ||
| 255 | Raises: | ||
| 256 | ValueError: in case of invalid argument for `weights`, | ||
| 257 | or invalid input shape. | ||
| 258 | ValueError: if `classifier_activation` is not `softmax` or `None` when | ||
| 259 | using a pretrained top layer. | ||
| 260 | """ | ||
| 261 | if blocks_args == 'default': | ||
| 262 | blocks_args = DEFAULT_BLOCKS_ARGS | ||
| 263 | |||
| 264 | if not (weights in {'imagenet', None} or file_io.file_exists_v2(weights)): | ||
| 265 | raise ValueError('The `weights` argument should be either ' | ||
| 266 | '`None` (random initialization), `imagenet` ' | ||
| 267 | '(pre-training on ImageNet), ' | ||
| 268 | 'or the path to the weights file to be loaded.') | ||
| 269 | |||
| 270 | if weights == 'imagenet' and include_top and classes != 1000: | ||
| 271 | raise ValueError('If using `weights` as `"imagenet"` with `include_top`' | ||
| 272 | ' as true, `classes` should be 1000') | ||
| 273 | |||
| 274 | # Determine proper input shape | ||
| 275 | input_shape = imagenet_utils.obtain_input_shape( | ||
| 276 | input_shape, | ||
| 277 | default_size=default_size, | ||
| 278 | min_size=32, | ||
| 279 | data_format=backend.image_data_format(), | ||
| 280 | require_flatten=include_top, | ||
| 281 | weights=weights) | ||
| 282 | |||
| 283 | if input_tensor is None: | ||
| 284 | img_input = layers.Input(shape=input_shape) | ||
| 285 | else: | ||
| 286 | if not backend.is_keras_tensor(input_tensor): | ||
| 287 | img_input = layers.Input(tensor=input_tensor, shape=input_shape) | ||
| 288 | else: | ||
| 289 | img_input = input_tensor | ||
| 290 | |||
| 291 | bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1 | ||
| 292 | |||
| 293 | def round_filters(filters, divisor=depth_divisor): | ||
| 294 | """Round number of filters based on depth multiplier.""" | ||
| 295 | filters *= width_coefficient | ||
| 296 | new_filters = max(divisor, int(filters + divisor / 2) // divisor * divisor) | ||
| 297 | # Make sure that round down does not go down by more than 10%. | ||
| 298 | if new_filters < 0.9 * filters: | ||
| 299 | new_filters += divisor | ||
| 300 | return int(new_filters) | ||
| 301 | |||
| 302 | def round_repeats(repeats): | ||
| 303 | """Round number of repeats based on depth multiplier.""" | ||
| 304 | return int(math.ceil(depth_coefficient * repeats)) | ||
| 305 | |||
| 306 | # Build stem | ||
| 307 | x = img_input | ||
| 308 | x = layers.experimental.preprocessing.Rescaling(1. / 255.)(x) | ||
| 309 | x = layers.experimental.preprocessing.Normalization(axis=bn_axis)(x) | ||
| 310 | |||
| 311 | x = layers.ZeroPadding2D( | ||
| 312 | padding=imagenet_utils.correct_pad(x, 3), | ||
| 313 | name='stem_conv_pad')(x) | ||
| 314 | x = layers.Conv2D( | ||
| 315 | round_filters(32), | ||
| 316 | 3, | ||
| 317 | strides=2, | ||
| 318 | padding='valid', | ||
| 319 | use_bias=False, | ||
| 320 | kernel_initializer=CONV_KERNEL_INITIALIZER, | ||
| 321 | name='stem_conv')(x) | ||
| 322 | x = layers.BatchNormalization(axis=bn_axis, name='stem_bn')(x) | ||
| 323 | x = layers.Activation(activation, name='stem_activation')(x) | ||
| 324 | |||
| 325 | # Build blocks | ||
| 326 | blocks_args = copy.deepcopy(blocks_args) | ||
| 327 | |||
| 328 | b = 0 | ||
| 329 | blocks = float(sum(round_repeats(args['repeats']) for args in blocks_args)) | ||
| 330 | for (i, args) in enumerate(blocks_args): | ||
| 331 | assert args['repeats'] > 0 | ||
| 332 | # Update block input and output filters based on depth multiplier. | ||
| 333 | args['filters_in'] = round_filters(args['filters_in']) | ||
| 334 | args['filters_out'] = round_filters(args['filters_out']) | ||
| 335 | |||
| 336 | for j in range(round_repeats(args.pop('repeats'))): | ||
| 337 | # The first block needs to take care of stride and filter size increase. | ||
| 338 | if j > 0: | ||
| 339 | args['strides'] = 1 | ||
| 340 | args['filters_in'] = args['filters_out'] | ||
| 341 | x = block( | ||
| 342 | x, | ||
| 343 | activation, | ||
| 344 | drop_connect_rate * b / blocks, | ||
| 345 | name='block{}{}_'.format(i + 1, chr(j + 97)), | ||
| 346 | **args) | ||
| 347 | b += 1 | ||
| 348 | |||
| 349 | # Build top | ||
| 350 | x = layers.Conv2D( | ||
| 351 | round_filters(1280), | ||
| 352 | 1, | ||
| 353 | padding='same', | ||
| 354 | use_bias=False, | ||
| 355 | kernel_initializer=CONV_KERNEL_INITIALIZER, | ||
| 356 | name='top_conv')(x) | ||
| 357 | x = layers.BatchNormalization(axis=bn_axis, name='top_bn')(x) | ||
| 358 | x = layers.Activation(activation, name='top_activation')(x) | ||
| 359 | if include_top: | ||
| 360 | x = layers.GlobalAveragePooling2D(name='avg_pool')(x) | ||
| 361 | if dropout_rate > 0: | ||
| 362 | x = layers.Dropout(dropout_rate, name='top_dropout')(x) | ||
| 363 | imagenet_utils.validate_activation(classifier_activation, weights) | ||
| 364 | x = layers.Dense( | ||
| 365 | classes, | ||
| 366 | activation=classifier_activation, | ||
| 367 | kernel_initializer=DENSE_KERNEL_INITIALIZER, | ||
| 368 | name='predictions')(x) | ||
| 369 | else: | ||
| 370 | if pooling == 'avg': | ||
| 371 | x = layers.GlobalAveragePooling2D(name='avg_pool')(x) | ||
| 372 | elif pooling == 'max': | ||
| 373 | x = layers.GlobalMaxPooling2D(name='max_pool')(x) | ||
| 374 | |||
| 375 | # Ensure that the model takes into account | ||
| 376 | # any potential predecessors of `input_tensor`. | ||
| 377 | if input_tensor is not None: | ||
| 378 | inputs = layer_utils.get_source_inputs(input_tensor) | ||
| 379 | else: | ||
| 380 | inputs = img_input | ||
| 381 | |||
| 382 | # Create model. | ||
| 383 | model = training.Model(inputs, x, name=model_name) | ||
| 384 | |||
| 385 | # Load weights. | ||
| 386 | if weights == 'imagenet': | ||
| 387 | if include_top: | ||
| 388 | file_suffix = '.h5' | ||
| 389 | file_hash = WEIGHTS_HASHES[model_name[-2:]][0] | ||
| 390 | else: | ||
| 391 | file_suffix = '_notop.h5' | ||
| 392 | file_hash = WEIGHTS_HASHES[model_name[-2:]][1] | ||
| 393 | file_name = model_name + file_suffix | ||
| 394 | weights_path = data_utils.get_file( | ||
| 395 | file_name, | ||
| 396 | BASE_WEIGHTS_PATH + file_name, | ||
| 397 | cache_subdir='models', | ||
| 398 | file_hash=file_hash) | ||
| 399 | model.load_weights(weights_path) | ||
| 400 | elif weights is not None: | ||
| 401 | model.load_weights(weights) | ||
| 402 | return model | ||
| 403 | |||
| 404 | |||
| 405 | def block(inputs, | ||
| 406 | activation='swish', | ||
| 407 | drop_rate=0., | ||
| 408 | name='', | ||
| 409 | filters_in=32, | ||
| 410 | filters_out=16, | ||
| 411 | kernel_size=3, | ||
| 412 | strides=1, | ||
| 413 | expand_ratio=1, | ||
| 414 | se_ratio=0., | ||
| 415 | id_skip=True): | ||
| 416 | """An inverted residual block. | ||
| 417 | Arguments: | ||
| 418 | inputs: input tensor. | ||
| 419 | activation: activation function. | ||
| 420 | drop_rate: float between 0 and 1, fraction of the input units to drop. | ||
| 421 | name: string, block label. | ||
| 422 | filters_in: integer, the number of input filters. | ||
| 423 | filters_out: integer, the number of output filters. | ||
| 424 | kernel_size: integer, the dimension of the convolution window. | ||
| 425 | strides: integer, the stride of the convolution. | ||
| 426 | expand_ratio: integer, scaling coefficient for the input filters. | ||
| 427 | se_ratio: float between 0 and 1, fraction to squeeze the input filters. | ||
| 428 | id_skip: boolean. | ||
| 429 | Returns: | ||
| 430 | output tensor for the block. | ||
| 431 | """ | ||
| 432 | bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1 | ||
| 433 | |||
| 434 | # Expansion phase | ||
| 435 | filters = filters_in * expand_ratio | ||
| 436 | if expand_ratio != 1: | ||
| 437 | x = layers.Conv2D( | ||
| 438 | filters, | ||
| 439 | 1, | ||
| 440 | padding='same', | ||
| 441 | use_bias=False, | ||
| 442 | kernel_initializer=CONV_KERNEL_INITIALIZER, | ||
| 443 | name=name + 'expand_conv')( | ||
| 444 | inputs) | ||
| 445 | x = layers.BatchNormalization(axis=bn_axis, name=name + 'expand_bn')(x) | ||
| 446 | x = layers.Activation(activation, name=name + 'expand_activation')(x) | ||
| 447 | else: | ||
| 448 | x = inputs | ||
| 449 | |||
| 450 | # Depthwise Convolution | ||
| 451 | if strides == 2: | ||
| 452 | x = layers.ZeroPadding2D( | ||
| 453 | padding=imagenet_utils.correct_pad(x, kernel_size), | ||
| 454 | name=name + 'dwconv_pad')(x) | ||
| 455 | conv_pad = 'valid' | ||
| 456 | else: | ||
| 457 | conv_pad = 'same' | ||
| 458 | x = layers.DepthwiseConv2D( | ||
| 459 | kernel_size, | ||
| 460 | strides=strides, | ||
| 461 | padding=conv_pad, | ||
| 462 | use_bias=False, | ||
| 463 | depthwise_initializer=CONV_KERNEL_INITIALIZER, | ||
| 464 | name=name + 'dwconv')(x) | ||
| 465 | x = layers.BatchNormalization(axis=bn_axis, name=name + 'bn')(x) | ||
| 466 | x = layers.Activation(activation, name=name + 'activation')(x) | ||
| 467 | |||
| 468 | # Squeeze and Excitation phase | ||
| 469 | if 0 < se_ratio <= 1: | ||
| 470 | filters_se = max(1, int(filters_in * se_ratio)) | ||
| 471 | se = layers.GlobalAveragePooling2D(name=name + 'se_squeeze')(x) | ||
| 472 | se = layers.Reshape((1, 1, filters), name=name + 'se_reshape')(se) | ||
| 473 | se = layers.Conv2D( | ||
| 474 | filters_se, | ||
| 475 | 1, | ||
| 476 | padding='same', | ||
| 477 | activation=activation, | ||
| 478 | kernel_initializer=CONV_KERNEL_INITIALIZER, | ||
| 479 | name=name + 'se_reduce')( | ||
| 480 | se) | ||
| 481 | se = layers.Conv2D( | ||
| 482 | filters, | ||
| 483 | 1, | ||
| 484 | padding='same', | ||
| 485 | activation='sigmoid', | ||
| 486 | kernel_initializer=CONV_KERNEL_INITIALIZER, | ||
| 487 | name=name + 'se_expand')(se) | ||
| 488 | x = layers.multiply([x, se], name=name + 'se_excite') | ||
| 489 | |||
| 490 | # Output phase | ||
| 491 | x = layers.Conv2D( | ||
| 492 | filters_out, | ||
| 493 | 1, | ||
| 494 | padding='same', | ||
| 495 | use_bias=False, | ||
| 496 | kernel_initializer=CONV_KERNEL_INITIALIZER, | ||
| 497 | name=name + 'project_conv')(x) | ||
| 498 | x = layers.BatchNormalization(axis=bn_axis, name=name + 'project_bn')(x) | ||
| 499 | if id_skip and strides == 1 and filters_in == filters_out: | ||
| 500 | if drop_rate > 0: | ||
| 501 | x = layers.Dropout( | ||
| 502 | drop_rate, noise_shape=(None, 1, 1, 1), name=name + 'drop')(x) | ||
| 503 | x = layers.add([x, inputs], name=name + 'add') | ||
| 504 | return x | ||
| 505 | |||
| 506 | |||
| 507 | @keras_export('keras.applications.efficientnet.EfficientNetB0', | ||
| 508 | 'keras.applications.EfficientNetB0') | ||
| 509 | def EfficientNetB0(include_top=True, | ||
| 510 | weights='imagenet', | ||
| 511 | input_tensor=None, | ||
| 512 | input_shape=None, | ||
| 513 | pooling=None, | ||
| 514 | classes=1000, | ||
| 515 | classifier_activation='softmax', | ||
| 516 | **kwargs): | ||
| 517 | return EfficientNet( | ||
| 518 | 1.0, | ||
| 519 | 1.0, | ||
| 520 | 224, | ||
| 521 | 0.2, | ||
| 522 | model_name='efficientnetb0', | ||
| 523 | include_top=include_top, | ||
| 524 | weights=weights, | ||
| 525 | input_tensor=input_tensor, | ||
| 526 | input_shape=input_shape, | ||
| 527 | pooling=pooling, | ||
| 528 | classes=classes, | ||
| 529 | classifier_activation=classifier_activation, | ||
| 530 | **kwargs) | ||
| 531 | |||
| 532 | |||
| 533 | @keras_export('keras.applications.efficientnet.EfficientNetB1', | ||
| 534 | 'keras.applications.EfficientNetB1') | ||
| 535 | def EfficientNetB1(include_top=True, | ||
| 536 | weights='imagenet', | ||
| 537 | input_tensor=None, | ||
| 538 | input_shape=None, | ||
| 539 | pooling=None, | ||
| 540 | classes=1000, | ||
| 541 | classifier_activation='softmax', | ||
| 542 | **kwargs): | ||
| 543 | return EfficientNet( | ||
| 544 | 1.0, | ||
| 545 | 1.1, | ||
| 546 | 240, | ||
| 547 | 0.2, | ||
| 548 | model_name='efficientnetb1', | ||
| 549 | include_top=include_top, | ||
| 550 | weights=weights, | ||
| 551 | input_tensor=input_tensor, | ||
| 552 | input_shape=input_shape, | ||
| 553 | pooling=pooling, | ||
| 554 | classes=classes, | ||
| 555 | classifier_activation=classifier_activation, | ||
| 556 | **kwargs) | ||
| 557 | |||
| 558 | |||
| 559 | @keras_export('keras.applications.efficientnet.EfficientNetB2', | ||
| 560 | 'keras.applications.EfficientNetB2') | ||
| 561 | def EfficientNetB2(include_top=True, | ||
| 562 | weights='imagenet', | ||
| 563 | input_tensor=None, | ||
| 564 | input_shape=None, | ||
| 565 | pooling=None, | ||
| 566 | classes=1000, | ||
| 567 | classifier_activation='softmax', | ||
| 568 | **kwargs): | ||
| 569 | return EfficientNet( | ||
| 570 | 1.1, | ||
| 571 | 1.2, | ||
| 572 | 260, | ||
| 573 | 0.3, | ||
| 574 | model_name='efficientnetb2', | ||
| 575 | include_top=include_top, | ||
| 576 | weights=weights, | ||
| 577 | input_tensor=input_tensor, | ||
| 578 | input_shape=input_shape, | ||
| 579 | pooling=pooling, | ||
| 580 | classes=classes, | ||
| 581 | classifier_activation=classifier_activation, | ||
| 582 | **kwargs) | ||
| 583 | |||
| 584 | |||
| 585 | @keras_export('keras.applications.efficientnet.EfficientNetB3', | ||
| 586 | 'keras.applications.EfficientNetB3') | ||
| 587 | def EfficientNetB3(include_top=True, | ||
| 588 | weights='imagenet', | ||
| 589 | input_tensor=None, | ||
| 590 | input_shape=None, | ||
| 591 | pooling=None, | ||
| 592 | classes=1000, | ||
| 593 | classifier_activation='softmax', | ||
| 594 | **kwargs): | ||
| 595 | return EfficientNet( | ||
| 596 | 1.2, | ||
| 597 | 1.4, | ||
| 598 | 300, | ||
| 599 | 0.3, | ||
| 600 | model_name='efficientnetb3', | ||
| 601 | include_top=include_top, | ||
| 602 | weights=weights, | ||
| 603 | input_tensor=input_tensor, | ||
| 604 | input_shape=input_shape, | ||
| 605 | pooling=pooling, | ||
| 606 | classes=classes, | ||
| 607 | classifier_activation=classifier_activation, | ||
| 608 | **kwargs) | ||
| 609 | |||
| 610 | |||
| 611 | @keras_export('keras.applications.efficientnet.EfficientNetB4', | ||
| 612 | 'keras.applications.EfficientNetB4') | ||
| 613 | def EfficientNetB4(include_top=True, | ||
| 614 | weights='imagenet', | ||
| 615 | input_tensor=None, | ||
| 616 | input_shape=None, | ||
| 617 | pooling=None, | ||
| 618 | classes=1000, | ||
| 619 | classifier_activation='softmax', | ||
| 620 | **kwargs): | ||
| 621 | return EfficientNet( | ||
| 622 | 1.4, | ||
| 623 | 1.8, | ||
| 624 | 380, | ||
| 625 | 0.4, | ||
| 626 | model_name='efficientnetb4', | ||
| 627 | include_top=include_top, | ||
| 628 | weights=weights, | ||
| 629 | input_tensor=input_tensor, | ||
| 630 | input_shape=input_shape, | ||
| 631 | pooling=pooling, | ||
| 632 | classes=classes, | ||
| 633 | classifier_activation=classifier_activation, | ||
| 634 | **kwargs) | ||
| 635 | |||
| 636 | |||
| 637 | @keras_export('keras.applications.efficientnet.EfficientNetB5', | ||
| 638 | 'keras.applications.EfficientNetB5') | ||
| 639 | def EfficientNetB5(include_top=True, | ||
| 640 | weights='imagenet', | ||
| 641 | input_tensor=None, | ||
| 642 | input_shape=None, | ||
| 643 | pooling=None, | ||
| 644 | classes=1000, | ||
| 645 | classifier_activation='softmax', | ||
| 646 | **kwargs): | ||
| 647 | return EfficientNet( | ||
| 648 | 1.6, | ||
| 649 | 2.2, | ||
| 650 | 456, | ||
| 651 | 0.4, | ||
| 652 | model_name='efficientnetb5', | ||
| 653 | include_top=include_top, | ||
| 654 | weights=weights, | ||
| 655 | input_tensor=input_tensor, | ||
| 656 | input_shape=input_shape, | ||
| 657 | pooling=pooling, | ||
| 658 | classes=classes, | ||
| 659 | classifier_activation=classifier_activation, | ||
| 660 | **kwargs) | ||
| 661 | |||
| 662 | |||
| 663 | @keras_export('keras.applications.efficientnet.EfficientNetB6', | ||
| 664 | 'keras.applications.EfficientNetB6') | ||
| 665 | def EfficientNetB6(include_top=True, | ||
| 666 | weights='imagenet', | ||
| 667 | input_tensor=None, | ||
| 668 | input_shape=None, | ||
| 669 | pooling=None, | ||
| 670 | classes=1000, | ||
| 671 | classifier_activation='softmax', | ||
| 672 | **kwargs): | ||
| 673 | return EfficientNet( | ||
| 674 | 1.8, | ||
| 675 | 2.6, | ||
| 676 | 528, | ||
| 677 | 0.5, | ||
| 678 | model_name='efficientnetb6', | ||
| 679 | include_top=include_top, | ||
| 680 | weights=weights, | ||
| 681 | input_tensor=input_tensor, | ||
| 682 | input_shape=input_shape, | ||
| 683 | pooling=pooling, | ||
| 684 | classes=classes, | ||
| 685 | classifier_activation=classifier_activation, | ||
| 686 | **kwargs) | ||
| 687 | |||
| 688 | |||
| 689 | @keras_export('keras.applications.efficientnet.EfficientNetB7', | ||
| 690 | 'keras.applications.EfficientNetB7') | ||
| 691 | def EfficientNetB7(include_top=True, | ||
| 692 | weights='imagenet', | ||
| 693 | input_tensor=None, | ||
| 694 | input_shape=None, | ||
| 695 | pooling=None, | ||
| 696 | classes=1000, | ||
| 697 | classifier_activation='softmax', | ||
| 698 | **kwargs): | ||
| 699 | return EfficientNet( | ||
| 700 | 2.0, | ||
| 701 | 3.1, | ||
| 702 | 600, | ||
| 703 | 0.5, | ||
| 704 | model_name='efficientnetb7', | ||
| 705 | include_top=include_top, | ||
| 706 | weights=weights, | ||
| 707 | input_tensor=input_tensor, | ||
| 708 | input_shape=input_shape, | ||
| 709 | pooling=pooling, | ||
| 710 | classes=classes, | ||
| 711 | classifier_activation=classifier_activation, | ||
| 712 | **kwargs) | ||
| 713 | |||
| 714 | |||
| 715 | EfficientNetB0.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB0') | ||
| 716 | EfficientNetB1.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB1') | ||
| 717 | EfficientNetB2.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB2') | ||
| 718 | EfficientNetB3.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB3') | ||
| 719 | EfficientNetB4.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB4') | ||
| 720 | EfficientNetB5.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB5') | ||
| 721 | EfficientNetB6.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB6') | ||
| 722 | EfficientNetB7.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB7') | ||
| 723 | |||
| 724 | |||
| 725 | @keras_export('keras.applications.efficientnet.preprocess_input') | ||
| 726 | def preprocess_input(x, data_format=None): # pylint: disable=unused-argument | ||
| 727 | return x | ||
| 728 | |||
| 729 | |||
| 730 | @keras_export('keras.applications.efficientnet.decode_predictions') | ||
| 731 | def decode_predictions(preds, top=5): | ||
| 732 | return imagenet_utils.decode_predictions(preds, top=top) | ||
| 733 | |||
| 734 | |||
| 735 | decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
| 1 | from . import angle_detector | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : lk | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Created Date : 2019-09-03 15:40:54 | ||
| 5 | # @Last Modified : 2022-07-18 16:10:36 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | import os | ||
| 9 | import cv2 | ||
| 10 | import time | ||
| 11 | import numpy as np | ||
| 12 | # import tensorflow as tf | ||
| 13 | |||
| 14 | # import grpc | ||
| 15 | # from tensorflow_serving.apis import predict_pb2 | ||
| 16 | # from tensorflow_serving.apis import prediction_service_pb2_grpc | ||
| 17 | |||
| 18 | import tritonclient.grpc as grpcclient | ||
| 19 | |||
| 20 | |||
| 21 | def resize(image, width=None, height=None, inter=cv2.INTER_AREA): | ||
| 22 | ''' | ||
| 23 | Resize the input image according to the dimensions and keep aspect ratio of this image | ||
| 24 | ''' | ||
| 25 | dim = None | ||
| 26 | (h, w) = image.shape[:2] | ||
| 27 | |||
| 28 | # if both the width and height are None, then return the original image | ||
| 29 | if width is None and height is None: | ||
| 30 | return image | ||
| 31 | |||
| 32 | # check to see if the width is None | ||
| 33 | if width is None: | ||
| 34 | # calculate the ratio of the height and construct the dimensions | ||
| 35 | r = height / float(h) | ||
| 36 | dim = (int(w * r), height) | ||
| 37 | |||
| 38 | # otherwise, the height is None | ||
| 39 | else: | ||
| 40 | # calculate the ratio of the width and construct the dimensions | ||
| 41 | r = width / float(w) | ||
| 42 | dim = (width, int(h * r)) | ||
| 43 | |||
| 44 | # resize the image | ||
| 45 | resized = cv2.resize(image, dim, interpolation=inter) | ||
| 46 | |||
| 47 | return resized | ||
| 48 | |||
| 49 | def predict(image): | ||
| 50 | |||
| 51 | ROTATE = [0, 90, 180, 270] | ||
| 52 | |||
| 53 | # pre-process the image for classification | ||
| 54 | # Test 1: 直接resize到目标尺寸 | ||
| 55 | # image = cv2.resize(image, (512, 512)) | ||
| 56 | |||
| 57 | # Test 2: 按照短边resize到目标尺寸,长边按比例缩放 | ||
| 58 | short_side = 768 | ||
| 59 | if min(image.shape[:2]) > short_side: | ||
| 60 | image = resize(image, width=short_side) if image.shape[0] > image.shape[1] else resize(image, height=short_side) | ||
| 61 | |||
| 62 | # Test 3: 带padding的resize策略 | ||
| 63 | # image = resize_image_with_pad(image, 1024, 1024) | ||
| 64 | |||
| 65 | # Test 4: 直接使用原图 | ||
| 66 | # image = image | ||
| 67 | |||
| 68 | image = np.array(image, dtype="float32") | ||
| 69 | image = 2 * (image / 255.0) - 1 # Let data input to be normalized to the [-1,1] range | ||
| 70 | input_data = np.expand_dims(image, 0) | ||
| 71 | |||
| 72 | # options = [('grpc.max_send_message_length', 1000 * 1024 * 1024), | ||
| 73 | # ('grpc.max_receive_message_length', 1000 * 1024 * 1024)] | ||
| 74 | # channel = grpc.insecure_channel('localhost:8500', options=options) | ||
| 75 | # stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) | ||
| 76 | |||
| 77 | # request = predict_pb2.PredictRequest() | ||
| 78 | # request.model_spec.name = 'adc_model' | ||
| 79 | # request.model_spec.signature_name = 'serving_default' | ||
| 80 | # request.inputs['input_1'].CopyFrom(tf.make_tensor_proto(inputs)) | ||
| 81 | |||
| 82 | # result = stub.Predict(request, 100.0) # 100 secs timeout | ||
| 83 | |||
| 84 | # preds = tf.make_ndarray(result.outputs['dense']) | ||
| 85 | |||
| 86 | triton_client = grpcclient.InferenceServerClient("localhost:8001") | ||
| 87 | |||
| 88 | # Initialize the data | ||
| 89 | inputs = [grpcclient.InferInput('input_1', input_data.shape, "FP32")] # [InferInput 类的一个对象用于描述推理请求的输入张量。] | ||
| 90 | inputs[0].set_data_from_numpy(input_data) # 从指定的numpy数组中获取张量数据与此对象关联的输入 | ||
| 91 | outputs = [grpcclient.InferRequestedOutput("dense")] | ||
| 92 | |||
| 93 | # Inference | ||
| 94 | results = triton_client.infer( | ||
| 95 | model_name="adc_model", | ||
| 96 | inputs=inputs, | ||
| 97 | outputs=outputs | ||
| 98 | ) | ||
| 99 | # Get the output arrays from the results | ||
| 100 | preds = results.as_numpy("dense") | ||
| 101 | |||
| 102 | index = np.argmax(preds, axis=-1)[0] | ||
| 103 | |||
| 104 | return index | ||
| 105 | # return ROTATE[index] | ||
| 106 | |||
| 107 | def DegreeTrans(theta): | ||
| 108 | ''' | ||
| 109 | Convert radians to angles | ||
| 110 | ''' | ||
| 111 | res = theta / np.pi * 180 | ||
| 112 | return res | ||
| 113 | |||
| 114 | def rotateImage(src, degree): | ||
| 115 | ''' | ||
| 116 | Calculate the rotation matrix and rotate the image | ||
| 117 | param src:image after rot90 | ||
| 118 | param degree:the Hough degree | ||
| 119 | ''' | ||
| 120 | h, w = src.shape[:2] | ||
| 121 | RotateMatrix = cv2.getRotationMatrix2D((w/2.0, h/2.0), degree, 1) | ||
| 122 | # affine transformation, background color fills white | ||
| 123 | rotate = cv2.warpAffine(src, RotateMatrix, (w, h), borderValue=(255, 255, 255)) | ||
| 124 | return rotate | ||
| 125 | |||
| 126 | def CalcDegree(srcImage): | ||
| 127 | ''' | ||
| 128 | Calculating angles by Hough transform | ||
| 129 | param srcImage:image after rot90 | ||
| 130 | ''' | ||
| 131 | midImage = cv2.cvtColor(srcImage, cv2.COLOR_BGR2GRAY) | ||
| 132 | dstImage = cv2.Canny(midImage, 100, 300, 3) | ||
| 133 | lineimage = srcImage.copy() | ||
| 134 | |||
| 135 | # 通过霍夫变换检测直线 | ||
| 136 | # 第4个参数(th)就是阈值,阈值越大,检测精度越高 | ||
| 137 | th = 500 | ||
| 138 | while True: | ||
| 139 | if th > 0: | ||
| 140 | lines = cv2.HoughLines(dstImage, 1, np.pi/180, th) | ||
| 141 | else: | ||
| 142 | lines = None | ||
| 143 | break | ||
| 144 | if lines is not None: | ||
| 145 | if len(lines) > 10: | ||
| 146 | break | ||
| 147 | else: | ||
| 148 | th -= 50 | ||
| 149 | # print ('阈值是:', th) | ||
| 150 | else: | ||
| 151 | th -= 100 | ||
| 152 | # print ('阈值是:', th) | ||
| 153 | continue | ||
| 154 | |||
| 155 | sum_theta = 0 | ||
| 156 | num_theta = 0 | ||
| 157 | if lines is not None: | ||
| 158 | for i in range(len(lines)): | ||
| 159 | for rho, theta in lines[i]: | ||
| 160 | # control the angle of line between -30 to +30 | ||
| 161 | if theta > 1 and theta < 2.1: | ||
| 162 | sum_theta += theta | ||
| 163 | num_theta += 1 | ||
| 164 | # Average all angles | ||
| 165 | if num_theta == 0: | ||
| 166 | average = np.pi/2 | ||
| 167 | else: | ||
| 168 | average = sum_theta / num_theta | ||
| 169 | |||
| 170 | return DegreeTrans(average) - 90 | ||
| 171 | |||
| 172 | def ADC(image, fine_degree=False): | ||
| 173 | ''' | ||
| 174 | return param rotate: Corrected image | ||
| 175 | return param angle_degree:image offset image | ||
| 176 | ''' | ||
| 177 | |||
| 178 | # Return a wide angle index | ||
| 179 | img = np.copy(image) | ||
| 180 | angle_index = predict(img) | ||
| 181 | img_rot = np.rot90(img, -angle_index) | ||
| 182 | |||
| 183 | # if fine_degree then the image will be corrected more accurately based on character line features. | ||
| 184 | if fine_degree: | ||
| 185 | degree = CalcDegree(img_rot) | ||
| 186 | angle_degree = (angle_index * 90 - degree) % 360 | ||
| 187 | rotate = rotateImage(img_rot, degree) | ||
| 188 | return rotate, angle_degree | ||
| 189 | |||
| 190 | return img_rot, int(angle_index*90) |
| 1 | alphabet = """ \ | ||
| 2 | 一\ | ||
| 3 | 乙\ | ||
| 4 | 二\ | ||
| 5 | 十\ | ||
| 6 | 丁\ | ||
| 7 | 厂\ | ||
| 8 | 七\ | ||
| 9 | 卜\ | ||
| 10 | 八\ | ||
| 11 | 人\ | ||
| 12 | 入\ | ||
| 13 | 儿\ | ||
| 14 | 匕\ | ||
| 15 | 几\ | ||
| 16 | 九\ | ||
| 17 | 刁\ | ||
| 18 | 了\ | ||
| 19 | 刀\ | ||
| 20 | 力\ | ||
| 21 | 乃\ | ||
| 22 | 又\ | ||
| 23 | 三\ | ||
| 24 | 干\ | ||
| 25 | 于\ | ||
| 26 | 亏\ | ||
| 27 | 工\ | ||
| 28 | 土\ | ||
| 29 | 士\ | ||
| 30 | 才\ | ||
| 31 | 下\ | ||
| 32 | 寸\ | ||
| 33 | 大\ | ||
| 34 | 丈\ | ||
| 35 | 与\ | ||
| 36 | 万\ | ||
| 37 | 上\ | ||
| 38 | 小\ | ||
| 39 | 口\ | ||
| 40 | 山\ | ||
| 41 | 巾\ | ||
| 42 | 千\ | ||
| 43 | 乞\ | ||
| 44 | 川\ | ||
| 45 | 亿\ | ||
| 46 | 个\ | ||
| 47 | 夕\ | ||
| 48 | 久\ | ||
| 49 | 么\ | ||
| 50 | 勺\ | ||
| 51 | 凡\ | ||
| 52 | 丸\ | ||
| 53 | 及\ | ||
| 54 | 广\ | ||
| 55 | 亡\ | ||
| 56 | 门\ | ||
| 57 | 丫\ | ||
| 58 | 义\ | ||
| 59 | 之\ | ||
| 60 | 尸\ | ||
| 61 | 己\ | ||
| 62 | 已\ | ||
| 63 | 巳\ | ||
| 64 | 弓\ | ||
| 65 | 子\ | ||
| 66 | 卫\ | ||
| 67 | 也\ | ||
| 68 | 女\ | ||
| 69 | 刃\ | ||
| 70 | 飞\ | ||
| 71 | 习\ | ||
| 72 | 叉\ | ||
| 73 | 马\ | ||
| 74 | 乡\ | ||
| 75 | 丰\ | ||
| 76 | 王\ | ||
| 77 | 开\ | ||
| 78 | 井\ | ||
| 79 | 天\ | ||
| 80 | 夫\ | ||
| 81 | 元\ | ||
| 82 | 无\ | ||
| 83 | 云\ | ||
| 84 | 专\ | ||
| 85 | 丐\ | ||
| 86 | 扎\ | ||
| 87 | 艺\ | ||
| 88 | 木\ | ||
| 89 | 五\ | ||
| 90 | 支\ | ||
| 91 | 厅\ | ||
| 92 | 不\ | ||
| 93 | 犬\ | ||
| 94 | 太\ | ||
| 95 | 区\ | ||
| 96 | 历\ | ||
| 97 | 歹\ | ||
| 98 | 友\ | ||
| 99 | 尤\ | ||
| 100 | 匹\ | ||
| 101 | 车\ | ||
| 102 | 巨\ | ||
| 103 | 牙\ | ||
| 104 | 屯\ | ||
| 105 | 戈\ | ||
| 106 | 比\ | ||
| 107 | 互\ | ||
| 108 | 切\ | ||
| 109 | 瓦\ | ||
| 110 | 止\ | ||
| 111 | 少\ | ||
| 112 | 曰\ | ||
| 113 | 日\ | ||
| 114 | 中\ | ||
| 115 | 贝\ | ||
| 116 | 冈\ | ||
| 117 | 内\ | ||
| 118 | 水\ | ||
| 119 | 见\ | ||
| 120 | 午\ | ||
| 121 | 牛\ | ||
| 122 | 手\ | ||
| 123 | 气\ | ||
| 124 | 毛\ | ||
| 125 | 壬\ | ||
| 126 | 升\ | ||
| 127 | 夭\ | ||
| 128 | 长\ | ||
| 129 | 仁\ | ||
| 130 | 什\ | ||
| 131 | 片\ | ||
| 132 | 仆\ | ||
| 133 | 化\ | ||
| 134 | 仇\ | ||
| 135 | 币\ | ||
| 136 | 仍\ | ||
| 137 | 仅\ | ||
| 138 | 斤\ | ||
| 139 | 爪\ | ||
| 140 | 反\ | ||
| 141 | 介\ | ||
| 142 | 父\ | ||
| 143 | 从\ | ||
| 144 | 仑\ | ||
| 145 | 今\ | ||
| 146 | 凶\ | ||
| 147 | 分\ | ||
| 148 | 乏\ | ||
| 149 | 公\ | ||
| 150 | 仓\ | ||
| 151 | 月\ | ||
| 152 | 氏\ | ||
| 153 | 勿\ | ||
| 154 | 欠\ | ||
| 155 | 风\ | ||
| 156 | 丹\ | ||
| 157 | 匀\ | ||
| 158 | 乌\ | ||
| 159 | 勾\ | ||
| 160 | 凤\ | ||
| 161 | 六\ | ||
| 162 | 文\ | ||
| 163 | 亢\ | ||
| 164 | 方\ | ||
| 165 | 火\ | ||
| 166 | 为\ | ||
| 167 | 斗\ | ||
| 168 | 忆\ | ||
| 169 | 计\ | ||
| 170 | 订\ | ||
| 171 | 户\ | ||
| 172 | 认\ | ||
| 173 | 冗\ | ||
| 174 | 讥\ | ||
| 175 | 心\ | ||
| 176 | 尺\ | ||
| 177 | 引\ | ||
| 178 | 丑\ | ||
| 179 | 巴\ | ||
| 180 | 孔\ | ||
| 181 | 队\ | ||
| 182 | 办\ | ||
| 183 | 以\ | ||
| 184 | 允\ | ||
| 185 | 予\ | ||
| 186 | 邓\ | ||
| 187 | 劝\ | ||
| 188 | 双\ | ||
| 189 | 书\ | ||
| 190 | 幻\ | ||
| 191 | 玉\ | ||
| 192 | 刊\ | ||
| 193 | 未\ | ||
| 194 | 末\ | ||
| 195 | 示\ | ||
| 196 | 击\ | ||
| 197 | 打\ | ||
| 198 | 巧\ | ||
| 199 | 正\ | ||
| 200 | 扑\ | ||
| 201 | 卉\ | ||
| 202 | 扒\ | ||
| 203 | 功\ | ||
| 204 | 扔\ | ||
| 205 | 去\ | ||
| 206 | 甘\ | ||
| 207 | 世\ | ||
| 208 | 艾\ | ||
| 209 | 古\ | ||
| 210 | 节\ | ||
| 211 | 本\ | ||
| 212 | 术\ | ||
| 213 | 可\ | ||
| 214 | 丙\ | ||
| 215 | 左\ | ||
| 216 | 厉\ | ||
| 217 | 石\ | ||
| 218 | 右\ | ||
| 219 | 布\ | ||
| 220 | 夯\ | ||
| 221 | 戊\ | ||
| 222 | 龙\ | ||
| 223 | 平\ | ||
| 224 | 灭\ | ||
| 225 | 轧\ | ||
| 226 | 东\ | ||
| 227 | 卡\ | ||
| 228 | 北\ | ||
| 229 | 占\ | ||
| 230 | 凸\ | ||
| 231 | 卢\ | ||
| 232 | 业\ | ||
| 233 | 旧\ | ||
| 234 | 帅\ | ||
| 235 | 归\ | ||
| 236 | 旦\ | ||
| 237 | 目\ | ||
| 238 | 且\ | ||
| 239 | 叶\ | ||
| 240 | 甲\ | ||
| 241 | 申\ | ||
| 242 | 叮\ | ||
| 243 | 电\ | ||
| 244 | 号\ | ||
| 245 | 田\ | ||
| 246 | 由\ | ||
| 247 | 只\ | ||
| 248 | 叭\ | ||
| 249 | 史\ | ||
| 250 | 央\ | ||
| 251 | 兄\ | ||
| 252 | 叽\ | ||
| 253 | 叼\ | ||
| 254 | 叫\ | ||
| 255 | 叩\ | ||
| 256 | 叨\ | ||
| 257 | 另\ | ||
| 258 | 叹\ | ||
| 259 | 冉\ | ||
| 260 | 皿\ | ||
| 261 | 凹\ | ||
| 262 | 囚\ | ||
| 263 | 四\ | ||
| 264 | 生\ | ||
| 265 | 矢\ | ||
| 266 | 失\ | ||
| 267 | 乍\ | ||
| 268 | 禾\ | ||
| 269 | 丘\ | ||
| 270 | 付\ | ||
| 271 | 仗\ | ||
| 272 | 代\ | ||
| 273 | 仙\ | ||
| 274 | 们\ | ||
| 275 | 仪\ | ||
| 276 | 白\ | ||
| 277 | 仔\ | ||
| 278 | 他\ | ||
| 279 | 斥\ | ||
| 280 | 瓜\ | ||
| 281 | 乎\ | ||
| 282 | 丛\ | ||
| 283 | 令\ | ||
| 284 | 用\ | ||
| 285 | 甩\ | ||
| 286 | 印\ | ||
| 287 | 尔\ | ||
| 288 | 乐\ | ||
| 289 | 句\ | ||
| 290 | 匆\ | ||
| 291 | 册\ | ||
| 292 | 卯\ | ||
| 293 | 犯\ | ||
| 294 | 外\ | ||
| 295 | 处\ | ||
| 296 | 冬\ | ||
| 297 | 鸟\ | ||
| 298 | 务\ | ||
| 299 | 包\ | ||
| 300 | 饥\ | ||
| 301 | 主\ | ||
| 302 | 市\ | ||
| 303 | 立\ | ||
| 304 | 冯\ | ||
| 305 | 玄\ | ||
| 306 | 闪\ | ||
| 307 | 兰\ | ||
| 308 | 半\ | ||
| 309 | 汁\ | ||
| 310 | 汇\ | ||
| 311 | 头\ | ||
| 312 | 汉\ | ||
| 313 | 宁\ | ||
| 314 | 穴\ | ||
| 315 | 它\ | ||
| 316 | 讨\ | ||
| 317 | 写\ | ||
| 318 | 让\ | ||
| 319 | 礼\ | ||
| 320 | 训\ | ||
| 321 | 议\ | ||
| 322 | 必\ | ||
| 323 | 讯\ | ||
| 324 | 记\ | ||
| 325 | 永\ | ||
| 326 | 司\ | ||
| 327 | 尼\ | ||
| 328 | 民\ | ||
| 329 | 弗\ | ||
| 330 | 弘\ | ||
| 331 | 出\ | ||
| 332 | 辽\ | ||
| 333 | 奶\ | ||
| 334 | 奴\ | ||
| 335 | 召\ | ||
| 336 | 加\ | ||
| 337 | 皮\ | ||
| 338 | 边\ | ||
| 339 | 孕\ | ||
| 340 | 发\ | ||
| 341 | 圣\ | ||
| 342 | 对\ | ||
| 343 | 台\ | ||
| 344 | 矛\ | ||
| 345 | 纠\ | ||
| 346 | 母\ | ||
| 347 | 幼\ | ||
| 348 | 丝\ | ||
| 349 | 邦\ | ||
| 350 | 式\ | ||
| 351 | 迂\ | ||
| 352 | 刑\ | ||
| 353 | 戎\ | ||
| 354 | 动\ | ||
| 355 | 扛\ | ||
| 356 | 寺\ | ||
| 357 | 吉\ | ||
| 358 | 扣\ | ||
| 359 | 考\ | ||
| 360 | 托\ | ||
| 361 | 老\ | ||
| 362 | 巩\ | ||
| 363 | 圾\ | ||
| 364 | 执\ | ||
| 365 | 扩\ | ||
| 366 | 扫\ | ||
| 367 | 地\ | ||
| 368 | 场\ | ||
| 369 | 扬\ | ||
| 370 | 耳\ | ||
| 371 | 芋\ | ||
| 372 | 共\ | ||
| 373 | 芒\ | ||
| 374 | 亚\ | ||
| 375 | 芝\ | ||
| 376 | 朽\ | ||
| 377 | 朴\ | ||
| 378 | 机\ | ||
| 379 | 权\ | ||
| 380 | 过\ | ||
| 381 | 臣\ | ||
| 382 | 吏\ | ||
| 383 | 再\ | ||
| 384 | 协\ | ||
| 385 | 西\ | ||
| 386 | 压\ | ||
| 387 | 厌\ | ||
| 388 | 戌\ | ||
| 389 | 在\ | ||
| 390 | 百\ | ||
| 391 | 有\ | ||
| 392 | 存\ | ||
| 393 | 而\ | ||
| 394 | 页\ | ||
| 395 | 匠\ | ||
| 396 | 夸\ | ||
| 397 | 夺\ | ||
| 398 | 灰\ | ||
| 399 | 达\ | ||
| 400 | 列\ | ||
| 401 | 死\ | ||
| 402 | 成\ | ||
| 403 | 夹\ | ||
| 404 | 夷\ | ||
| 405 | 轨\ | ||
| 406 | 邪\ | ||
| 407 | 尧\ | ||
| 408 | 划\ | ||
| 409 | 迈\ | ||
| 410 | 毕\ | ||
| 411 | 至\ | ||
| 412 | 此\ | ||
| 413 | 贞\ | ||
| 414 | 师\ | ||
| 415 | 尘\ | ||
| 416 | 尖\ | ||
| 417 | 劣\ | ||
| 418 | 光\ | ||
| 419 | 当\ | ||
| 420 | 早\ | ||
| 421 | 吁\ | ||
| 422 | 吐\ | ||
| 423 | 吓\ | ||
| 424 | 虫\ | ||
| 425 | 曲\ | ||
| 426 | 团\ | ||
| 427 | 吕\ | ||
| 428 | 同\ | ||
| 429 | 吊\ | ||
| 430 | 吃\ | ||
| 431 | 因\ | ||
| 432 | 吸\ | ||
| 433 | 吗\ | ||
| 434 | 吆\ | ||
| 435 | 屿\ | ||
| 436 | 屹\ | ||
| 437 | 岁\ | ||
| 438 | 帆\ | ||
| 439 | 回\ | ||
| 440 | 岂\ | ||
| 441 | 则\ | ||
| 442 | 刚\ | ||
| 443 | 网\ | ||
| 444 | 肉\ | ||
| 445 | 年\ | ||
| 446 | 朱\ | ||
| 447 | 先\ | ||
| 448 | 丢\ | ||
| 449 | 廷\ | ||
| 450 | 舌\ | ||
| 451 | 竹\ | ||
| 452 | 迁\ | ||
| 453 | 乔\ | ||
| 454 | 迄\ | ||
| 455 | 伟\ | ||
| 456 | 传\ | ||
| 457 | 乒\ | ||
| 458 | 乓\ | ||
| 459 | 休\ | ||
| 460 | 伍\ | ||
| 461 | 伏\ | ||
| 462 | 优\ | ||
| 463 | 臼\ | ||
| 464 | 伐\ | ||
| 465 | 延\ | ||
| 466 | 仲\ | ||
| 467 | 件\ | ||
| 468 | 任\ | ||
| 469 | 伤\ | ||
| 470 | 价\ | ||
| 471 | 伦\ | ||
| 472 | 份\ | ||
| 473 | 华\ | ||
| 474 | 仰\ | ||
| 475 | 仿\ | ||
| 476 | 伙\ | ||
| 477 | 伪\ | ||
| 478 | 自\ | ||
| 479 | 伊\ | ||
| 480 | 血\ | ||
| 481 | 向\ | ||
| 482 | 似\ | ||
| 483 | 后\ | ||
| 484 | 行\ | ||
| 485 | 舟\ | ||
| 486 | 全\ | ||
| 487 | 会\ | ||
| 488 | 杀\ | ||
| 489 | 合\ | ||
| 490 | 兆\ | ||
| 491 | 企\ | ||
| 492 | 众\ | ||
| 493 | 爷\ | ||
| 494 | 伞\ | ||
| 495 | 创\ | ||
| 496 | 肌\ | ||
| 497 | 肋\ | ||
| 498 | 朵\ | ||
| 499 | 杂\ | ||
| 500 | 危\ | ||
| 501 | 旬\ | ||
| 502 | 旨\ | ||
| 503 | 旭\ | ||
| 504 | 负\ | ||
| 505 | 匈\ | ||
| 506 | 名\ | ||
| 507 | 各\ | ||
| 508 | 多\ | ||
| 509 | 争\ | ||
| 510 | 色\ | ||
| 511 | 壮\ | ||
| 512 | 冲\ | ||
| 513 | 妆\ | ||
| 514 | 冰\ | ||
| 515 | 庄\ | ||
| 516 | 庆\ | ||
| 517 | 亦\ | ||
| 518 | 刘\ | ||
| 519 | 齐\ | ||
| 520 | 交\ | ||
| 521 | 衣\ | ||
| 522 | 次\ | ||
| 523 | 产\ | ||
| 524 | 决\ | ||
| 525 | 亥\ | ||
| 526 | 充\ | ||
| 527 | 妄\ | ||
| 528 | 闭\ | ||
| 529 | 问\ | ||
| 530 | 闯\ | ||
| 531 | 羊\ | ||
| 532 | 并\ | ||
| 533 | 关\ | ||
| 534 | 米\ | ||
| 535 | 灯\ | ||
| 536 | 州\ | ||
| 537 | 汗\ | ||
| 538 | 污\ | ||
| 539 | 江\ | ||
| 540 | 汛\ | ||
| 541 | 池\ | ||
| 542 | 汝\ | ||
| 543 | 汤\ | ||
| 544 | 忙\ | ||
| 545 | 兴\ | ||
| 546 | 宇\ | ||
| 547 | 守\ | ||
| 548 | 宅\ | ||
| 549 | 字\ | ||
| 550 | 安\ | ||
| 551 | 讲\ | ||
| 552 | 讳\ | ||
| 553 | 军\ | ||
| 554 | 讶\ | ||
| 555 | 许\ | ||
| 556 | 讹\ | ||
| 557 | 论\ | ||
| 558 | 讼\ | ||
| 559 | 农\ | ||
| 560 | 讽\ | ||
| 561 | 设\ | ||
| 562 | 访\ | ||
| 563 | 诀\ | ||
| 564 | 寻\ | ||
| 565 | 那\ | ||
| 566 | 迅\ | ||
| 567 | 尽\ | ||
| 568 | 导\ | ||
| 569 | 异\ | ||
| 570 | 弛\ | ||
| 571 | 孙\ | ||
| 572 | 阵\ | ||
| 573 | 阳\ | ||
| 574 | 收\ | ||
| 575 | 阶\ | ||
| 576 | 阴\ | ||
| 577 | 防\ | ||
| 578 | 奸\ | ||
| 579 | 如\ | ||
| 580 | 妇\ | ||
| 581 | 妃\ | ||
| 582 | 好\ | ||
| 583 | 她\ | ||
| 584 | 妈\ | ||
| 585 | 戏\ | ||
| 586 | 羽\ | ||
| 587 | 观\ | ||
| 588 | 欢\ | ||
| 589 | 买\ | ||
| 590 | 红\ | ||
| 591 | 驮\ | ||
| 592 | 纤\ | ||
| 593 | 驯\ | ||
| 594 | 约\ | ||
| 595 | 级\ | ||
| 596 | 纪\ | ||
| 597 | 驰\ | ||
| 598 | 纫\ | ||
| 599 | 巡\ | ||
| 600 | 寿\ | ||
| 601 | 弄\ | ||
| 602 | 麦\ | ||
| 603 | 玖\ | ||
| 604 | 玛\ | ||
| 605 | 形\ | ||
| 606 | 进\ | ||
| 607 | 戒\ | ||
| 608 | 吞\ | ||
| 609 | 远\ | ||
| 610 | 违\ | ||
| 611 | 韧\ | ||
| 612 | 运\ | ||
| 613 | 扶\ | ||
| 614 | 抚\ | ||
| 615 | 坛\ | ||
| 616 | 技\ | ||
| 617 | 坏\ | ||
| 618 | 抠\ | ||
| 619 | 扰\ | ||
| 620 | 扼\ | ||
| 621 | 拒\ | ||
| 622 | 找\ | ||
| 623 | 批\ | ||
| 624 | 址\ | ||
| 625 | 扯\ | ||
| 626 | 走\ | ||
| 627 | 抄\ | ||
| 628 | 贡\ | ||
| 629 | 汞\ | ||
| 630 | 坝\ | ||
| 631 | 攻\ | ||
| 632 | 赤\ | ||
| 633 | 折\ | ||
| 634 | 抓\ | ||
| 635 | 扳\ | ||
| 636 | 抡\ | ||
| 637 | 扮\ | ||
| 638 | 抢\ | ||
| 639 | 孝\ | ||
| 640 | 坎\ | ||
| 641 | 均\ | ||
| 642 | 抑\ | ||
| 643 | 抛\ | ||
| 644 | 投\ | ||
| 645 | 坟\ | ||
| 646 | 坑\ | ||
| 647 | 抗\ | ||
| 648 | 坊\ | ||
| 649 | 抖\ | ||
| 650 | 护\ | ||
| 651 | 壳\ | ||
| 652 | 志\ | ||
| 653 | 块\ | ||
| 654 | 扭\ | ||
| 655 | 声\ | ||
| 656 | 把\ | ||
| 657 | 报\ | ||
| 658 | 拟\ | ||
| 659 | 却\ | ||
| 660 | 抒\ | ||
| 661 | 劫\ | ||
| 662 | 芙\ | ||
| 663 | 芜\ | ||
| 664 | 苇\ | ||
| 665 | 芽\ | ||
| 666 | 花\ | ||
| 667 | 芹\ | ||
| 668 | 芥\ | ||
| 669 | 芬\ | ||
| 670 | 苍\ | ||
| 671 | 芳\ | ||
| 672 | 严\ | ||
| 673 | 芦\ | ||
| 674 | 芯\ | ||
| 675 | 劳\ | ||
| 676 | 克\ | ||
| 677 | 芭\ | ||
| 678 | 苏\ | ||
| 679 | 杆\ | ||
| 680 | 杠\ | ||
| 681 | 杜\ | ||
| 682 | 材\ | ||
| 683 | 村\ | ||
| 684 | 杖\ | ||
| 685 | 杏\ | ||
| 686 | 杉\ | ||
| 687 | 巫\ | ||
| 688 | 极\ | ||
| 689 | 李\ | ||
| 690 | 杨\ | ||
| 691 | 求\ | ||
| 692 | 甫\ | ||
| 693 | 匣\ | ||
| 694 | 更\ | ||
| 695 | 束\ | ||
| 696 | 吾\ | ||
| 697 | 豆\ | ||
| 698 | 两\ | ||
| 699 | 酉\ | ||
| 700 | 丽\ | ||
| 701 | 医\ | ||
| 702 | 辰\ | ||
| 703 | 励\ | ||
| 704 | 否\ | ||
| 705 | 还\ | ||
| 706 | 尬\ | ||
| 707 | 歼\ | ||
| 708 | 来\ | ||
| 709 | 连\ | ||
| 710 | 轩\ | ||
| 711 | 步\ | ||
| 712 | 卤\ | ||
| 713 | 坚\ | ||
| 714 | 肖\ | ||
| 715 | 旱\ | ||
| 716 | 盯\ | ||
| 717 | 呈\ | ||
| 718 | 时\ | ||
| 719 | 吴\ | ||
| 720 | 助\ | ||
| 721 | 县\ | ||
| 722 | 里\ | ||
| 723 | 呆\ | ||
| 724 | 吱\ | ||
| 725 | 吠\ | ||
| 726 | 呕\ | ||
| 727 | 园\ | ||
| 728 | 旷\ | ||
| 729 | 围\ | ||
| 730 | 呀\ | ||
| 731 | 吨\ | ||
| 732 | 足\ | ||
| 733 | 邮\ | ||
| 734 | 男\ | ||
| 735 | 困\ | ||
| 736 | 吵\ | ||
| 737 | 串\ | ||
| 738 | 员\ | ||
| 739 | 呐\ | ||
| 740 | 听\ | ||
| 741 | 吟\ | ||
| 742 | 吩\ | ||
| 743 | 呛\ | ||
| 744 | 吻\ | ||
| 745 | 吹\ | ||
| 746 | 呜\ | ||
| 747 | 吭\ | ||
| 748 | 吧\ | ||
| 749 | 邑\ | ||
| 750 | 吼\ | ||
| 751 | 囤\ | ||
| 752 | 别\ | ||
| 753 | 吮\ | ||
| 754 | 岖\ | ||
| 755 | 岗\ | ||
| 756 | 帐\ | ||
| 757 | 财\ | ||
| 758 | 针\ | ||
| 759 | 钉\ | ||
| 760 | 牡\ | ||
| 761 | 告\ | ||
| 762 | 我\ | ||
| 763 | 乱\ | ||
| 764 | 利\ | ||
| 765 | 秃\ | ||
| 766 | 秀\ | ||
| 767 | 私\ | ||
| 768 | 每\ | ||
| 769 | 兵\ | ||
| 770 | 估\ | ||
| 771 | 体\ | ||
| 772 | 何\ | ||
| 773 | 佐\ | ||
| 774 | 佑\ | ||
| 775 | 但\ | ||
| 776 | 伸\ | ||
| 777 | 佃\ | ||
| 778 | 作\ | ||
| 779 | 伯\ | ||
| 780 | 伶\ | ||
| 781 | 佣\ | ||
| 782 | 低\ | ||
| 783 | 你\ | ||
| 784 | 住\ | ||
| 785 | 位\ | ||
| 786 | 伴\ | ||
| 787 | 身\ | ||
| 788 | 皂\ | ||
| 789 | 伺\ | ||
| 790 | 佛\ | ||
| 791 | 囱\ | ||
| 792 | 近\ | ||
| 793 | 彻\ | ||
| 794 | 役\ | ||
| 795 | 返\ | ||
| 796 | 余\ | ||
| 797 | 希\ | ||
| 798 | 坐\ | ||
| 799 | 谷\ | ||
| 800 | 妥\ | ||
| 801 | 含\ | ||
| 802 | 邻\ | ||
| 803 | 岔\ | ||
| 804 | 肝\ | ||
| 805 | 肛\ | ||
| 806 | 肚\ | ||
| 807 | 肘\ | ||
| 808 | 肠\ | ||
| 809 | 龟\ | ||
| 810 | 甸\ | ||
| 811 | 免\ | ||
| 812 | 狂\ | ||
| 813 | 犹\ | ||
| 814 | 狈\ | ||
| 815 | 角\ | ||
| 816 | 删\ | ||
| 817 | 条\ | ||
| 818 | 彤\ | ||
| 819 | 卵\ | ||
| 820 | 灸\ | ||
| 821 | 岛\ | ||
| 822 | 刨\ | ||
| 823 | 迎\ | ||
| 824 | 饭\ | ||
| 825 | 饮\ | ||
| 826 | 系\ | ||
| 827 | 言\ | ||
| 828 | 冻\ | ||
| 829 | 状\ | ||
| 830 | 亩\ | ||
| 831 | 况\ | ||
| 832 | 床\ | ||
| 833 | 库\ | ||
| 834 | 庇\ | ||
| 835 | 疗\ | ||
| 836 | 吝\ | ||
| 837 | 应\ | ||
| 838 | 这\ | ||
| 839 | 冷\ | ||
| 840 | 庐\ | ||
| 841 | 序\ | ||
| 842 | 辛\ | ||
| 843 | 弃\ | ||
| 844 | 冶\ | ||
| 845 | 忘\ | ||
| 846 | 闰\ | ||
| 847 | 闲\ | ||
| 848 | 间\ | ||
| 849 | 闷\ | ||
| 850 | 判\ | ||
| 851 | 兑\ | ||
| 852 | 灶\ | ||
| 853 | 灿\ | ||
| 854 | 灼\ | ||
| 855 | 弟\ | ||
| 856 | 汪\ | ||
| 857 | 沐\ | ||
| 858 | 沛\ | ||
| 859 | 汰\ | ||
| 860 | 沥\ | ||
| 861 | 沙\ | ||
| 862 | 汽\ | ||
| 863 | 沃\ | ||
| 864 | 沦\ | ||
| 865 | 汹\ | ||
| 866 | 泛\ | ||
| 867 | 沧\ | ||
| 868 | 没\ | ||
| 869 | 沟\ | ||
| 870 | 沪\ | ||
| 871 | 沈\ | ||
| 872 | 沉\ | ||
| 873 | 沁\ | ||
| 874 | 怀\ | ||
| 875 | 忧\ | ||
| 876 | 忱\ | ||
| 877 | 快\ | ||
| 878 | 完\ | ||
| 879 | 宋\ | ||
| 880 | 宏\ | ||
| 881 | 牢\ | ||
| 882 | 究\ | ||
| 883 | 穷\ | ||
| 884 | 灾\ | ||
| 885 | 良\ | ||
| 886 | 证\ | ||
| 887 | 启\ | ||
| 888 | 评\ | ||
| 889 | 补\ | ||
| 890 | 初\ | ||
| 891 | 社\ | ||
| 892 | 祀\ | ||
| 893 | 识\ | ||
| 894 | 诈\ | ||
| 895 | 诉\ | ||
| 896 | 罕\ | ||
| 897 | 诊\ | ||
| 898 | 词\ | ||
| 899 | 译\ | ||
| 900 | 君\ | ||
| 901 | 灵\ | ||
| 902 | 即\ | ||
| 903 | 层\ | ||
| 904 | 屁\ | ||
| 905 | 尿\ | ||
| 906 | 尾\ | ||
| 907 | 迟\ | ||
| 908 | 局\ | ||
| 909 | 改\ | ||
| 910 | 张\ | ||
| 911 | 忌\ | ||
| 912 | 际\ | ||
| 913 | 陆\ | ||
| 914 | 阿\ | ||
| 915 | 陈\ | ||
| 916 | 阻\ | ||
| 917 | 附\ | ||
| 918 | 坠\ | ||
| 919 | 妓\ | ||
| 920 | 妙\ | ||
| 921 | 妖\ | ||
| 922 | 姊\ | ||
| 923 | 妨\ | ||
| 924 | 妒\ | ||
| 925 | 努\ | ||
| 926 | 忍\ | ||
| 927 | 劲\ | ||
| 928 | 矣\ | ||
| 929 | 鸡\ | ||
| 930 | 纬\ | ||
| 931 | 驱\ | ||
| 932 | 纯\ | ||
| 933 | 纱\ | ||
| 934 | 纲\ | ||
| 935 | 纳\ | ||
| 936 | 驳\ | ||
| 937 | 纵\ | ||
| 938 | 纷\ | ||
| 939 | 纸\ | ||
| 940 | 纹\ | ||
| 941 | 纺\ | ||
| 942 | 驴\ | ||
| 943 | 纽\ | ||
| 944 | 奉\ | ||
| 945 | 玩\ | ||
| 946 | 环\ | ||
| 947 | 武\ | ||
| 948 | 青\ | ||
| 949 | 责\ | ||
| 950 | 现\ | ||
| 951 | 玫\ | ||
| 952 | 表\ | ||
| 953 | 规\ | ||
| 954 | 抹\ | ||
| 955 | 卦\ | ||
| 956 | 坷\ | ||
| 957 | 坯\ | ||
| 958 | 拓\ | ||
| 959 | 拢\ | ||
| 960 | 拔\ | ||
| 961 | 坪\ | ||
| 962 | 拣\ | ||
| 963 | 坦\ | ||
| 964 | 担\ | ||
| 965 | 坤\ | ||
| 966 | 押\ | ||
| 967 | 抽\ | ||
| 968 | 拐\ | ||
| 969 | 拖\ | ||
| 970 | 者\ | ||
| 971 | 拍\ | ||
| 972 | 顶\ | ||
| 973 | 拆\ | ||
| 974 | 拎\ | ||
| 975 | 拥\ | ||
| 976 | 抵\ | ||
| 977 | 拘\ | ||
| 978 | 势\ | ||
| 979 | 抱\ | ||
| 980 | 拄\ | ||
| 981 | 垃\ | ||
| 982 | 拉\ | ||
| 983 | 拦\ | ||
| 984 | 幸\ | ||
| 985 | 拌\ | ||
| 986 | 拧\ | ||
| 987 | 拂\ | ||
| 988 | 拙\ | ||
| 989 | 招\ | ||
| 990 | 坡\ | ||
| 991 | 披\ | ||
| 992 | 拨\ | ||
| 993 | 择\ | ||
| 994 | 抬\ | ||
| 995 | 拇\ | ||
| 996 | 拗\ | ||
| 997 | 其\ | ||
| 998 | 取\ | ||
| 999 | 茉\ | ||
| 1000 | 苦\ | ||
| 1001 | 昔\ | ||
| 1002 | 苛\ | ||
| 1003 | 若\ | ||
| 1004 | 茂\ | ||
| 1005 | 苹\ | ||
| 1006 | 苗\ | ||
| 1007 | 英\ | ||
| 1008 | 苟\ | ||
| 1009 | 苑\ | ||
| 1010 | 苞\ | ||
| 1011 | 范\ | ||
| 1012 | 直\ | ||
| 1013 | 茁\ | ||
| 1014 | 茄\ | ||
| 1015 | 茎\ | ||
| 1016 | 苔\ | ||
| 1017 | 茅\ | ||
| 1018 | 枉\ | ||
| 1019 | 林\ | ||
| 1020 | 枝\ | ||
| 1021 | 杯\ | ||
| 1022 | 枢\ | ||
| 1023 | 柜\ | ||
| 1024 | 枚\ | ||
| 1025 | 析\ | ||
| 1026 | 板\ | ||
| 1027 | 松\ | ||
| 1028 | 枪\ | ||
| 1029 | 枫\ | ||
| 1030 | 构\ | ||
| 1031 | 杭\ | ||
| 1032 | 杰\ | ||
| 1033 | 述\ | ||
| 1034 | 枕\ | ||
| 1035 | 丧\ | ||
| 1036 | 或\ | ||
| 1037 | 画\ | ||
| 1038 | 卧\ | ||
| 1039 | 事\ | ||
| 1040 | 刺\ | ||
| 1041 | 枣\ | ||
| 1042 | 雨\ | ||
| 1043 | 卖\ | ||
| 1044 | 郁\ | ||
| 1045 | 矾\ | ||
| 1046 | 矿\ | ||
| 1047 | 码\ | ||
| 1048 | 厕\ | ||
| 1049 | 奈\ | ||
| 1050 | 奔\ | ||
| 1051 | 奇\ | ||
| 1052 | 奋\ | ||
| 1053 | 态\ | ||
| 1054 | 欧\ | ||
| 1055 | 殴\ | ||
| 1056 | 垄\ | ||
| 1057 | 妻\ | ||
| 1058 | 轰\ | ||
| 1059 | 顷\ | ||
| 1060 | 转\ | ||
| 1061 | 斩\ | ||
| 1062 | 轮\ | ||
| 1063 | 软\ | ||
| 1064 | 到\ | ||
| 1065 | 非\ | ||
| 1066 | 叔\ | ||
| 1067 | 歧\ | ||
| 1068 | 肯\ | ||
| 1069 | 齿\ | ||
| 1070 | 些\ | ||
| 1071 | 卓\ | ||
| 1072 | 虎\ | ||
| 1073 | 虏\ | ||
| 1074 | 肾\ | ||
| 1075 | 贤\ | ||
| 1076 | 尚\ | ||
| 1077 | 旺\ | ||
| 1078 | 具\ | ||
| 1079 | 味\ | ||
| 1080 | 果\ | ||
| 1081 | 昆\ | ||
| 1082 | 国\ | ||
| 1083 | 哎\ | ||
| 1084 | 咕\ | ||
| 1085 | 昌\ | ||
| 1086 | 呵\ | ||
| 1087 | 畅\ | ||
| 1088 | 明\ | ||
| 1089 | 易\ | ||
| 1090 | 咙\ | ||
| 1091 | 昂\ | ||
| 1092 | 迪\ | ||
| 1093 | 典\ | ||
| 1094 | 固\ | ||
| 1095 | 忠\ | ||
| 1096 | 呻\ | ||
| 1097 | 咒\ | ||
| 1098 | 咋\ | ||
| 1099 | 咐\ | ||
| 1100 | 呼\ | ||
| 1101 | 鸣\ | ||
| 1102 | 咏\ | ||
| 1103 | 呢\ | ||
| 1104 | 咄\ | ||
| 1105 | 咖\ | ||
| 1106 | 岸\ | ||
| 1107 | 岩\ | ||
| 1108 | 帖\ | ||
| 1109 | 罗\ | ||
| 1110 | 帜\ | ||
| 1111 | 帕\ | ||
| 1112 | 岭\ | ||
| 1113 | 凯\ | ||
| 1114 | 败\ | ||
| 1115 | 账\ | ||
| 1116 | 贩\ | ||
| 1117 | 贬\ | ||
| 1118 | 购\ | ||
| 1119 | 贮\ | ||
| 1120 | 图\ | ||
| 1121 | 钓\ | ||
| 1122 | 制\ | ||
| 1123 | 知\ | ||
| 1124 | 迭\ | ||
| 1125 | 氛\ | ||
| 1126 | 垂\ | ||
| 1127 | 牧\ | ||
| 1128 | 物\ | ||
| 1129 | 乖\ | ||
| 1130 | 刮\ | ||
| 1131 | 秆\ | ||
| 1132 | 和\ | ||
| 1133 | 季\ | ||
| 1134 | 委\ | ||
| 1135 | 秉\ | ||
| 1136 | 佳\ | ||
| 1137 | 侍\ | ||
| 1138 | 岳\ | ||
| 1139 | 供\ | ||
| 1140 | 使\ | ||
| 1141 | 例\ | ||
| 1142 | 侠\ | ||
| 1143 | 侥\ | ||
| 1144 | 版\ | ||
| 1145 | 侄\ | ||
| 1146 | 侦\ | ||
| 1147 | 侣\ | ||
| 1148 | 侧\ | ||
| 1149 | 凭\ | ||
| 1150 | 侨\ | ||
| 1151 | 佩\ | ||
| 1152 | 货\ | ||
| 1153 | 侈\ | ||
| 1154 | 依\ | ||
| 1155 | 卑\ | ||
| 1156 | 的\ | ||
| 1157 | 迫\ | ||
| 1158 | 质\ | ||
| 1159 | 欣\ | ||
| 1160 | 征\ | ||
| 1161 | 往\ | ||
| 1162 | 爬\ | ||
| 1163 | 彼\ | ||
| 1164 | 径\ | ||
| 1165 | 所\ | ||
| 1166 | 舍\ | ||
| 1167 | 金\ | ||
| 1168 | 刹\ | ||
| 1169 | 命\ | ||
| 1170 | 肴\ | ||
| 1171 | 斧\ | ||
| 1172 | 爸\ | ||
| 1173 | 采\ | ||
| 1174 | 觅\ | ||
| 1175 | 受\ | ||
| 1176 | 乳\ | ||
| 1177 | 贪\ | ||
| 1178 | 念\ | ||
| 1179 | 贫\ | ||
| 1180 | 忿\ | ||
| 1181 | 肤\ | ||
| 1182 | 肺\ | ||
| 1183 | 肢\ | ||
| 1184 | 肿\ | ||
| 1185 | 胀\ | ||
| 1186 | 朋\ | ||
| 1187 | 股\ | ||
| 1188 | 肮\ | ||
| 1189 | 肪\ | ||
| 1190 | 肥\ | ||
| 1191 | 服\ | ||
| 1192 | 胁\ | ||
| 1193 | 周\ | ||
| 1194 | 昏\ | ||
| 1195 | 鱼\ | ||
| 1196 | 兔\ | ||
| 1197 | 狐\ | ||
| 1198 | 忽\ | ||
| 1199 | 狗\ | ||
| 1200 | 狞\ | ||
| 1201 | 备\ | ||
| 1202 | 饰\ | ||
| 1203 | 饱\ | ||
| 1204 | 饲\ | ||
| 1205 | 变\ | ||
| 1206 | 京\ | ||
| 1207 | 享\ | ||
| 1208 | 庞\ | ||
| 1209 | 店\ | ||
| 1210 | 夜\ | ||
| 1211 | 庙\ | ||
| 1212 | 府\ | ||
| 1213 | 底\ | ||
| 1214 | 疟\ | ||
| 1215 | 疙\ | ||
| 1216 | 疚\ | ||
| 1217 | 剂\ | ||
| 1218 | 卒\ | ||
| 1219 | 郊\ | ||
| 1220 | 庚\ | ||
| 1221 | 废\ | ||
| 1222 | 净\ | ||
| 1223 | 盲\ | ||
| 1224 | 放\ | ||
| 1225 | 刻\ | ||
| 1226 | 育\ | ||
| 1227 | 氓\ | ||
| 1228 | 闸\ | ||
| 1229 | 闹\ | ||
| 1230 | 郑\ | ||
| 1231 | 券\ | ||
| 1232 | 卷\ | ||
| 1233 | 单\ | ||
| 1234 | 炬\ | ||
| 1235 | 炒\ | ||
| 1236 | 炊\ | ||
| 1237 | 炕\ | ||
| 1238 | 炎\ | ||
| 1239 | 炉\ | ||
| 1240 | 沫\ | ||
| 1241 | 浅\ | ||
| 1242 | 法\ | ||
| 1243 | 泄\ | ||
| 1244 | 沽\ | ||
| 1245 | 河\ | ||
| 1246 | 沾\ | ||
| 1247 | 泪\ | ||
| 1248 | 沮\ | ||
| 1249 | 油\ | ||
| 1250 | 泊\ | ||
| 1251 | 沿\ | ||
| 1252 | 泡\ | ||
| 1253 | 注\ | ||
| 1254 | 泣\ | ||
| 1255 | 泞\ | ||
| 1256 | 泻\ | ||
| 1257 | 泌\ | ||
| 1258 | 泳\ | ||
| 1259 | 泥\ | ||
| 1260 | 沸\ | ||
| 1261 | 沼\ | ||
| 1262 | 波\ | ||
| 1263 | 泼\ | ||
| 1264 | 泽\ | ||
| 1265 | 治\ | ||
| 1266 | 怔\ | ||
| 1267 | 怯\ | ||
| 1268 | 怖\ | ||
| 1269 | 性\ | ||
| 1270 | 怕\ | ||
| 1271 | 怜\ | ||
| 1272 | 怪\ | ||
| 1273 | 怡\ | ||
| 1274 | 学\ | ||
| 1275 | 宝\ | ||
| 1276 | 宗\ | ||
| 1277 | 定\ | ||
| 1278 | 宠\ | ||
| 1279 | 宜\ | ||
| 1280 | 审\ | ||
| 1281 | 宙\ | ||
| 1282 | 官\ | ||
| 1283 | 空\ | ||
| 1284 | 帘\ | ||
| 1285 | 宛\ | ||
| 1286 | 实\ | ||
| 1287 | 试\ | ||
| 1288 | 郎\ | ||
| 1289 | 诗\ | ||
| 1290 | 肩\ | ||
| 1291 | 房\ | ||
| 1292 | 诚\ | ||
| 1293 | 衬\ | ||
| 1294 | 衫\ | ||
| 1295 | 视\ | ||
| 1296 | 祈\ | ||
| 1297 | 话\ | ||
| 1298 | 诞\ | ||
| 1299 | 诡\ | ||
| 1300 | 询\ | ||
| 1301 | 该\ | ||
| 1302 | 详\ | ||
| 1303 | 建\ | ||
| 1304 | 肃\ | ||
| 1305 | 录\ | ||
| 1306 | 隶\ | ||
| 1307 | 帚\ | ||
| 1308 | 屉\ | ||
| 1309 | 居\ | ||
| 1310 | 届\ | ||
| 1311 | 刷\ | ||
| 1312 | 屈\ | ||
| 1313 | 弧\ | ||
| 1314 | 弥\ | ||
| 1315 | 弦\ | ||
| 1316 | 承\ | ||
| 1317 | 孟\ | ||
| 1318 | 陋\ | ||
| 1319 | 陌\ | ||
| 1320 | 孤\ | ||
| 1321 | 陕\ | ||
| 1322 | 降\ | ||
| 1323 | 函\ | ||
| 1324 | 限\ | ||
| 1325 | 妹\ | ||
| 1326 | 姑\ | ||
| 1327 | 姐\ | ||
| 1328 | 姓\ | ||
| 1329 | 妮\ | ||
| 1330 | 始\ | ||
| 1331 | 姆\ | ||
| 1332 | 迢\ | ||
| 1333 | 驾\ | ||
| 1334 | 叁\ | ||
| 1335 | 参\ | ||
| 1336 | 艰\ | ||
| 1337 | 线\ | ||
| 1338 | 练\ | ||
| 1339 | 组\ | ||
| 1340 | 绅\ | ||
| 1341 | 细\ | ||
| 1342 | 驶\ | ||
| 1343 | 织\ | ||
| 1344 | 驹\ | ||
| 1345 | 终\ | ||
| 1346 | 驻\ | ||
| 1347 | 绊\ | ||
| 1348 | 驼\ | ||
| 1349 | 绍\ | ||
| 1350 | 绎\ | ||
| 1351 | 经\ | ||
| 1352 | 贯\ | ||
| 1353 | 契\ | ||
| 1354 | 贰\ | ||
| 1355 | 奏\ | ||
| 1356 | 春\ | ||
| 1357 | 帮\ | ||
| 1358 | 玷\ | ||
| 1359 | 珍\ | ||
| 1360 | 玲\ | ||
| 1361 | 珊\ | ||
| 1362 | 玻\ | ||
| 1363 | 毒\ | ||
| 1364 | 型\ | ||
| 1365 | 拭\ | ||
| 1366 | 挂\ | ||
| 1367 | 封\ | ||
| 1368 | 持\ | ||
| 1369 | 拷\ | ||
| 1370 | 拱\ | ||
| 1371 | 项\ | ||
| 1372 | 垮\ | ||
| 1373 | 挎\ | ||
| 1374 | 城\ | ||
| 1375 | 挟\ | ||
| 1376 | 挠\ | ||
| 1377 | 政\ | ||
| 1378 | 赴\ | ||
| 1379 | 赵\ | ||
| 1380 | 挡\ | ||
| 1381 | 拽\ | ||
| 1382 | 哉\ | ||
| 1383 | 挺\ | ||
| 1384 | 括\ | ||
| 1385 | 垢\ | ||
| 1386 | 拴\ | ||
| 1387 | 拾\ | ||
| 1388 | 挑\ | ||
| 1389 | 垛\ | ||
| 1390 | 指\ | ||
| 1391 | 垫\ | ||
| 1392 | 挣\ | ||
| 1393 | 挤\ | ||
| 1394 | 拼\ | ||
| 1395 | 挖\ | ||
| 1396 | 按\ | ||
| 1397 | 挥\ | ||
| 1398 | 挪\ | ||
| 1399 | 拯\ | ||
| 1400 | 某\ | ||
| 1401 | 甚\ | ||
| 1402 | 荆\ | ||
| 1403 | 茸\ | ||
| 1404 | 革\ | ||
| 1405 | 茬\ | ||
| 1406 | 荐\ | ||
| 1407 | 巷\ | ||
| 1408 | 带\ | ||
| 1409 | 草\ | ||
| 1410 | 茧\ | ||
| 1411 | 茵\ | ||
| 1412 | 茶\ | ||
| 1413 | 荒\ | ||
| 1414 | 茫\ | ||
| 1415 | 荡\ | ||
| 1416 | 荣\ | ||
| 1417 | 荤\ | ||
| 1418 | 荧\ | ||
| 1419 | 故\ | ||
| 1420 | 胡\ | ||
| 1421 | 荫\ | ||
| 1422 | 荔\ | ||
| 1423 | 南\ | ||
| 1424 | 药\ | ||
| 1425 | 标\ | ||
| 1426 | 栈\ | ||
| 1427 | 柑\ | ||
| 1428 | 枯\ | ||
| 1429 | 柄\ | ||
| 1430 | 栋\ | ||
| 1431 | 相\ | ||
| 1432 | 查\ | ||
| 1433 | 柏\ | ||
| 1434 | 栅\ | ||
| 1435 | 柳\ | ||
| 1436 | 柱\ | ||
| 1437 | 柿\ | ||
| 1438 | 栏\ | ||
| 1439 | 柠\ | ||
| 1440 | 树\ | ||
| 1441 | 勃\ | ||
| 1442 | 要\ | ||
| 1443 | 柬\ | ||
| 1444 | 咸\ | ||
| 1445 | 威\ | ||
| 1446 | 歪\ | ||
| 1447 | 研\ | ||
| 1448 | 砖\ | ||
| 1449 | 厘\ | ||
| 1450 | 厚\ | ||
| 1451 | 砌\ | ||
| 1452 | 砂\ | ||
| 1453 | 泵\ | ||
| 1454 | 砚\ | ||
| 1455 | 砍\ | ||
| 1456 | 面\ | ||
| 1457 | 耐\ | ||
| 1458 | 耍\ | ||
| 1459 | 牵\ | ||
| 1460 | 鸥\ | ||
| 1461 | 残\ | ||
| 1462 | 殃\ | ||
| 1463 | 轴\ | ||
| 1464 | 轻\ | ||
| 1465 | 鸦\ | ||
| 1466 | 皆\ | ||
| 1467 | 韭\ | ||
| 1468 | 背\ | ||
| 1469 | 战\ | ||
| 1470 | 点\ | ||
| 1471 | 虐\ | ||
| 1472 | 临\ | ||
| 1473 | 览\ | ||
| 1474 | 竖\ | ||
| 1475 | 省\ | ||
| 1476 | 削\ | ||
| 1477 | 尝\ | ||
| 1478 | 昧\ | ||
| 1479 | 盹\ | ||
| 1480 | 是\ | ||
| 1481 | 盼\ | ||
| 1482 | 眨\ | ||
| 1483 | 哇\ | ||
| 1484 | 哄\ | ||
| 1485 | 哑\ | ||
| 1486 | 显\ | ||
| 1487 | 冒\ | ||
| 1488 | 映\ | ||
| 1489 | 星\ | ||
| 1490 | 昨\ | ||
| 1491 | 咧\ | ||
| 1492 | 昭\ | ||
| 1493 | 畏\ | ||
| 1494 | 趴\ | ||
| 1495 | 胃\ | ||
| 1496 | 贵\ | ||
| 1497 | 界\ | ||
| 1498 | 虹\ | ||
| 1499 | 虾\ | ||
| 1500 | 蚁\ | ||
| 1501 | 思\ | ||
| 1502 | 蚂\ | ||
| 1503 | 虽\ | ||
| 1504 | 品\ | ||
| 1505 | 咽\ | ||
| 1506 | 骂\ | ||
| 1507 | 勋\ | ||
| 1508 | 哗\ | ||
| 1509 | 咱\ | ||
| 1510 | 响\ | ||
| 1511 | 哈\ | ||
| 1512 | 哆\ | ||
| 1513 | 咬\ | ||
| 1514 | 咳\ | ||
| 1515 | 咪\ | ||
| 1516 | 哪\ | ||
| 1517 | 哟\ | ||
| 1518 | 炭\ | ||
| 1519 | 峡\ | ||
| 1520 | 罚\ | ||
| 1521 | 贱\ | ||
| 1522 | 贴\ | ||
| 1523 | 贻\ | ||
| 1524 | 骨\ | ||
| 1525 | 幽\ | ||
| 1526 | 钙\ | ||
| 1527 | 钝\ | ||
| 1528 | 钞\ | ||
| 1529 | 钟\ | ||
| 1530 | 钢\ | ||
| 1531 | 钠\ | ||
| 1532 | 钥\ | ||
| 1533 | 钦\ | ||
| 1534 | 钧\ | ||
| 1535 | 钩\ | ||
| 1536 | 钮\ | ||
| 1537 | 卸\ | ||
| 1538 | 缸\ | ||
| 1539 | 拜\ | ||
| 1540 | 看\ | ||
| 1541 | 矩\ | ||
| 1542 | 毡\ | ||
| 1543 | 氢\ | ||
| 1544 | 怎\ | ||
| 1545 | 牲\ | ||
| 1546 | 选\ | ||
| 1547 | 适\ | ||
| 1548 | 秒\ | ||
| 1549 | 香\ | ||
| 1550 | 种\ | ||
| 1551 | 秋\ | ||
| 1552 | 科\ | ||
| 1553 | 重\ | ||
| 1554 | 复\ | ||
| 1555 | 竿\ | ||
| 1556 | 段\ | ||
| 1557 | 便\ | ||
| 1558 | 俩\ | ||
| 1559 | 贷\ | ||
| 1560 | 顺\ | ||
| 1561 | 修\ | ||
| 1562 | 俏\ | ||
| 1563 | 保\ | ||
| 1564 | 促\ | ||
| 1565 | 俄\ | ||
| 1566 | 俐\ | ||
| 1567 | 侮\ | ||
| 1568 | 俭\ | ||
| 1569 | 俗\ | ||
| 1570 | 俘\ | ||
| 1571 | 信\ | ||
| 1572 | 皇\ | ||
| 1573 | 泉\ | ||
| 1574 | 鬼\ | ||
| 1575 | 侵\ | ||
| 1576 | 禹\ | ||
| 1577 | 侯\ | ||
| 1578 | 追\ | ||
| 1579 | 俊\ | ||
| 1580 | 盾\ | ||
| 1581 | 待\ | ||
| 1582 | 徊\ | ||
| 1583 | 衍\ | ||
| 1584 | 律\ | ||
| 1585 | 很\ | ||
| 1586 | 须\ | ||
| 1587 | 叙\ | ||
| 1588 | 剑\ | ||
| 1589 | 逃\ | ||
| 1590 | 食\ | ||
| 1591 | 盆\ | ||
| 1592 | 胚\ | ||
| 1593 | 胧\ | ||
| 1594 | 胆\ | ||
| 1595 | 胜\ | ||
| 1596 | 胞\ | ||
| 1597 | 胖\ | ||
| 1598 | 脉\ | ||
| 1599 | 胎\ | ||
| 1600 | 勉\ | ||
| 1601 | 狭\ | ||
| 1602 | 狮\ | ||
| 1603 | 独\ | ||
| 1604 | 狰\ | ||
| 1605 | 狡\ | ||
| 1606 | 狱\ | ||
| 1607 | 狠\ | ||
| 1608 | 贸\ | ||
| 1609 | 怨\ | ||
| 1610 | 急\ | ||
| 1611 | 饵\ | ||
| 1612 | 饶\ | ||
| 1613 | 蚀\ | ||
| 1614 | 饺\ | ||
| 1615 | 饼\ | ||
| 1616 | 峦\ | ||
| 1617 | 弯\ | ||
| 1618 | 将\ | ||
| 1619 | 奖\ | ||
| 1620 | 哀\ | ||
| 1621 | 亭\ | ||
| 1622 | 亮\ | ||
| 1623 | 度\ | ||
| 1624 | 迹\ | ||
| 1625 | 庭\ | ||
| 1626 | 疮\ | ||
| 1627 | 疯\ | ||
| 1628 | 疫\ | ||
| 1629 | 疤\ | ||
| 1630 | 咨\ | ||
| 1631 | 姿\ | ||
| 1632 | 亲\ | ||
| 1633 | 音\ | ||
| 1634 | 帝\ | ||
| 1635 | 施\ | ||
| 1636 | 闺\ | ||
| 1637 | 闻\ | ||
| 1638 | 闽\ | ||
| 1639 | 阀\ | ||
| 1640 | 阁\ | ||
| 1641 | 差\ | ||
| 1642 | 养\ | ||
| 1643 | 美\ | ||
| 1644 | 姜\ | ||
| 1645 | 叛\ | ||
| 1646 | 送\ | ||
| 1647 | 类\ | ||
| 1648 | 迷\ | ||
| 1649 | 籽\ | ||
| 1650 | 娄\ | ||
| 1651 | 前\ | ||
| 1652 | 首\ | ||
| 1653 | 逆\ | ||
| 1654 | 兹\ | ||
| 1655 | 总\ | ||
| 1656 | 炼\ | ||
| 1657 | 炸\ | ||
| 1658 | 烁\ | ||
| 1659 | 炮\ | ||
| 1660 | 炫\ | ||
| 1661 | 烂\ | ||
| 1662 | 剃\ | ||
| 1663 | 洼\ | ||
| 1664 | 洁\ | ||
| 1665 | 洪\ | ||
| 1666 | 洒\ | ||
| 1667 | 柒\ | ||
| 1668 | 浇\ | ||
| 1669 | 浊\ | ||
| 1670 | 洞\ | ||
| 1671 | 测\ | ||
| 1672 | 洗\ | ||
| 1673 | 活\ | ||
| 1674 | 派\ | ||
| 1675 | 洽\ | ||
| 1676 | 染\ | ||
| 1677 | 洛\ | ||
| 1678 | 浏\ | ||
| 1679 | 济\ | ||
| 1680 | 洋\ | ||
| 1681 | 洲\ | ||
| 1682 | 浑\ | ||
| 1683 | 浓\ | ||
| 1684 | 津\ | ||
| 1685 | 恃\ | ||
| 1686 | 恒\ | ||
| 1687 | 恢\ | ||
| 1688 | 恍\ | ||
| 1689 | 恬\ | ||
| 1690 | 恤\ | ||
| 1691 | 恰\ | ||
| 1692 | 恼\ | ||
| 1693 | 恨\ | ||
| 1694 | 举\ | ||
| 1695 | 觉\ | ||
| 1696 | 宣\ | ||
| 1697 | 宦\ | ||
| 1698 | 室\ | ||
| 1699 | 宫\ | ||
| 1700 | 宪\ | ||
| 1701 | 突\ | ||
| 1702 | 穿\ | ||
| 1703 | 窃\ | ||
| 1704 | 客\ | ||
| 1705 | 诫\ | ||
| 1706 | 冠\ | ||
| 1707 | 诬\ | ||
| 1708 | 语\ | ||
| 1709 | 扁\ | ||
| 1710 | 袄\ | ||
| 1711 | 祖\ | ||
| 1712 | 神\ | ||
| 1713 | 祝\ | ||
| 1714 | 祠\ | ||
| 1715 | 误\ | ||
| 1716 | 诱\ | ||
| 1717 | 诲\ | ||
| 1718 | 说\ | ||
| 1719 | 诵\ | ||
| 1720 | 垦\ | ||
| 1721 | 退\ | ||
| 1722 | 既\ | ||
| 1723 | 屋\ | ||
| 1724 | 昼\ | ||
| 1725 | 屏\ | ||
| 1726 | 屎\ | ||
| 1727 | 费\ | ||
| 1728 | 陡\ | ||
| 1729 | 逊\ | ||
| 1730 | 眉\ | ||
| 1731 | 孩\ | ||
| 1732 | 陨\ | ||
| 1733 | 除\ | ||
| 1734 | 险\ | ||
| 1735 | 院\ | ||
| 1736 | 娃\ | ||
| 1737 | 姥\ | ||
| 1738 | 姨\ | ||
| 1739 | 姻\ | ||
| 1740 | 娇\ | ||
| 1741 | 姚\ | ||
| 1742 | 娜\ | ||
| 1743 | 怒\ | ||
| 1744 | 架\ | ||
| 1745 | 贺\ | ||
| 1746 | 盈\ | ||
| 1747 | 勇\ | ||
| 1748 | 怠\ | ||
| 1749 | 癸\ | ||
| 1750 | 蚤\ | ||
| 1751 | 柔\ | ||
| 1752 | 垒\ | ||
| 1753 | 绑\ | ||
| 1754 | 绒\ | ||
| 1755 | 结\ | ||
| 1756 | 绕\ | ||
| 1757 | 骄\ | ||
| 1758 | 绘\ | ||
| 1759 | 给\ | ||
| 1760 | 绚\ | ||
| 1761 | 骆\ | ||
| 1762 | 络\ | ||
| 1763 | 绝\ | ||
| 1764 | 绞\ | ||
| 1765 | 骇\ | ||
| 1766 | 统\ | ||
| 1767 | 耕\ | ||
| 1768 | 耘\ | ||
| 1769 | 耗\ | ||
| 1770 | 耙\ | ||
| 1771 | 艳\ | ||
| 1772 | 泰\ | ||
| 1773 | 秦\ | ||
| 1774 | 珠\ | ||
| 1775 | 班\ | ||
| 1776 | 素\ | ||
| 1777 | 匿\ | ||
| 1778 | 蚕\ | ||
| 1779 | 顽\ | ||
| 1780 | 盏\ | ||
| 1781 | 匪\ | ||
| 1782 | 捞\ | ||
| 1783 | 栽\ | ||
| 1784 | 捕\ | ||
| 1785 | 埂\ | ||
| 1786 | 捂\ | ||
| 1787 | 振\ | ||
| 1788 | 载\ | ||
| 1789 | 赶\ | ||
| 1790 | 起\ | ||
| 1791 | 盐\ | ||
| 1792 | 捎\ | ||
| 1793 | 捍\ | ||
| 1794 | 捏\ | ||
| 1795 | 埋\ | ||
| 1796 | 捉\ | ||
| 1797 | 捆\ | ||
| 1798 | 捐\ | ||
| 1799 | 损\ | ||
| 1800 | 袁\ | ||
| 1801 | 捌\ | ||
| 1802 | 都\ | ||
| 1803 | 哲\ | ||
| 1804 | 逝\ | ||
| 1805 | 捡\ | ||
| 1806 | 挫\ | ||
| 1807 | 换\ | ||
| 1808 | 挽\ | ||
| 1809 | 挚\ | ||
| 1810 | 热\ | ||
| 1811 | 恐\ | ||
| 1812 | 捣\ | ||
| 1813 | 壶\ | ||
| 1814 | 捅\ | ||
| 1815 | 埃\ | ||
| 1816 | 挨\ | ||
| 1817 | 耻\ | ||
| 1818 | 耿\ | ||
| 1819 | 耽\ | ||
| 1820 | 聂\ | ||
| 1821 | 恭\ | ||
| 1822 | 莽\ | ||
| 1823 | 莱\ | ||
| 1824 | 莲\ | ||
| 1825 | 莫\ | ||
| 1826 | 莉\ | ||
| 1827 | 荷\ | ||
| 1828 | 获\ | ||
| 1829 | 晋\ | ||
| 1830 | 恶\ | ||
| 1831 | 莹\ | ||
| 1832 | 莺\ | ||
| 1833 | 真\ | ||
| 1834 | 框\ | ||
| 1835 | 梆\ | ||
| 1836 | 桂\ | ||
| 1837 | 桔\ | ||
| 1838 | 栖\ | ||
| 1839 | 档\ | ||
| 1840 | 桐\ | ||
| 1841 | 株\ | ||
| 1842 | 桥\ | ||
| 1843 | 桦\ | ||
| 1844 | 栓\ | ||
| 1845 | 桃\ | ||
| 1846 | 格\ | ||
| 1847 | 桩\ | ||
| 1848 | 校\ | ||
| 1849 | 核\ | ||
| 1850 | 样\ | ||
| 1851 | 根\ | ||
| 1852 | 索\ | ||
| 1853 | 哥\ | ||
| 1854 | 速\ | ||
| 1855 | 逗\ | ||
| 1856 | 栗\ | ||
| 1857 | 贾\ | ||
| 1858 | 酌\ | ||
| 1859 | 配\ | ||
| 1860 | 翅\ | ||
| 1861 | 辱\ | ||
| 1862 | 唇\ | ||
| 1863 | 夏\ | ||
| 1864 | 砸\ | ||
| 1865 | 砰\ | ||
| 1866 | 砾\ | ||
| 1867 | 础\ | ||
| 1868 | 破\ | ||
| 1869 | 原\ | ||
| 1870 | 套\ | ||
| 1871 | 逐\ | ||
| 1872 | 烈\ | ||
| 1873 | 殊\ | ||
| 1874 | 殉\ | ||
| 1875 | 顾\ | ||
| 1876 | 轿\ | ||
| 1877 | 较\ | ||
| 1878 | 顿\ | ||
| 1879 | 毙\ | ||
| 1880 | 致\ | ||
| 1881 | 柴\ | ||
| 1882 | 桌\ | ||
| 1883 | 虑\ | ||
| 1884 | 监\ | ||
| 1885 | 紧\ | ||
| 1886 | 党\ | ||
| 1887 | 逞\ | ||
| 1888 | 晒\ | ||
| 1889 | 眠\ | ||
| 1890 | 晓\ | ||
| 1891 | 哮\ | ||
| 1892 | 唠\ | ||
| 1893 | 鸭\ | ||
| 1894 | 晃\ | ||
| 1895 | 哺\ | ||
| 1896 | 晌\ | ||
| 1897 | 剔\ | ||
| 1898 | 晕\ | ||
| 1899 | 蚌\ | ||
| 1900 | 畔\ | ||
| 1901 | 蚣\ | ||
| 1902 | 蚊\ | ||
| 1903 | 蚪\ | ||
| 1904 | 蚓\ | ||
| 1905 | 哨\ | ||
| 1906 | 哩\ | ||
| 1907 | 圃\ | ||
| 1908 | 哭\ | ||
| 1909 | 哦\ | ||
| 1910 | 恩\ | ||
| 1911 | 鸯\ | ||
| 1912 | 唤\ | ||
| 1913 | 唁\ | ||
| 1914 | 哼\ | ||
| 1915 | 唧\ | ||
| 1916 | 啊\ | ||
| 1917 | 唉\ | ||
| 1918 | 唆\ | ||
| 1919 | 罢\ | ||
| 1920 | 峭\ | ||
| 1921 | 峨\ | ||
| 1922 | 峰\ | ||
| 1923 | 圆\ | ||
| 1924 | 峻\ | ||
| 1925 | 贼\ | ||
| 1926 | 贿\ | ||
| 1927 | 赂\ | ||
| 1928 | 赃\ | ||
| 1929 | 钱\ | ||
| 1930 | 钳\ | ||
| 1931 | 钻\ | ||
| 1932 | 钾\ | ||
| 1933 | 铁\ | ||
| 1934 | 铃\ | ||
| 1935 | 铅\ | ||
| 1936 | 缺\ | ||
| 1937 | 氧\ | ||
| 1938 | 氨\ | ||
| 1939 | 特\ | ||
| 1940 | 牺\ | ||
| 1941 | 造\ | ||
| 1942 | 乘\ | ||
| 1943 | 敌\ | ||
| 1944 | 秤\ | ||
| 1945 | 租\ | ||
| 1946 | 积\ | ||
| 1947 | 秧\ | ||
| 1948 | 秩\ | ||
| 1949 | 称\ | ||
| 1950 | 秘\ | ||
| 1951 | 透\ | ||
| 1952 | 笔\ | ||
| 1953 | 笑\ | ||
| 1954 | 笋\ | ||
| 1955 | 债\ | ||
| 1956 | 借\ | ||
| 1957 | 值\ | ||
| 1958 | 倚\ | ||
| 1959 | 俺\ | ||
| 1960 | 倾\ | ||
| 1961 | 倒\ | ||
| 1962 | 倘\ | ||
| 1963 | 俱\ | ||
| 1964 | 倡\ | ||
| 1965 | 候\ | ||
| 1966 | 赁\ | ||
| 1967 | 俯\ | ||
| 1968 | 倍\ | ||
| 1969 | 倦\ | ||
| 1970 | 健\ | ||
| 1971 | 臭\ | ||
| 1972 | 射\ | ||
| 1973 | 躬\ | ||
| 1974 | 息\ | ||
| 1975 | 倔\ | ||
| 1976 | 徒\ | ||
| 1977 | 徐\ | ||
| 1978 | 殷\ | ||
| 1979 | 舰\ | ||
| 1980 | 舱\ | ||
| 1981 | 般\ | ||
| 1982 | 航\ | ||
| 1983 | 途\ | ||
| 1984 | 拿\ | ||
| 1985 | 耸\ | ||
| 1986 | 爹\ | ||
| 1987 | 舀\ | ||
| 1988 | 爱\ | ||
| 1989 | 豺\ | ||
| 1990 | 豹\ | ||
| 1991 | 颁\ | ||
| 1992 | 颂\ | ||
| 1993 | 翁\ | ||
| 1994 | 胰\ | ||
| 1995 | 脆\ | ||
| 1996 | 脂\ | ||
| 1997 | 胸\ | ||
| 1998 | 胳\ | ||
| 1999 | 脏\ | ||
| 2000 | 脐\ | ||
| 2001 | 胶\ | ||
| 2002 | 脑\ | ||
| 2003 | 脓\ | ||
| 2004 | 逛\ | ||
| 2005 | 狸\ | ||
| 2006 | 狼\ | ||
| 2007 | 卿\ | ||
| 2008 | 逢\ | ||
| 2009 | 鸵\ | ||
| 2010 | 留\ | ||
| 2011 | 鸳\ | ||
| 2012 | 皱\ | ||
| 2013 | 饿\ | ||
| 2014 | 馁\ | ||
| 2015 | 凌\ | ||
| 2016 | 凄\ | ||
| 2017 | 恋\ | ||
| 2018 | 桨\ | ||
| 2019 | 浆\ | ||
| 2020 | 衰\ | ||
| 2021 | 衷\ | ||
| 2022 | 高\ | ||
| 2023 | 郭\ | ||
| 2024 | 席\ | ||
| 2025 | 准\ | ||
| 2026 | 座\ | ||
| 2027 | 症\ | ||
| 2028 | 病\ | ||
| 2029 | 疾\ | ||
| 2030 | 斋\ | ||
| 2031 | 疹\ | ||
| 2032 | 疼\ | ||
| 2033 | 疲\ | ||
| 2034 | 脊\ | ||
| 2035 | 效\ | ||
| 2036 | 离\ | ||
| 2037 | 紊\ | ||
| 2038 | 唐\ | ||
| 2039 | 瓷\ | ||
| 2040 | 资\ | ||
| 2041 | 凉\ | ||
| 2042 | 站\ | ||
| 2043 | 剖\ | ||
| 2044 | 竞\ | ||
| 2045 | 部\ | ||
| 2046 | 旁\ | ||
| 2047 | 旅\ | ||
| 2048 | 畜\ | ||
| 2049 | 阅\ | ||
| 2050 | 羞\ | ||
| 2051 | 羔\ | ||
| 2052 | 瓶\ | ||
| 2053 | 拳\ | ||
| 2054 | 粉\ | ||
| 2055 | 料\ | ||
| 2056 | 益\ | ||
| 2057 | 兼\ | ||
| 2058 | 烤\ | ||
| 2059 | 烘\ | ||
| 2060 | 烦\ | ||
| 2061 | 烧\ | ||
| 2062 | 烛\ | ||
| 2063 | 烟\ | ||
| 2064 | 烙\ | ||
| 2065 | 递\ | ||
| 2066 | 涛\ | ||
| 2067 | 浙\ | ||
| 2068 | 涝\ | ||
| 2069 | 浦\ | ||
| 2070 | 酒\ | ||
| 2071 | 涉\ | ||
| 2072 | 消\ | ||
| 2073 | 涡\ | ||
| 2074 | 浩\ | ||
| 2075 | 海\ | ||
| 2076 | 涂\ | ||
| 2077 | 浴\ | ||
| 2078 | 浮\ | ||
| 2079 | 涣\ | ||
| 2080 | 涤\ | ||
| 2081 | 流\ | ||
| 2082 | 润\ | ||
| 2083 | 涧\ | ||
| 2084 | 涕\ | ||
| 2085 | 浪\ | ||
| 2086 | 浸\ | ||
| 2087 | 涨\ | ||
| 2088 | 烫\ | ||
| 2089 | 涩\ | ||
| 2090 | 涌\ | ||
| 2091 | 悖\ | ||
| 2092 | 悟\ | ||
| 2093 | 悄\ | ||
| 2094 | 悍\ | ||
| 2095 | 悔\ | ||
| 2096 | 悯\ | ||
| 2097 | 悦\ | ||
| 2098 | 害\ | ||
| 2099 | 宽\ | ||
| 2100 | 家\ | ||
| 2101 | 宵\ | ||
| 2102 | 宴\ | ||
| 2103 | 宾\ | ||
| 2104 | 窍\ | ||
| 2105 | 窄\ | ||
| 2106 | 容\ | ||
| 2107 | 宰\ | ||
| 2108 | 案\ | ||
| 2109 | 请\ | ||
| 2110 | 朗\ | ||
| 2111 | 诸\ | ||
| 2112 | 诺\ | ||
| 2113 | 读\ | ||
| 2114 | 扇\ | ||
| 2115 | 诽\ | ||
| 2116 | 袜\ | ||
| 2117 | 袖\ | ||
| 2118 | 袍\ | ||
| 2119 | 被\ | ||
| 2120 | 祥\ | ||
| 2121 | 课\ | ||
| 2122 | 冥\ | ||
| 2123 | 谁\ | ||
| 2124 | 调\ | ||
| 2125 | 冤\ | ||
| 2126 | 谅\ | ||
| 2127 | 谆\ | ||
| 2128 | 谈\ | ||
| 2129 | 谊\ | ||
| 2130 | 剥\ | ||
| 2131 | 恳\ | ||
| 2132 | 展\ | ||
| 2133 | 剧\ | ||
| 2134 | 屑\ | ||
| 2135 | 弱\ | ||
| 2136 | 陵\ | ||
| 2137 | 祟\ | ||
| 2138 | 陶\ | ||
| 2139 | 陷\ | ||
| 2140 | 陪\ | ||
| 2141 | 娱\ | ||
| 2142 | 娟\ | ||
| 2143 | 恕\ | ||
| 2144 | 娥\ | ||
| 2145 | 娘\ | ||
| 2146 | 通\ | ||
| 2147 | 能\ | ||
| 2148 | 难\ | ||
| 2149 | 预\ | ||
| 2150 | 桑\ | ||
| 2151 | 绢\ | ||
| 2152 | 绣\ | ||
| 2153 | 验\ | ||
| 2154 | 继\ | ||
| 2155 | 骏\ | ||
| 2156 | 球\ | ||
| 2157 | 琐\ | ||
| 2158 | 理\ | ||
| 2159 | 琉\ | ||
| 2160 | 琅\ | ||
| 2161 | 捧\ | ||
| 2162 | 堵\ | ||
| 2163 | 措\ | ||
| 2164 | 描\ | ||
| 2165 | 域\ | ||
| 2166 | 捺\ | ||
| 2167 | 掩\ | ||
| 2168 | 捷\ | ||
| 2169 | 排\ | ||
| 2170 | 焉\ | ||
| 2171 | 掉\ | ||
| 2172 | 捶\ | ||
| 2173 | 赦\ | ||
| 2174 | 堆\ | ||
| 2175 | 推\ | ||
| 2176 | 埠\ | ||
| 2177 | 掀\ | ||
| 2178 | 授\ | ||
| 2179 | 捻\ | ||
| 2180 | 教\ | ||
| 2181 | 掏\ | ||
| 2182 | 掐\ | ||
| 2183 | 掠\ | ||
| 2184 | 掂\ | ||
| 2185 | 培\ | ||
| 2186 | 接\ | ||
| 2187 | 掷\ | ||
| 2188 | 控\ | ||
| 2189 | 探\ | ||
| 2190 | 据\ | ||
| 2191 | 掘\ | ||
| 2192 | 掺\ | ||
| 2193 | 职\ | ||
| 2194 | 基\ | ||
| 2195 | 聆\ | ||
| 2196 | 勘\ | ||
| 2197 | 聊\ | ||
| 2198 | 娶\ | ||
| 2199 | 著\ | ||
| 2200 | 菱\ | ||
| 2201 | 勒\ | ||
| 2202 | 黄\ | ||
| 2203 | 菲\ | ||
| 2204 | 萌\ | ||
| 2205 | 萝\ | ||
| 2206 | 菌\ | ||
| 2207 | 萎\ | ||
| 2208 | 菜\ | ||
| 2209 | 萄\ | ||
| 2210 | 菊\ | ||
| 2211 | 菩\ | ||
| 2212 | 萍\ | ||
| 2213 | 菠\ | ||
| 2214 | 萤\ | ||
| 2215 | 营\ | ||
| 2216 | 乾\ | ||
| 2217 | 萧\ | ||
| 2218 | 萨\ | ||
| 2219 | 菇\ | ||
| 2220 | 械\ | ||
| 2221 | 彬\ | ||
| 2222 | 梦\ | ||
| 2223 | 婪\ | ||
| 2224 | 梗\ | ||
| 2225 | 梧\ | ||
| 2226 | 梢\ | ||
| 2227 | 梅\ | ||
| 2228 | 检\ | ||
| 2229 | 梳\ | ||
| 2230 | 梯\ | ||
| 2231 | 桶\ | ||
| 2232 | 梭\ | ||
| 2233 | 救\ | ||
| 2234 | 曹\ | ||
| 2235 | 副\ | ||
| 2236 | 票\ | ||
| 2237 | 酝\ | ||
| 2238 | 酗\ | ||
| 2239 | 厢\ | ||
| 2240 | 戚\ | ||
| 2241 | 硅\ | ||
| 2242 | 硕\ | ||
| 2243 | 奢\ | ||
| 2244 | 盔\ | ||
| 2245 | 爽\ | ||
| 2246 | 聋\ | ||
| 2247 | 袭\ | ||
| 2248 | 盛\ | ||
| 2249 | 匾\ | ||
| 2250 | 雪\ | ||
| 2251 | 辅\ | ||
| 2252 | 辆\ | ||
| 2253 | 颅\ | ||
| 2254 | 虚\ | ||
| 2255 | 彪\ | ||
| 2256 | 雀\ | ||
| 2257 | 堂\ | ||
| 2258 | 常\ | ||
| 2259 | 眶\ | ||
| 2260 | 匙\ | ||
| 2261 | 晨\ | ||
| 2262 | 睁\ | ||
| 2263 | 眯\ | ||
| 2264 | 眼\ | ||
| 2265 | 悬\ | ||
| 2266 | 野\ | ||
| 2267 | 啪\ | ||
| 2268 | 啦\ | ||
| 2269 | 曼\ | ||
| 2270 | 晦\ | ||
| 2271 | 晚\ | ||
| 2272 | 啄\ | ||
| 2273 | 啡\ | ||
| 2274 | 距\ | ||
| 2275 | 趾\ | ||
| 2276 | 啃\ | ||
| 2277 | 跃\ | ||
| 2278 | 略\ | ||
| 2279 | 蚯\ | ||
| 2280 | 蛀\ | ||
| 2281 | 蛇\ | ||
| 2282 | 唬\ | ||
| 2283 | 累\ | ||
| 2284 | 鄂\ | ||
| 2285 | 唱\ | ||
| 2286 | 患\ | ||
| 2287 | 啰\ | ||
| 2288 | 唾\ | ||
| 2289 | 唯\ | ||
| 2290 | 啤\ | ||
| 2291 | 啥\ | ||
| 2292 | 啸\ | ||
| 2293 | 崖\ | ||
| 2294 | 崎\ | ||
| 2295 | 崭\ | ||
| 2296 | 逻\ | ||
| 2297 | 崔\ | ||
| 2298 | 帷\ | ||
| 2299 | 崩\ | ||
| 2300 | 崇\ | ||
| 2301 | 崛\ | ||
| 2302 | 婴\ | ||
| 2303 | 圈\ | ||
| 2304 | 铐\ | ||
| 2305 | 铛\ | ||
| 2306 | 铝\ | ||
| 2307 | 铜\ | ||
| 2308 | 铭\ | ||
| 2309 | 铲\ | ||
| 2310 | 银\ | ||
| 2311 | 矫\ | ||
| 2312 | 甜\ | ||
| 2313 | 秸\ | ||
| 2314 | 梨\ | ||
| 2315 | 犁\ | ||
| 2316 | 秽\ | ||
| 2317 | 移\ | ||
| 2318 | 笨\ | ||
| 2319 | 笼\ | ||
| 2320 | 笛\ | ||
| 2321 | 笙\ | ||
| 2322 | 符\ | ||
| 2323 | 第\ | ||
| 2324 | 敏\ | ||
| 2325 | 做\ | ||
| 2326 | 袋\ | ||
| 2327 | 悠\ | ||
| 2328 | 偿\ | ||
| 2329 | 偶\ | ||
| 2330 | 偎\ | ||
| 2331 | 偷\ | ||
| 2332 | 您\ | ||
| 2333 | 售\ | ||
| 2334 | 停\ | ||
| 2335 | 偏\ | ||
| 2336 | 躯\ | ||
| 2337 | 兜\ | ||
| 2338 | 假\ | ||
| 2339 | 衅\ | ||
| 2340 | 徘\ | ||
| 2341 | 徙\ | ||
| 2342 | 得\ | ||
| 2343 | 衔\ | ||
| 2344 | 盘\ | ||
| 2345 | 舶\ | ||
| 2346 | 船\ | ||
| 2347 | 舵\ | ||
| 2348 | 斜\ | ||
| 2349 | 盒\ | ||
| 2350 | 鸽\ | ||
| 2351 | 敛\ | ||
| 2352 | 悉\ | ||
| 2353 | 欲\ | ||
| 2354 | 彩\ | ||
| 2355 | 领\ | ||
| 2356 | 脚\ | ||
| 2357 | 脖\ | ||
| 2358 | 脯\ | ||
| 2359 | 豚\ | ||
| 2360 | 脸\ | ||
| 2361 | 脱\ | ||
| 2362 | 象\ | ||
| 2363 | 够\ | ||
| 2364 | 逸\ | ||
| 2365 | 猜\ | ||
| 2366 | 猪\ | ||
| 2367 | 猎\ | ||
| 2368 | 猫\ | ||
| 2369 | 凰\ | ||
| 2370 | 猖\ | ||
| 2371 | 猛\ | ||
| 2372 | 祭\ | ||
| 2373 | 馅\ | ||
| 2374 | 馆\ | ||
| 2375 | 凑\ | ||
| 2376 | 减\ | ||
| 2377 | 毫\ | ||
| 2378 | 烹\ | ||
| 2379 | 庶\ | ||
| 2380 | 麻\ | ||
| 2381 | 庵\ | ||
| 2382 | 痊\ | ||
| 2383 | 痒\ | ||
| 2384 | 痕\ | ||
| 2385 | 廊\ | ||
| 2386 | 康\ | ||
| 2387 | 庸\ | ||
| 2388 | 鹿\ | ||
| 2389 | 盗\ | ||
| 2390 | 章\ | ||
| 2391 | 竟\ | ||
| 2392 | 商\ | ||
| 2393 | 族\ | ||
| 2394 | 旋\ | ||
| 2395 | 望\ | ||
| 2396 | 率\ | ||
| 2397 | 阎\ | ||
| 2398 | 阐\ | ||
| 2399 | 着\ | ||
| 2400 | 羚\ | ||
| 2401 | 盖\ | ||
| 2402 | 眷\ | ||
| 2403 | 粘\ | ||
| 2404 | 粗\ | ||
| 2405 | 粒\ | ||
| 2406 | 断\ | ||
| 2407 | 剪\ | ||
| 2408 | 兽\ | ||
| 2409 | 焊\ | ||
| 2410 | 焕\ | ||
| 2411 | 清\ | ||
| 2412 | 添\ | ||
| 2413 | 鸿\ | ||
| 2414 | 淋\ | ||
| 2415 | 涯\ | ||
| 2416 | 淹\ | ||
| 2417 | 渠\ | ||
| 2418 | 渐\ | ||
| 2419 | 淑\ | ||
| 2420 | 淌\ | ||
| 2421 | 混\ | ||
| 2422 | 淮\ | ||
| 2423 | 淆\ | ||
| 2424 | 渊\ | ||
| 2425 | 淫\ | ||
| 2426 | 渔\ | ||
| 2427 | 淘\ | ||
| 2428 | 淳\ | ||
| 2429 | 液\ | ||
| 2430 | 淤\ | ||
| 2431 | 淡\ | ||
| 2432 | 淀\ | ||
| 2433 | 深\ | ||
| 2434 | 涮\ | ||
| 2435 | 涵\ | ||
| 2436 | 婆\ | ||
| 2437 | 梁\ | ||
| 2438 | 渗\ | ||
| 2439 | 情\ | ||
| 2440 | 惜\ | ||
| 2441 | 惭\ | ||
| 2442 | 悼\ | ||
| 2443 | 惧\ | ||
| 2444 | 惕\ | ||
| 2445 | 惟\ | ||
| 2446 | 惊\ | ||
| 2447 | 惦\ | ||
| 2448 | 悴\ | ||
| 2449 | 惋\ | ||
| 2450 | 惨\ | ||
| 2451 | 惯\ | ||
| 2452 | 寇\ | ||
| 2453 | 寅\ | ||
| 2454 | 寄\ | ||
| 2455 | 寂\ | ||
| 2456 | 宿\ | ||
| 2457 | 窒\ | ||
| 2458 | 窑\ | ||
| 2459 | 密\ | ||
| 2460 | 谋\ | ||
| 2461 | 谍\ | ||
| 2462 | 谎\ | ||
| 2463 | 谐\ | ||
| 2464 | 袱\ | ||
| 2465 | 祷\ | ||
| 2466 | 祸\ | ||
| 2467 | 谓\ | ||
| 2468 | 谚\ | ||
| 2469 | 谜\ | ||
| 2470 | 逮\ | ||
| 2471 | 敢\ | ||
| 2472 | 尉\ | ||
| 2473 | 屠\ | ||
| 2474 | 弹\ | ||
| 2475 | 隋\ | ||
| 2476 | 堕\ | ||
| 2477 | 随\ | ||
| 2478 | 蛋\ | ||
| 2479 | 隅\ | ||
| 2480 | 隆\ | ||
| 2481 | 隐\ | ||
| 2482 | 婚\ | ||
| 2483 | 婶\ | ||
| 2484 | 婉\ | ||
| 2485 | 颇\ | ||
| 2486 | 颈\ | ||
| 2487 | 绩\ | ||
| 2488 | 绪\ | ||
| 2489 | 续\ | ||
| 2490 | 骑\ | ||
| 2491 | 绰\ | ||
| 2492 | 绳\ | ||
| 2493 | 维\ | ||
| 2494 | 绵\ | ||
| 2495 | 绷\ | ||
| 2496 | 绸\ | ||
| 2497 | 综\ | ||
| 2498 | 绽\ | ||
| 2499 | 绿\ | ||
| 2500 | 缀\ | ||
| 2501 | 巢\ | ||
| 2502 | 琴\ | ||
| 2503 | 琳\ | ||
| 2504 | 琢\ | ||
| 2505 | 琼\ | ||
| 2506 | 斑\ | ||
| 2507 | 替\ | ||
| 2508 | 揍\ | ||
| 2509 | 款\ | ||
| 2510 | 堪\ | ||
| 2511 | 塔\ | ||
| 2512 | 搭\ | ||
| 2513 | 堰\ | ||
| 2514 | 揩\ | ||
| 2515 | 越\ | ||
| 2516 | 趁\ | ||
| 2517 | 趋\ | ||
| 2518 | 超\ | ||
| 2519 | 揽\ | ||
| 2520 | 堤\ | ||
| 2521 | 提\ | ||
| 2522 | 博\ | ||
| 2523 | 揭\ | ||
| 2524 | 喜\ | ||
| 2525 | 彭\ | ||
| 2526 | 揣\ | ||
| 2527 | 插\ | ||
| 2528 | 揪\ | ||
| 2529 | 搜\ | ||
| 2530 | 煮\ | ||
| 2531 | 援\ | ||
| 2532 | 搀\ | ||
| 2533 | 裁\ | ||
| 2534 | 搁\ | ||
| 2535 | 搓\ | ||
| 2536 | 搂\ | ||
| 2537 | 搅\ | ||
| 2538 | 壹\ | ||
| 2539 | 握\ | ||
| 2540 | 搔\ | ||
| 2541 | 揉\ | ||
| 2542 | 斯\ | ||
| 2543 | 期\ | ||
| 2544 | 欺\ | ||
| 2545 | 联\ | ||
| 2546 | 葫\ | ||
| 2547 | 散\ | ||
| 2548 | 惹\ | ||
| 2549 | 葬\ | ||
| 2550 | 募\ | ||
| 2551 | 葛\ | ||
| 2552 | 董\ | ||
| 2553 | 葡\ | ||
| 2554 | 敬\ | ||
| 2555 | 葱\ | ||
| 2556 | 蒋\ | ||
| 2557 | 蒂\ | ||
| 2558 | 落\ | ||
| 2559 | 韩\ | ||
| 2560 | 朝\ | ||
| 2561 | 辜\ | ||
| 2562 | 葵\ | ||
| 2563 | 棒\ | ||
| 2564 | 棱\ | ||
| 2565 | 棋\ | ||
| 2566 | 椰\ | ||
| 2567 | 植\ | ||
| 2568 | 森\ | ||
| 2569 | 焚\ | ||
| 2570 | 椅\ | ||
| 2571 | 椒\ | ||
| 2572 | 棵\ | ||
| 2573 | 棍\ | ||
| 2574 | 椎\ | ||
| 2575 | 棉\ | ||
| 2576 | 棚\ | ||
| 2577 | 棕\ | ||
| 2578 | 棺\ | ||
| 2579 | 榔\ | ||
| 2580 | 椭\ | ||
| 2581 | 惠\ | ||
| 2582 | 惑\ | ||
| 2583 | 逼\ | ||
| 2584 | 粟\ | ||
| 2585 | 棘\ | ||
| 2586 | 酣\ | ||
| 2587 | 酥\ | ||
| 2588 | 厨\ | ||
| 2589 | 厦\ | ||
| 2590 | 硬\ | ||
| 2591 | 硝\ | ||
| 2592 | 确\ | ||
| 2593 | 硫\ | ||
| 2594 | 雁\ | ||
| 2595 | 殖\ | ||
| 2596 | 裂\ | ||
| 2597 | 雄\ | ||
| 2598 | 颊\ | ||
| 2599 | 雳\ | ||
| 2600 | 暂\ | ||
| 2601 | 雅\ | ||
| 2602 | 翘\ | ||
| 2603 | 辈\ | ||
| 2604 | 悲\ | ||
| 2605 | 紫\ | ||
| 2606 | 凿\ | ||
| 2607 | 辉\ | ||
| 2608 | 敞\ | ||
| 2609 | 棠\ | ||
| 2610 | 赏\ | ||
| 2611 | 掌\ | ||
| 2612 | 晴\ | ||
| 2613 | 睐\ | ||
| 2614 | 暑\ | ||
| 2615 | 最\ | ||
| 2616 | 晰\ | ||
| 2617 | 量\ | ||
| 2618 | 鼎\ | ||
| 2619 | 喷\ | ||
| 2620 | 喳\ | ||
| 2621 | 晶\ | ||
| 2622 | 喇\ | ||
| 2623 | 遇\ | ||
| 2624 | 喊\ | ||
| 2625 | 遏\ | ||
| 2626 | 晾\ | ||
| 2627 | 景\ | ||
| 2628 | 畴\ | ||
| 2629 | 践\ | ||
| 2630 | 跋\ | ||
| 2631 | 跌\ | ||
| 2632 | 跑\ | ||
| 2633 | 跛\ | ||
| 2634 | 遗\ | ||
| 2635 | 蛙\ | ||
| 2636 | 蛛\ | ||
| 2637 | 蜓\ | ||
| 2638 | 蜒\ | ||
| 2639 | 蛤\ | ||
| 2640 | 喝\ | ||
| 2641 | 鹃\ | ||
| 2642 | 喂\ | ||
| 2643 | 喘\ | ||
| 2644 | 喉\ | ||
| 2645 | 喻\ | ||
| 2646 | 啼\ | ||
| 2647 | 喧\ | ||
| 2648 | 嵌\ | ||
| 2649 | 幅\ | ||
| 2650 | 帽\ | ||
| 2651 | 赋\ | ||
| 2652 | 赌\ | ||
| 2653 | 赎\ | ||
| 2654 | 赐\ | ||
| 2655 | 赔\ | ||
| 2656 | 黑\ | ||
| 2657 | 铸\ | ||
| 2658 | 铺\ | ||
| 2659 | 链\ | ||
| 2660 | 销\ | ||
| 2661 | 锁\ | ||
| 2662 | 锄\ | ||
| 2663 | 锅\ | ||
| 2664 | 锈\ | ||
| 2665 | 锋\ | ||
| 2666 | 锌\ | ||
| 2667 | 锐\ | ||
| 2668 | 甥\ | ||
| 2669 | 掰\ | ||
| 2670 | 短\ | ||
| 2671 | 智\ | ||
| 2672 | 氮\ | ||
| 2673 | 毯\ | ||
| 2674 | 氯\ | ||
| 2675 | 鹅\ | ||
| 2676 | 剩\ | ||
| 2677 | 稍\ | ||
| 2678 | 程\ | ||
| 2679 | 稀\ | ||
| 2680 | 税\ | ||
| 2681 | 筐\ | ||
| 2682 | 等\ | ||
| 2683 | 筑\ | ||
| 2684 | 策\ | ||
| 2685 | 筛\ | ||
| 2686 | 筒\ | ||
| 2687 | 筏\ | ||
| 2688 | 答\ | ||
| 2689 | 筋\ | ||
| 2690 | 筝\ | ||
| 2691 | 傲\ | ||
| 2692 | 傅\ | ||
| 2693 | 牌\ | ||
| 2694 | 堡\ | ||
| 2695 | 集\ | ||
| 2696 | 焦\ | ||
| 2697 | 傍\ | ||
| 2698 | 储\ | ||
| 2699 | 皓\ | ||
| 2700 | 皖\ | ||
| 2701 | 粤\ | ||
| 2702 | 奥\ | ||
| 2703 | 街\ | ||
| 2704 | 惩\ | ||
| 2705 | 御\ | ||
| 2706 | 循\ | ||
| 2707 | 艇\ | ||
| 2708 | 舒\ | ||
| 2709 | 逾\ | ||
| 2710 | 番\ | ||
| 2711 | 释\ | ||
| 2712 | 禽\ | ||
| 2713 | 腊\ | ||
| 2714 | 脾\ | ||
| 2715 | 腋\ | ||
| 2716 | 腔\ | ||
| 2717 | 腕\ | ||
| 2718 | 鲁\ | ||
| 2719 | 猩\ | ||
| 2720 | 猬\ | ||
| 2721 | 猾\ | ||
| 2722 | 猴\ | ||
| 2723 | 惫\ | ||
| 2724 | 然\ | ||
| 2725 | 馈\ | ||
| 2726 | 馋\ | ||
| 2727 | 装\ | ||
| 2728 | 蛮\ | ||
| 2729 | 就\ | ||
| 2730 | 敦\ | ||
| 2731 | 斌\ | ||
| 2732 | 痘\ | ||
| 2733 | 痢\ | ||
| 2734 | 痪\ | ||
| 2735 | 痛\ | ||
| 2736 | 童\ | ||
| 2737 | 竣\ | ||
| 2738 | 阔\ | ||
| 2739 | 善\ | ||
| 2740 | 翔\ | ||
| 2741 | 羡\ | ||
| 2742 | 普\ | ||
| 2743 | 粪\ | ||
| 2744 | 尊\ | ||
| 2745 | 奠\ | ||
| 2746 | 道\ | ||
| 2747 | 遂\ | ||
| 2748 | 曾\ | ||
| 2749 | 焰\ | ||
| 2750 | 港\ | ||
| 2751 | 滞\ | ||
| 2752 | 湖\ | ||
| 2753 | 湘\ | ||
| 2754 | 渣\ | ||
| 2755 | 渤\ | ||
| 2756 | 渺\ | ||
| 2757 | 湿\ | ||
| 2758 | 温\ | ||
| 2759 | 渴\ | ||
| 2760 | 溃\ | ||
| 2761 | 溅\ | ||
| 2762 | 滑\ | ||
| 2763 | 湃\ | ||
| 2764 | 渝\ | ||
| 2765 | 湾\ | ||
| 2766 | 渡\ | ||
| 2767 | 游\ | ||
| 2768 | 滋\ | ||
| 2769 | 渲\ | ||
| 2770 | 溉\ | ||
| 2771 | 愤\ | ||
| 2772 | 慌\ | ||
| 2773 | 惰\ | ||
| 2774 | 愕\ | ||
| 2775 | 愣\ | ||
| 2776 | 惶\ | ||
| 2777 | 愧\ | ||
| 2778 | 愉\ | ||
| 2779 | 慨\ | ||
| 2780 | 割\ | ||
| 2781 | 寒\ | ||
| 2782 | 富\ | ||
| 2783 | 寓\ | ||
| 2784 | 窜\ | ||
| 2785 | 窝\ | ||
| 2786 | 窖\ | ||
| 2787 | 窗\ | ||
| 2788 | 窘\ | ||
| 2789 | 遍\ | ||
| 2790 | 雇\ | ||
| 2791 | 裕\ | ||
| 2792 | 裤\ | ||
| 2793 | 裙\ | ||
| 2794 | 禅\ | ||
| 2795 | 禄\ | ||
| 2796 | 谢\ | ||
| 2797 | 谣\ | ||
| 2798 | 谤\ | ||
| 2799 | 谦\ | ||
| 2800 | 犀\ | ||
| 2801 | 属\ | ||
| 2802 | 屡\ | ||
| 2803 | 强\ | ||
| 2804 | 粥\ | ||
| 2805 | 疏\ | ||
| 2806 | 隔\ | ||
| 2807 | 隙\ | ||
| 2808 | 隘\ | ||
| 2809 | 媒\ | ||
| 2810 | 絮\ | ||
| 2811 | 嫂\ | ||
| 2812 | 媚\ | ||
| 2813 | 婿\ | ||
| 2814 | 登\ | ||
| 2815 | 缅\ | ||
| 2816 | 缆\ | ||
| 2817 | 缉\ | ||
| 2818 | 缎\ | ||
| 2819 | 缓\ | ||
| 2820 | 缔\ | ||
| 2821 | 缕\ | ||
| 2822 | 骗\ | ||
| 2823 | 编\ | ||
| 2824 | 骚\ | ||
| 2825 | 缘\ | ||
| 2826 | 瑟\ | ||
| 2827 | 鹉\ | ||
| 2828 | 瑞\ | ||
| 2829 | 瑰\ | ||
| 2830 | 瑙\ | ||
| 2831 | 魂\ | ||
| 2832 | 肆\ | ||
| 2833 | 摄\ | ||
| 2834 | 摸\ | ||
| 2835 | 填\ | ||
| 2836 | 搏\ | ||
| 2837 | 塌\ | ||
| 2838 | 鼓\ | ||
| 2839 | 摆\ | ||
| 2840 | 携\ | ||
| 2841 | 搬\ | ||
| 2842 | 摇\ | ||
| 2843 | 搞\ | ||
| 2844 | 塘\ | ||
| 2845 | 摊\ | ||
| 2846 | 聘\ | ||
| 2847 | 斟\ | ||
| 2848 | 蒜\ | ||
| 2849 | 勤\ | ||
| 2850 | 靴\ | ||
| 2851 | 靶\ | ||
| 2852 | 鹊\ | ||
| 2853 | 蓝\ | ||
| 2854 | 墓\ | ||
| 2855 | 幕\ | ||
| 2856 | 蓬\ | ||
| 2857 | 蓄\ | ||
| 2858 | 蒲\ | ||
| 2859 | 蓉\ | ||
| 2860 | 蒙\ | ||
| 2861 | 蒸\ | ||
| 2862 | 献\ | ||
| 2863 | 椿\ | ||
| 2864 | 禁\ | ||
| 2865 | 楚\ | ||
| 2866 | 楷\ | ||
| 2867 | 榄\ | ||
| 2868 | 想\ | ||
| 2869 | 槐\ | ||
| 2870 | 榆\ | ||
| 2871 | 楼\ | ||
| 2872 | 概\ | ||
| 2873 | 赖\ | ||
| 2874 | 酪\ | ||
| 2875 | 酬\ | ||
| 2876 | 感\ | ||
| 2877 | 碍\ | ||
| 2878 | 碘\ | ||
| 2879 | 碑\ | ||
| 2880 | 碎\ | ||
| 2881 | 碰\ | ||
| 2882 | 碗\ | ||
| 2883 | 碌\ | ||
| 2884 | 尴\ | ||
| 2885 | 雷\ | ||
| 2886 | 零\ | ||
| 2887 | 雾\ | ||
| 2888 | 雹\ | ||
| 2889 | 辐\ | ||
| 2890 | 辑\ | ||
| 2891 | 输\ | ||
| 2892 | 督\ | ||
| 2893 | 频\ | ||
| 2894 | 龄\ | ||
| 2895 | 鉴\ | ||
| 2896 | 睛\ | ||
| 2897 | 睹\ | ||
| 2898 | 睦\ | ||
| 2899 | 瞄\ | ||
| 2900 | 睫\ | ||
| 2901 | 睡\ | ||
| 2902 | 睬\ | ||
| 2903 | 嗜\ | ||
| 2904 | 鄙\ | ||
| 2905 | 嗦\ | ||
| 2906 | 愚\ | ||
| 2907 | 暖\ | ||
| 2908 | 盟\ | ||
| 2909 | 歇\ | ||
| 2910 | 暗\ | ||
| 2911 | 暇\ | ||
| 2912 | 照\ | ||
| 2913 | 畸\ | ||
| 2914 | 跨\ | ||
| 2915 | 跷\ | ||
| 2916 | 跳\ | ||
| 2917 | 跺\ | ||
| 2918 | 跪\ | ||
| 2919 | 路\ | ||
| 2920 | 跤\ | ||
| 2921 | 跟\ | ||
| 2922 | 遣\ | ||
| 2923 | 蜈\ | ||
| 2924 | 蜗\ | ||
| 2925 | 蛾\ | ||
| 2926 | 蜂\ | ||
| 2927 | 蜕\ | ||
| 2928 | 嗅\ | ||
| 2929 | 嗡\ | ||
| 2930 | 嗓\ | ||
| 2931 | 署\ | ||
| 2932 | 置\ | ||
| 2933 | 罪\ | ||
| 2934 | 罩\ | ||
| 2935 | 蜀\ | ||
| 2936 | 幌\ | ||
| 2937 | 错\ | ||
| 2938 | 锚\ | ||
| 2939 | 锡\ | ||
| 2940 | 锣\ | ||
| 2941 | 锤\ | ||
| 2942 | 锥\ | ||
| 2943 | 锦\ | ||
| 2944 | 键\ | ||
| 2945 | 锯\ | ||
| 2946 | 锰\ | ||
| 2947 | 矮\ | ||
| 2948 | 辞\ | ||
| 2949 | 稚\ | ||
| 2950 | 稠\ | ||
| 2951 | 颓\ | ||
| 2952 | 愁\ | ||
| 2953 | 筹\ | ||
| 2954 | 签\ | ||
| 2955 | 简\ | ||
| 2956 | 筷\ | ||
| 2957 | 毁\ | ||
| 2958 | 舅\ | ||
| 2959 | 鼠\ | ||
| 2960 | 催\ | ||
| 2961 | 傻\ | ||
| 2962 | 像\ | ||
| 2963 | 躲\ | ||
| 2964 | 魁\ | ||
| 2965 | 衙\ | ||
| 2966 | 微\ | ||
| 2967 | 愈\ | ||
| 2968 | 遥\ | ||
| 2969 | 腻\ | ||
| 2970 | 腰\ | ||
| 2971 | 腥\ | ||
| 2972 | 腮\ | ||
| 2973 | 腹\ | ||
| 2974 | 腺\ | ||
| 2975 | 鹏\ | ||
| 2976 | 腾\ | ||
| 2977 | 腿\ | ||
| 2978 | 鲍\ | ||
| 2979 | 猿\ | ||
| 2980 | 颖\ | ||
| 2981 | 触\ | ||
| 2982 | 解\ | ||
| 2983 | 煞\ | ||
| 2984 | 雏\ | ||
| 2985 | 馍\ | ||
| 2986 | 馏\ | ||
| 2987 | 酱\ | ||
| 2988 | 禀\ | ||
| 2989 | 痹\ | ||
| 2990 | 廓\ | ||
| 2991 | 痴\ | ||
| 2992 | 痰\ | ||
| 2993 | 廉\ | ||
| 2994 | 靖\ | ||
| 2995 | 新\ | ||
| 2996 | 韵\ | ||
| 2997 | 意\ | ||
| 2998 | 誊\ | ||
| 2999 | 粮\ | ||
| 3000 | 数\ | ||
| 3001 | 煎\ | ||
| 3002 | 塑\ | ||
| 3003 | 慈\ | ||
| 3004 | 煤\ | ||
| 3005 | 煌\ | ||
| 3006 | 满\ | ||
| 3007 | 漠\ | ||
| 3008 | 滇\ | ||
| 3009 | 源\ | ||
| 3010 | 滤\ | ||
| 3011 | 滥\ | ||
| 3012 | 滔\ | ||
| 3013 | 溪\ | ||
| 3014 | 溜\ | ||
| 3015 | 漓\ | ||
| 3016 | 滚\ | ||
| 3017 | 溢\ | ||
| 3018 | 溯\ | ||
| 3019 | 滨\ | ||
| 3020 | 溶\ | ||
| 3021 | 溺\ | ||
| 3022 | 粱\ | ||
| 3023 | 滩\ | ||
| 3024 | 慎\ | ||
| 3025 | 誉\ | ||
| 3026 | 塞\ | ||
| 3027 | 寞\ | ||
| 3028 | 窥\ | ||
| 3029 | 窟\ | ||
| 3030 | 寝\ | ||
| 3031 | 谨\ | ||
| 3032 | 褂\ | ||
| 3033 | 裸\ | ||
| 3034 | 福\ | ||
| 3035 | 谬\ | ||
| 3036 | 群\ | ||
| 3037 | 殿\ | ||
| 3038 | 辟\ | ||
| 3039 | 障\ | ||
| 3040 | 媳\ | ||
| 3041 | 嫉\ | ||
| 3042 | 嫌\ | ||
| 3043 | 嫁\ | ||
| 3044 | 叠\ | ||
| 3045 | 缚\ | ||
| 3046 | 缝\ | ||
| 3047 | 缠\ | ||
| 3048 | 缤\ | ||
| 3049 | 剿\ | ||
| 3050 | 静\ | ||
| 3051 | 碧\ | ||
| 3052 | 璃\ | ||
| 3053 | 赘\ | ||
| 3054 | 熬\ | ||
| 3055 | 墙\ | ||
| 3056 | 墟\ | ||
| 3057 | 嘉\ | ||
| 3058 | 摧\ | ||
| 3059 | 赫\ | ||
| 3060 | 截\ | ||
| 3061 | 誓\ | ||
| 3062 | 境\ | ||
| 3063 | 摘\ | ||
| 3064 | 摔\ | ||
| 3065 | 撇\ | ||
| 3066 | 聚\ | ||
| 3067 | 慕\ | ||
| 3068 | 暮\ | ||
| 3069 | 摹\ | ||
| 3070 | 蔓\ | ||
| 3071 | 蔑\ | ||
| 3072 | 蔡\ | ||
| 3073 | 蔗\ | ||
| 3074 | 蔽\ | ||
| 3075 | 蔼\ | ||
| 3076 | 熙\ | ||
| 3077 | 蔚\ | ||
| 3078 | 兢\ | ||
| 3079 | 模\ | ||
| 3080 | 槛\ | ||
| 3081 | 榴\ | ||
| 3082 | 榜\ | ||
| 3083 | 榨\ | ||
| 3084 | 榕\ | ||
| 3085 | 歌\ | ||
| 3086 | 遭\ | ||
| 3087 | 酵\ | ||
| 3088 | 酷\ | ||
| 3089 | 酿\ | ||
| 3090 | 酸\ | ||
| 3091 | 碟\ | ||
| 3092 | 碱\ | ||
| 3093 | 碳\ | ||
| 3094 | 磁\ | ||
| 3095 | 愿\ | ||
| 3096 | 需\ | ||
| 3097 | 辖\ | ||
| 3098 | 辗\ | ||
| 3099 | 雌\ | ||
| 3100 | 裳\ | ||
| 3101 | 颗\ | ||
| 3102 | 瞅\ | ||
| 3103 | 墅\ | ||
| 3104 | 嗽\ | ||
| 3105 | 踊\ | ||
| 3106 | 蜻\ | ||
| 3107 | 蜡\ | ||
| 3108 | 蝇\ | ||
| 3109 | 蜘\ | ||
| 3110 | 蝉\ | ||
| 3111 | 嘛\ | ||
| 3112 | 嘀\ | ||
| 3113 | 赚\ | ||
| 3114 | 锹\ | ||
| 3115 | 锻\ | ||
| 3116 | 镀\ | ||
| 3117 | 舞\ | ||
| 3118 | 舔\ | ||
| 3119 | 稳\ | ||
| 3120 | 熏\ | ||
| 3121 | 箕\ | ||
| 3122 | 算\ | ||
| 3123 | 箩\ | ||
| 3124 | 管\ | ||
| 3125 | 箫\ | ||
| 3126 | 舆\ | ||
| 3127 | 僚\ | ||
| 3128 | 僧\ | ||
| 3129 | 鼻\ | ||
| 3130 | 魄\ | ||
| 3131 | 魅\ | ||
| 3132 | 貌\ | ||
| 3133 | 膜\ | ||
| 3134 | 膊\ | ||
| 3135 | 膀\ | ||
| 3136 | 鲜\ | ||
| 3137 | 疑\ | ||
| 3138 | 孵\ | ||
| 3139 | 馒\ | ||
| 3140 | 裹\ | ||
| 3141 | 敲\ | ||
| 3142 | 豪\ | ||
| 3143 | 膏\ | ||
| 3144 | 遮\ | ||
| 3145 | 腐\ | ||
| 3146 | 瘩\ | ||
| 3147 | 瘟\ | ||
| 3148 | 瘦\ | ||
| 3149 | 辣\ | ||
| 3150 | 彰\ | ||
| 3151 | 竭\ | ||
| 3152 | 端\ | ||
| 3153 | 旗\ | ||
| 3154 | 精\ | ||
| 3155 | 粹\ | ||
| 3156 | 歉\ | ||
| 3157 | 弊\ | ||
| 3158 | 熄\ | ||
| 3159 | 熔\ | ||
| 3160 | 煽\ | ||
| 3161 | 潇\ | ||
| 3162 | 漆\ | ||
| 3163 | 漱\ | ||
| 3164 | 漂\ | ||
| 3165 | 漫\ | ||
| 3166 | 滴\ | ||
| 3167 | 漾\ | ||
| 3168 | 演\ | ||
| 3169 | 漏\ | ||
| 3170 | 慢\ | ||
| 3171 | 慷\ | ||
| 3172 | 寨\ | ||
| 3173 | 赛\ | ||
| 3174 | 寡\ | ||
| 3175 | 察\ | ||
| 3176 | 蜜\ | ||
| 3177 | 寥\ | ||
| 3178 | 谭\ | ||
| 3179 | 肇\ | ||
| 3180 | 褐\ | ||
| 3181 | 褪\ | ||
| 3182 | 谱\ | ||
| 3183 | 隧\ | ||
| 3184 | 嫩\ | ||
| 3185 | 翠\ | ||
| 3186 | 熊\ | ||
| 3187 | 凳\ | ||
| 3188 | 骡\ | ||
| 3189 | 缩\ | ||
| 3190 | 慧\ | ||
| 3191 | 撵\ | ||
| 3192 | 撕\ | ||
| 3193 | 撒\ | ||
| 3194 | 撩\ | ||
| 3195 | 趣\ | ||
| 3196 | 趟\ | ||
| 3197 | 撑\ | ||
| 3198 | 撮\ | ||
| 3199 | 撬\ | ||
| 3200 | 播\ | ||
| 3201 | 擒\ | ||
| 3202 | 墩\ | ||
| 3203 | 撞\ | ||
| 3204 | 撤\ | ||
| 3205 | 增\ | ||
| 3206 | 撰\ | ||
| 3207 | 聪\ | ||
| 3208 | 鞋\ | ||
| 3209 | 鞍\ | ||
| 3210 | 蕉\ | ||
| 3211 | 蕊\ | ||
| 3212 | 蔬\ | ||
| 3213 | 蕴\ | ||
| 3214 | 横\ | ||
| 3215 | 槽\ | ||
| 3216 | 樱\ | ||
| 3217 | 橡\ | ||
| 3218 | 樟\ | ||
| 3219 | 橄\ | ||
| 3220 | 敷\ | ||
| 3221 | 豌\ | ||
| 3222 | 飘\ | ||
| 3223 | 醋\ | ||
| 3224 | 醇\ | ||
| 3225 | 醉\ | ||
| 3226 | 磕\ | ||
| 3227 | 磊\ | ||
| 3228 | 磅\ | ||
| 3229 | 碾\ | ||
| 3230 | 震\ | ||
| 3231 | 霄\ | ||
| 3232 | 霉\ | ||
| 3233 | 瞒\ | ||
| 3234 | 题\ | ||
| 3235 | 暴\ | ||
| 3236 | 瞎\ | ||
| 3237 | 嘻\ | ||
| 3238 | 嘶\ | ||
| 3239 | 嘲\ | ||
| 3240 | 嘹\ | ||
| 3241 | 影\ | ||
| 3242 | 踢\ | ||
| 3243 | 踏\ | ||
| 3244 | 踩\ | ||
| 3245 | 踪\ | ||
| 3246 | 蝶\ | ||
| 3247 | 蝴\ | ||
| 3248 | 蝠\ | ||
| 3249 | 蝎\ | ||
| 3250 | 蝌\ | ||
| 3251 | 蝗\ | ||
| 3252 | 蝙\ | ||
| 3253 | 嘿\ | ||
| 3254 | 嘱\ | ||
| 3255 | 幢\ | ||
| 3256 | 墨\ | ||
| 3257 | 镇\ | ||
| 3258 | 镐\ | ||
| 3259 | 镑\ | ||
| 3260 | 靠\ | ||
| 3261 | 稽\ | ||
| 3262 | 稻\ | ||
| 3263 | 黎\ | ||
| 3264 | 稿\ | ||
| 3265 | 稼\ | ||
| 3266 | 箱\ | ||
| 3267 | 篓\ | ||
| 3268 | 箭\ | ||
| 3269 | 篇\ | ||
| 3270 | 僵\ | ||
| 3271 | 躺\ | ||
| 3272 | 僻\ | ||
| 3273 | 德\ | ||
| 3274 | 艘\ | ||
| 3275 | 膝\ | ||
| 3276 | 膛\ | ||
| 3277 | 鲤\ | ||
| 3278 | 鲫\ | ||
| 3279 | 熟\ | ||
| 3280 | 摩\ | ||
| 3281 | 褒\ | ||
| 3282 | 瘪\ | ||
| 3283 | 瘤\ | ||
| 3284 | 瘫\ | ||
| 3285 | 凛\ | ||
| 3286 | 颜\ | ||
| 3287 | 毅\ | ||
| 3288 | 糊\ | ||
| 3289 | 遵\ | ||
| 3290 | 憋\ | ||
| 3291 | 潜\ | ||
| 3292 | 澎\ | ||
| 3293 | 潮\ | ||
| 3294 | 潭\ | ||
| 3295 | 鲨\ | ||
| 3296 | 澳\ | ||
| 3297 | 潘\ | ||
| 3298 | 澈\ | ||
| 3299 | 澜\ | ||
| 3300 | 澄\ | ||
| 3301 | 懂\ | ||
| 3302 | 憔\ | ||
| 3303 | 懊\ | ||
| 3304 | 憎\ | ||
| 3305 | 额\ | ||
| 3306 | 翩\ | ||
| 3307 | 褥\ | ||
| 3308 | 谴\ | ||
| 3309 | 鹤\ | ||
| 3310 | 憨\ | ||
| 3311 | 慰\ | ||
| 3312 | 劈\ | ||
| 3313 | 履\ | ||
| 3314 | 豫\ | ||
| 3315 | 缭\ | ||
| 3316 | 撼\ | ||
| 3317 | 擂\ | ||
| 3318 | 操\ | ||
| 3319 | 擅\ | ||
| 3320 | 燕\ | ||
| 3321 | 蕾\ | ||
| 3322 | 薯\ | ||
| 3323 | 薛\ | ||
| 3324 | 薇\ | ||
| 3325 | 擎\ | ||
| 3326 | 薪\ | ||
| 3327 | 薄\ | ||
| 3328 | 颠\ | ||
| 3329 | 翰\ | ||
| 3330 | 噩\ | ||
| 3331 | 橱\ | ||
| 3332 | 橙\ | ||
| 3333 | 橘\ | ||
| 3334 | 整\ | ||
| 3335 | 融\ | ||
| 3336 | 瓢\ | ||
| 3337 | 醒\ | ||
| 3338 | 霍\ | ||
| 3339 | 霎\ | ||
| 3340 | 辙\ | ||
| 3341 | 冀\ | ||
| 3342 | 餐\ | ||
| 3343 | 嘴\ | ||
| 3344 | 踱\ | ||
| 3345 | 蹄\ | ||
| 3346 | 蹂\ | ||
| 3347 | 蟆\ | ||
| 3348 | 螃\ | ||
| 3349 | 器\ | ||
| 3350 | 噪\ | ||
| 3351 | 鹦\ | ||
| 3352 | 赠\ | ||
| 3353 | 默\ | ||
| 3354 | 黔\ | ||
| 3355 | 镜\ | ||
| 3356 | 赞\ | ||
| 3357 | 穆\ | ||
| 3358 | 篮\ | ||
| 3359 | 篡\ | ||
| 3360 | 篷\ | ||
| 3361 | 篱\ | ||
| 3362 | 儒\ | ||
| 3363 | 邀\ | ||
| 3364 | 衡\ | ||
| 3365 | 膨\ | ||
| 3366 | 雕\ | ||
| 3367 | 鲸\ | ||
| 3368 | 磨\ | ||
| 3369 | 瘾\ | ||
| 3370 | 瘸\ | ||
| 3371 | 凝\ | ||
| 3372 | 辨\ | ||
| 3373 | 辩\ | ||
| 3374 | 糙\ | ||
| 3375 | 糖\ | ||
| 3376 | 糕\ | ||
| 3377 | 燃\ | ||
| 3378 | 濒\ | ||
| 3379 | 澡\ | ||
| 3380 | 激\ | ||
| 3381 | 懒\ | ||
| 3382 | 憾\ | ||
| 3383 | 懈\ | ||
| 3384 | 窿\ | ||
| 3385 | 壁\ | ||
| 3386 | 避\ | ||
| 3387 | 缰\ | ||
| 3388 | 缴\ | ||
| 3389 | 戴\ | ||
| 3390 | 擦\ | ||
| 3391 | 藉\ | ||
| 3392 | 鞠\ | ||
| 3393 | 藏\ | ||
| 3394 | 藐\ | ||
| 3395 | 檬\ | ||
| 3396 | 檐\ | ||
| 3397 | 檀\ | ||
| 3398 | 礁\ | ||
| 3399 | 磷\ | ||
| 3400 | 霜\ | ||
| 3401 | 霞\ | ||
| 3402 | 瞭\ | ||
| 3403 | 瞧\ | ||
| 3404 | 瞬\ | ||
| 3405 | 瞳\ | ||
| 3406 | 瞩\ | ||
| 3407 | 瞪\ | ||
| 3408 | 曙\ | ||
| 3409 | 蹋\ | ||
| 3410 | 蹈\ | ||
| 3411 | 螺\ | ||
| 3412 | 蟋\ | ||
| 3413 | 蟀\ | ||
| 3414 | 嚎\ | ||
| 3415 | 赡\ | ||
| 3416 | 穗\ | ||
| 3417 | 魏\ | ||
| 3418 | 簧\ | ||
| 3419 | 簇\ | ||
| 3420 | 繁\ | ||
| 3421 | 徽\ | ||
| 3422 | 爵\ | ||
| 3423 | 朦\ | ||
| 3424 | 臊\ | ||
| 3425 | 鳄\ | ||
| 3426 | 癌\ | ||
| 3427 | 辫\ | ||
| 3428 | 赢\ | ||
| 3429 | 糟\ | ||
| 3430 | 糠\ | ||
| 3431 | 燥\ | ||
| 3432 | 懦\ | ||
| 3433 | 豁\ | ||
| 3434 | 臀\ | ||
| 3435 | 臂\ | ||
| 3436 | 翼\ | ||
| 3437 | 骤\ | ||
| 3438 | 藕\ | ||
| 3439 | 鞭\ | ||
| 3440 | 藤\ | ||
| 3441 | 覆\ | ||
| 3442 | 瞻\ | ||
| 3443 | 蹦\ | ||
| 3444 | 嚣\ | ||
| 3445 | 镰\ | ||
| 3446 | 翻\ | ||
| 3447 | 鳍\ | ||
| 3448 | 鹰\ | ||
| 3449 | 瀑\ | ||
| 3450 | 襟\ | ||
| 3451 | 璧\ | ||
| 3452 | 戳\ | ||
| 3453 | 孽\ | ||
| 3454 | 警\ | ||
| 3455 | 蘑\ | ||
| 3456 | 藻\ | ||
| 3457 | 攀\ | ||
| 3458 | 曝\ | ||
| 3459 | 蹲\ | ||
| 3460 | 蹭\ | ||
| 3461 | 蹬\ | ||
| 3462 | 巅\ | ||
| 3463 | 簸\ | ||
| 3464 | 簿\ | ||
| 3465 | 蟹\ | ||
| 3466 | 颤\ | ||
| 3467 | 靡\ | ||
| 3468 | 癣\ | ||
| 3469 | 瓣\ | ||
| 3470 | 羹\ | ||
| 3471 | 鳖\ | ||
| 3472 | 爆\ | ||
| 3473 | 疆\ | ||
| 3474 | 鬓\ | ||
| 3475 | 壤\ | ||
| 3476 | 馨\ | ||
| 3477 | 耀\ | ||
| 3478 | 躁\ | ||
| 3479 | 蠕\ | ||
| 3480 | 嚼\ | ||
| 3481 | 嚷\ | ||
| 3482 | 巍\ | ||
| 3483 | 籍\ | ||
| 3484 | 鳞\ | ||
| 3485 | 魔\ | ||
| 3486 | 糯\ | ||
| 3487 | 灌\ | ||
| 3488 | 譬\ | ||
| 3489 | 蠢\ | ||
| 3490 | 霸\ | ||
| 3491 | 露\ | ||
| 3492 | 霹\ | ||
| 3493 | 躏\ | ||
| 3494 | 黯\ | ||
| 3495 | 髓\ | ||
| 3496 | 赣\ | ||
| 3497 | 囊\ | ||
| 3498 | 镶\ | ||
| 3499 | 瓤\ | ||
| 3500 | 罐\ | ||
| 3501 | 矗\ | ||
| 3502 | 乂\ | ||
| 3503 | 乜\ | ||
| 3504 | 兀\ | ||
| 3505 | 弋\ | ||
| 3506 | 孑\ | ||
| 3507 | 孓\ | ||
| 3508 | 幺\ | ||
| 3509 | 亓\ | ||
| 3510 | 韦\ | ||
| 3511 | 廿\ | ||
| 3512 | 丏\ | ||
| 3513 | 卅\ | ||
| 3514 | 仄\ | ||
| 3515 | 厄\ | ||
| 3516 | 仃\ | ||
| 3517 | 仉\ | ||
| 3518 | 仂\ | ||
| 3519 | 兮\ | ||
| 3520 | 刈\ | ||
| 3521 | 爻\ | ||
| 3522 | 卞\ | ||
| 3523 | 闩\ | ||
| 3524 | 讣\ | ||
| 3525 | 尹\ | ||
| 3526 | 夬\ | ||
| 3527 | 爿\ | ||
| 3528 | 毋\ | ||
| 3529 | 邗\ | ||
| 3530 | 邛\ | ||
| 3531 | 艽\ | ||
| 3532 | 艿\ | ||
| 3533 | 札\ | ||
| 3534 | 叵\ | ||
| 3535 | 匝\ | ||
| 3536 | 丕\ | ||
| 3537 | 匜\ | ||
| 3538 | 劢\ | ||
| 3539 | 卟\ | ||
| 3540 | 叱\ | ||
| 3541 | 叻\ | ||
| 3542 | 仨\ | ||
| 3543 | 仕\ | ||
| 3544 | 仟\ | ||
| 3545 | 仡\ | ||
| 3546 | 仫\ | ||
| 3547 | 仞\ | ||
| 3548 | 卮\ | ||
| 3549 | 氐\ | ||
| 3550 | 犰\ | ||
| 3551 | 刍\ | ||
| 3552 | 邝\ | ||
| 3553 | 邙\ | ||
| 3554 | 汀\ | ||
| 3555 | 讦\ | ||
| 3556 | 讧\ | ||
| 3557 | 讪\ | ||
| 3558 | 讫\ | ||
| 3559 | 尻\ | ||
| 3560 | 阡\ | ||
| 3561 | 尕\ | ||
| 3562 | 弁\ | ||
| 3563 | 驭\ | ||
| 3564 | 匡\ | ||
| 3565 | 耒\ | ||
| 3566 | 玎\ | ||
| 3567 | 玑\ | ||
| 3568 | 邢\ | ||
| 3569 | 圩\ | ||
| 3570 | 圬\ | ||
| 3571 | 圭\ | ||
| 3572 | 扦\ | ||
| 3573 | 圪\ | ||
| 3574 | 圳\ | ||
| 3575 | 圹\ | ||
| 3576 | 扪\ | ||
| 3577 | 圮\ | ||
| 3578 | 圯\ | ||
| 3579 | 芊\ | ||
| 3580 | 芍\ | ||
| 3581 | 芄\ | ||
| 3582 | 芨\ | ||
| 3583 | 芑\ | ||
| 3584 | 芎\ | ||
| 3585 | 芗\ | ||
| 3586 | 亘\ | ||
| 3587 | 厍\ | ||
| 3588 | 夼\ | ||
| 3589 | 戍\ | ||
| 3590 | 尥\ | ||
| 3591 | 乩\ | ||
| 3592 | 旯\ | ||
| 3593 | 曳\ | ||
| 3594 | 岌\ | ||
| 3595 | 屺\ | ||
| 3596 | 凼\ | ||
| 3597 | 囡\ | ||
| 3598 | 钇\ | ||
| 3599 | 缶\ | ||
| 3600 | 氘\ | ||
| 3601 | 氖\ | ||
| 3602 | 牝\ | ||
| 3603 | 伎\ | ||
| 3604 | 伛\ | ||
| 3605 | 伢\ | ||
| 3606 | 佤\ | ||
| 3607 | 仵\ | ||
| 3608 | 伥\ | ||
| 3609 | 伧\ | ||
| 3610 | 伉\ | ||
| 3611 | 伫\ | ||
| 3612 | 囟\ | ||
| 3613 | 汆\ | ||
| 3614 | 刖\ | ||
| 3615 | 夙\ | ||
| 3616 | 旮\ | ||
| 3617 | 刎\ | ||
| 3618 | 犷\ | ||
| 3619 | 犸\ | ||
| 3620 | 舛\ | ||
| 3621 | 凫\ | ||
| 3622 | 邬\ | ||
| 3623 | 饧\ | ||
| 3624 | 汕\ | ||
| 3625 | 汔\ | ||
| 3626 | 汐\ | ||
| 3627 | 汲\ | ||
| 3628 | 汜\ | ||
| 3629 | 汊\ | ||
| 3630 | 忖\ | ||
| 3631 | 忏\ | ||
| 3632 | 讴\ | ||
| 3633 | 讵\ | ||
| 3634 | 祁\ | ||
| 3635 | 讷\ | ||
| 3636 | 聿\ | ||
| 3637 | 艮\ | ||
| 3638 | 厾\ | ||
| 3639 | 阱\ | ||
| 3640 | 阮\ | ||
| 3641 | 阪\ | ||
| 3642 | 丞\ | ||
| 3643 | 妁\ | ||
| 3644 | 牟\ | ||
| 3645 | 纡\ | ||
| 3646 | 纣\ | ||
| 3647 | 纥\ | ||
| 3648 | 纨\ | ||
| 3649 | 玕\ | ||
| 3650 | 玙\ | ||
| 3651 | 抟\ | ||
| 3652 | 抔\ | ||
| 3653 | 圻\ | ||
| 3654 | 坂\ | ||
| 3655 | 坍\ | ||
| 3656 | 坞\ | ||
| 3657 | 抃\ | ||
| 3658 | 抉\ | ||
| 3659 | 㧐\ | ||
| 3660 | 芫\ | ||
| 3661 | 邯\ | ||
| 3662 | 芸\ | ||
| 3663 | 芾\ | ||
| 3664 | 苈\ | ||
| 3665 | 苣\ | ||
| 3666 | 芷\ | ||
| 3667 | 芮\ | ||
| 3668 | 苋\ | ||
| 3669 | 芼\ | ||
| 3670 | 苌\ | ||
| 3671 | 苁\ | ||
| 3672 | 芩\ | ||
| 3673 | 芪\ | ||
| 3674 | 芡\ | ||
| 3675 | 芟\ | ||
| 3676 | 苄\ | ||
| 3677 | 苎\ | ||
| 3678 | 苡\ | ||
| 3679 | 杌\ | ||
| 3680 | 杓\ | ||
| 3681 | 杞\ | ||
| 3682 | 杈\ | ||
| 3683 | 忑\ | ||
| 3684 | 孛\ | ||
| 3685 | 邴\ | ||
| 3686 | 邳\ | ||
| 3687 | 矶\ | ||
| 3688 | 奁\ | ||
| 3689 | 豕\ | ||
| 3690 | 忒\ | ||
| 3691 | 欤\ | ||
| 3692 | 轫\ | ||
| 3693 | 迓\ | ||
| 3694 | 邶\ | ||
| 3695 | 忐\ | ||
| 3696 | 卣\ | ||
| 3697 | 邺\ | ||
| 3698 | 旰\ | ||
| 3699 | 呋\ | ||
| 3700 | 呒\ | ||
| 3701 | 呓\ | ||
| 3702 | 呔\ | ||
| 3703 | 呖\ | ||
| 3704 | 呃\ | ||
| 3705 | 旸\ | ||
| 3706 | 吡\ | ||
| 3707 | 町\ | ||
| 3708 | 虬\ | ||
| 3709 | 呗\ | ||
| 3710 | 吽\ | ||
| 3711 | 吣\ | ||
| 3712 | 吲\ | ||
| 3713 | 帏\ | ||
| 3714 | 岐\ | ||
| 3715 | 岈\ | ||
| 3716 | 岘\ | ||
| 3717 | 岑\ | ||
| 3718 | 岚\ | ||
| 3719 | 兕\ | ||
| 3720 | 囵\ | ||
| 3721 | 囫\ | ||
| 3722 | 钊\ | ||
| 3723 | 钋\ | ||
| 3724 | 钌\ | ||
| 3725 | 迕\ | ||
| 3726 | 氙\ | ||
| 3727 | 氚\ | ||
| 3728 | 牤\ | ||
| 3729 | 佞\ | ||
| 3730 | 邱\ | ||
| 3731 | 攸\ | ||
| 3732 | 佚\ | ||
| 3733 | 佝\ | ||
| 3734 | 佟\ | ||
| 3735 | 佗\ | ||
| 3736 | 伽\ | ||
| 3737 | 彷\ | ||
| 3738 | 佘\ | ||
| 3739 | 佥\ | ||
| 3740 | 孚\ | ||
| 3741 | 豸\ | ||
| 3742 | 坌\ | ||
| 3743 | 肟\ | ||
| 3744 | 邸\ | ||
| 3745 | 奂\ | ||
| 3746 | 劬\ | ||
| 3747 | 狄\ | ||
| 3748 | 狁\ | ||
| 3749 | 鸠\ | ||
| 3750 | 邹\ | ||
| 3751 | 饨\ | ||
| 3752 | 饩\ | ||
| 3753 | 饪\ | ||
| 3754 | 饫\ | ||
| 3755 | 饬\ | ||
| 3756 | 亨\ | ||
| 3757 | 庑\ | ||
| 3758 | 庋\ | ||
| 3759 | 疔\ | ||
| 3760 | 疖\ | ||
| 3761 | 肓\ | ||
| 3762 | 闱\ | ||
| 3763 | 闳\ | ||
| 3764 | 闵\ | ||
| 3765 | 羌\ | ||
| 3766 | 炀\ | ||
| 3767 | 沣\ | ||
| 3768 | 沅\ | ||
| 3769 | 沔\ | ||
| 3770 | 沤\ | ||
| 3771 | 沌\ | ||
| 3772 | 沏\ | ||
| 3773 | 沚\ | ||
| 3774 | 汩\ | ||
| 3775 | 汨\ | ||
| 3776 | 沂\ | ||
| 3777 | 汾\ | ||
| 3778 | 沨\ | ||
| 3779 | 汴\ | ||
| 3780 | 汶\ | ||
| 3781 | 沆\ | ||
| 3782 | 沩\ | ||
| 3783 | 泐\ | ||
| 3784 | 怃\ | ||
| 3785 | 怄\ | ||
| 3786 | 忡\ | ||
| 3787 | 忤\ | ||
| 3788 | 忾\ | ||
| 3789 | 怅\ | ||
| 3790 | 忻\ | ||
| 3791 | 忪\ | ||
| 3792 | 怆\ | ||
| 3793 | 忭\ | ||
| 3794 | 忸\ | ||
| 3795 | 诂\ | ||
| 3796 | 诃\ | ||
| 3797 | 诅\ | ||
| 3798 | 诋\ | ||
| 3799 | 诌\ | ||
| 3800 | 诏\ | ||
| 3801 | 诒\ | ||
| 3802 | 孜\ | ||
| 3803 | 陇\ | ||
| 3804 | 陀\ | ||
| 3805 | 陂\ | ||
| 3806 | 陉\ | ||
| 3807 | 妍\ | ||
| 3808 | 妩\ | ||
| 3809 | 妪\ | ||
| 3810 | 妣\ | ||
| 3811 | 妊\ | ||
| 3812 | 妗\ | ||
| 3813 | 妫\ | ||
| 3814 | 妞\ | ||
| 3815 | 姒\ | ||
| 3816 | 妤\ | ||
| 3817 | 邵\ | ||
| 3818 | 劭\ | ||
| 3819 | 刭\ | ||
| 3820 | 甬\ | ||
| 3821 | 邰\ | ||
| 3822 | 纭\ | ||
| 3823 | 纰\ | ||
| 3824 | 纴\ | ||
| 3825 | 纶\ | ||
| 3826 | 纾\ | ||
| 3827 | 玮\ | ||
| 3828 | 玡\ | ||
| 3829 | 玭\ | ||
| 3830 | 玠\ | ||
| 3831 | 玢\ | ||
| 3832 | 玥\ | ||
| 3833 | 玦\ | ||
| 3834 | 盂\ | ||
| 3835 | 忝\ | ||
| 3836 | 匦\ | ||
| 3837 | 坩\ | ||
| 3838 | 抨\ | ||
| 3839 | 拤\ | ||
| 3840 | 坫\ | ||
| 3841 | 拈\ | ||
| 3842 | 垆\ | ||
| 3843 | 抻\ | ||
| 3844 | 劼\ | ||
| 3845 | 拃\ | ||
| 3846 | 拊\ | ||
| 3847 | 坼\ | ||
| 3848 | 坻\ | ||
| 3849 | 㧟\ | ||
| 3850 | 坨\ | ||
| 3851 | 坭\ | ||
| 3852 | 抿\ | ||
| 3853 | 坳\ | ||
| 3854 | 耶\ | ||
| 3855 | 苷\ | ||
| 3856 | 苯\ | ||
| 3857 | 苤\ | ||
| 3858 | 茏\ | ||
| 3859 | 苫\ | ||
| 3860 | 苜\ | ||
| 3861 | 苴\ | ||
| 3862 | 苒\ | ||
| 3863 | 苘\ | ||
| 3864 | 茌\ | ||
| 3865 | 苻\ | ||
| 3866 | 苓\ | ||
| 3867 | 茚\ | ||
| 3868 | 茆\ | ||
| 3869 | 茑\ | ||
| 3870 | 茓\ | ||
| 3871 | 茔\ | ||
| 3872 | 茕\ | ||
| 3873 | 茀\ | ||
| 3874 | 苕\ | ||
| 3875 | 枥\ | ||
| 3876 | 枇\ | ||
| 3877 | 杪\ | ||
| 3878 | 杳\ | ||
| 3879 | 枧\ | ||
| 3880 | 杵\ | ||
| 3881 | 枨\ | ||
| 3882 | 枞\ | ||
| 3883 | 枋\ | ||
| 3884 | 杻\ | ||
| 3885 | 杷\ | ||
| 3886 | 杼\ | ||
| 3887 | 矸\ | ||
| 3888 | 砀\ | ||
| 3889 | 刳\ | ||
| 3890 | 奄\ | ||
| 3891 | 瓯\ | ||
| 3892 | 殁\ | ||
| 3893 | 郏\ | ||
| 3894 | 轭\ | ||
| 3895 | 郅\ | ||
| 3896 | 鸢\ | ||
| 3897 | 盱\ | ||
| 3898 | 昊\ | ||
| 3899 | 昙\ | ||
| 3900 | 杲\ | ||
| 3901 | 昃\ | ||
| 3902 | 咂\ | ||
| 3903 | 呸\ | ||
| 3904 | 昕\ | ||
| 3905 | 昀\ | ||
| 3906 | 旻\ | ||
| 3907 | 昉\ | ||
| 3908 | 炅\ | ||
| 3909 | 咔\ | ||
| 3910 | 畀\ | ||
| 3911 | 虮\ | ||
| 3912 | 咀\ | ||
| 3913 | 呷\ | ||
| 3914 | 黾\ | ||
| 3915 | 呱\ | ||
| 3916 | 呤\ | ||
| 3917 | 咚\ | ||
| 3918 | 咆\ | ||
| 3919 | 咛\ | ||
| 3920 | 呶\ | ||
| 3921 | 呣\ | ||
| 3922 | 呦\ | ||
| 3923 | 咝\ | ||
| 3924 | 岢\ | ||
| 3925 | 岿\ | ||
| 3926 | 岬\ | ||
| 3927 | 岫\ | ||
| 3928 | 帙\ | ||
| 3929 | 岣\ | ||
| 3930 | 峁\ | ||
| 3931 | 刿\ | ||
| 3932 | 迥\ | ||
| 3933 | 岷\ | ||
| 3934 | 剀\ | ||
| 3935 | 帔\ | ||
| 3936 | 峄\ | ||
| 3937 | 沓\ | ||
| 3938 | 囹\ | ||
| 3939 | 罔\ | ||
| 3940 | 钍\ | ||
| 3941 | 钎\ | ||
| 3942 | 钏\ | ||
| 3943 | 钒\ | ||
| 3944 | 钕\ | ||
| 3945 | 钗\ | ||
| 3946 | 邾\ | ||
| 3947 | 迮\ | ||
| 3948 | 牦\ | ||
| 3949 | 竺\ | ||
| 3950 | 迤\ | ||
| 3951 | 佶\ | ||
| 3952 | 佬\ | ||
| 3953 | 佰\ | ||
| 3954 | 侑\ | ||
| 3955 | 侉\ | ||
| 3956 | 臾\ | ||
| 3957 | 岱\ | ||
| 3958 | 侗\ | ||
| 3959 | 侃\ | ||
| 3960 | 侏\ | ||
| 3961 | 侩\ | ||
| 3962 | 佻\ | ||
| 3963 | 佾\ | ||
| 3964 | 侪\ | ||
| 3965 | 佼\ | ||
| 3966 | 佯\ | ||
| 3967 | 侬\ | ||
| 3968 | 帛\ | ||
| 3969 | 阜\ | ||
| 3970 | 侔\ | ||
| 3971 | 徂\ | ||
| 3972 | 刽\ | ||
| 3973 | 郄\ | ||
| 3974 | 怂\ | ||
| 3975 | 籴\ | ||
| 3976 | 瓮\ | ||
| 3977 | 戗\ | ||
| 3978 | 肼\ | ||
| 3979 | 䏝\ | ||
| 3980 | 肽\ | ||
| 3981 | 肱\ | ||
| 3982 | 肫\ | ||
| 3983 | 剁\ | ||
| 3984 | 迩\ | ||
| 3985 | 郇\ | ||
| 3986 | 狙\ | ||
| 3987 | 狎\ | ||
| 3988 | 狍\ | ||
| 3989 | 狒\ | ||
| 3990 | 咎\ | ||
| 3991 | 炙\ | ||
| 3992 | 枭\ | ||
| 3993 | 饯\ | ||
| 3994 | 饴\ | ||
| 3995 | 冽\ | ||
| 3996 | 冼\ | ||
| 3997 | 庖\ | ||
| 3998 | 疠\ | ||
| 3999 | 疝\ | ||
| 4000 | 疡\ | ||
| 4001 | 兖\ | ||
| 4002 | 妾\ | ||
| 4003 | 劾\ | ||
| 4004 | 炜\ | ||
| 4005 | 熰\ | ||
| 4006 | 炖\ | ||
| 4007 | 炘\ | ||
| 4008 | 炝\ | ||
| 4009 | 炔\ | ||
| 4010 | 泔\ | ||
| 4011 | 沭\ | ||
| 4012 | 泷\ | ||
| 4013 | 泸\ | ||
| 4014 | 泱\ | ||
| 4015 | 泅\ | ||
| 4016 | 泗\ | ||
| 4017 | 泠\ | ||
| 4018 | 泺\ | ||
| 4019 | 泖\ | ||
| 4020 | 泫\ | ||
| 4021 | 泮\ | ||
| 4022 | 沱\ | ||
| 4023 | 泯\ | ||
| 4024 | 泓\ | ||
| 4025 | 泾\ | ||
| 4026 | 怙\ | ||
| 4027 | 怵\ | ||
| 4028 | 怦\ | ||
| 4029 | 怛\ | ||
| 4030 | 怏\ | ||
| 4031 | 怍\ | ||
| 4032 | 㤘\ | ||
| 4033 | 怩\ | ||
| 4034 | 怫\ | ||
| 4035 | 怿\ | ||
| 4036 | 宕\ | ||
| 4037 | 穹\ | ||
| 4038 | 宓\ | ||
| 4039 | 诓\ | ||
| 4040 | 诔\ | ||
| 4041 | 诖\ | ||
| 4042 | 诘\ | ||
| 4043 | 戾\ | ||
| 4044 | 诙\ | ||
| 4045 | 戽\ | ||
| 4046 | 郓\ | ||
| 4047 | 衩\ | ||
| 4048 | 祆\ | ||
| 4049 | 祎\ | ||
| 4050 | 祉\ | ||
| 4051 | 祇\ | ||
| 4052 | 诛\ | ||
| 4053 | 诜\ | ||
| 4054 | 诟\ | ||
| 4055 | 诠\ | ||
| 4056 | 诣\ | ||
| 4057 | 诤\ | ||
| 4058 | 诧\ | ||
| 4059 | 诨\ | ||
| 4060 | 诩\ | ||
| 4061 | 戕\ | ||
| 4062 | 孢\ | ||
| 4063 | 亟\ | ||
| 4064 | 陔\ | ||
| 4065 | 妲\ | ||
| 4066 | 妯\ | ||
| 4067 | 姗\ | ||
| 4068 | 帑\ | ||
| 4069 | 弩\ | ||
| 4070 | 孥\ | ||
| 4071 | 驽\ | ||
| 4072 | 虱\ | ||
| 4073 | 迦\ | ||
| 4074 | 迨\ | ||
| 4075 | 绀\ | ||
| 4076 | 绁\ | ||
| 4077 | 绂\ | ||
| 4078 | 驷\ | ||
| 4079 | 驸\ | ||
| 4080 | 绉\ | ||
| 4081 | 绌\ | ||
| 4082 | 驿\ | ||
| 4083 | 骀\ | ||
| 4084 | 甾\ | ||
| 4085 | 珏\ | ||
| 4086 | 珐\ | ||
| 4087 | 珂\ | ||
| 4088 | 珑\ | ||
| 4089 | 玳\ | ||
| 4090 | 珀\ | ||
| 4091 | 顸\ | ||
| 4092 | 珉\ | ||
| 4093 | 珈\ | ||
| 4094 | 拮\ | ||
| 4095 | 垭\ | ||
| 4096 | 挝\ | ||
| 4097 | 垣\ | ||
| 4098 | 挞\ | ||
| 4099 | 垤\ | ||
| 4100 | 赳\ | ||
| 4101 | 贲\ | ||
| 4102 | 垱\ | ||
| 4103 | 垌\ | ||
| 4104 | 郝\ | ||
| 4105 | 垧\ | ||
| 4106 | 垓\ | ||
| 4107 | 挦\ | ||
| 4108 | 垠\ | ||
| 4109 | 茜\ | ||
| 4110 | 荚\ | ||
| 4111 | 荑\ | ||
| 4112 | 贳\ | ||
| 4113 | 荜\ | ||
| 4114 | 莒\ | ||
| 4115 | 茼\ | ||
| 4116 | 茴\ | ||
| 4117 | 茱\ | ||
| 4118 | 莛\ | ||
| 4119 | 荞\ | ||
| 4120 | 茯\ | ||
| 4121 | 荏\ | ||
| 4122 | 荇\ | ||
| 4123 | 荃\ | ||
| 4124 | 荟\ | ||
| 4125 | 荀\ | ||
| 4126 | 茗\ | ||
| 4127 | 荠\ | ||
| 4128 | 茭\ | ||
| 4129 | 茨\ | ||
| 4130 | 垩\ | ||
| 4131 | 荥\ | ||
| 4132 | 荦\ | ||
| 4133 | 荨\ | ||
| 4134 | 荩\ | ||
| 4135 | 剋\ | ||
| 4136 | 荪\ | ||
| 4137 | 茹\ | ||
| 4138 | 荬\ | ||
| 4139 | 荮\ | ||
| 4140 | 柰\ | ||
| 4141 | 栉\ | ||
| 4142 | 柯\ | ||
| 4143 | 柘\ | ||
| 4144 | 栊\ | ||
| 4145 | 柩\ | ||
| 4146 | 枰\ | ||
| 4147 | 栌\ | ||
| 4148 | 柙\ | ||
| 4149 | 枵\ | ||
| 4150 | 柚\ | ||
| 4151 | 枳\ | ||
| 4152 | 柞\ | ||
| 4153 | 柝\ | ||
| 4154 | 栀\ | ||
| 4155 | 柢\ | ||
| 4156 | 栎\ | ||
| 4157 | 枸\ | ||
| 4158 | 柈\ | ||
| 4159 | 柁\ | ||
| 4160 | 枷\ | ||
| 4161 | 柽\ | ||
| 4162 | 剌\ | ||
| 4163 | 酊\ | ||
| 4164 | 郦\ | ||
| 4165 | 甭\ | ||
| 4166 | 砗\ | ||
| 4167 | 砘\ | ||
| 4168 | 砒\ | ||
| 4169 | 斫\ | ||
| 4170 | 砭\ | ||
| 4171 | 砜\ | ||
| 4172 | 奎\ | ||
| 4173 | 耷\ | ||
| 4174 | 虺\ | ||
| 4175 | 殂\ | ||
| 4176 | 殇\ | ||
| 4177 | 殄\ | ||
| 4178 | 殆\ | ||
| 4179 | 轱\ | ||
| 4180 | 轲\ | ||
| 4181 | 轳\ | ||
| 4182 | 轶\ | ||
| 4183 | 轸\ | ||
| 4184 | 虿\ | ||
| 4185 | 毖\ | ||
| 4186 | 觇\ | ||
| 4187 | 尜\ | ||
| 4188 | 哐\ | ||
| 4189 | 眄\ | ||
| 4190 | 眍\ | ||
| 4191 | 𠳐\ | ||
| 4192 | 郢\ | ||
| 4193 | 眇\ | ||
| 4194 | 眊\ | ||
| 4195 | 眈\ | ||
| 4196 | 禺\ | ||
| 4197 | 哂\ | ||
| 4198 | 咴\ | ||
| 4199 | 曷\ | ||
| 4200 | 昴\ | ||
| 4201 | 昱\ | ||
| 4202 | 昵\ | ||
| 4203 | 咦\ | ||
| 4204 | 哓\ | ||
| 4205 | 哔\ | ||
| 4206 | 畎\ | ||
| 4207 | 毗\ | ||
| 4208 | 呲\ | ||
| 4209 | 胄\ | ||
| 4210 | 畋\ | ||
| 4211 | 畈\ | ||
| 4212 | 虼\ | ||
| 4213 | 虻\ | ||
| 4214 | 盅\ | ||
| 4215 | 咣\ | ||
| 4216 | 哕\ | ||
| 4217 | 剐\ | ||
| 4218 | 郧\ | ||
| 4219 | 咻\ | ||
| 4220 | 囿\ | ||
| 4221 | 咿\ | ||
| 4222 | 哌\ | ||
| 4223 | 哙\ | ||
| 4224 | 哚\ | ||
| 4225 | 咯\ | ||
| 4226 | 咩\ | ||
| 4227 | 咤\ | ||
| 4228 | 哝\ | ||
| 4229 | 哏\ | ||
| 4230 | 哞\ | ||
| 4231 | 峙\ | ||
| 4232 | 峣\ | ||
| 4233 | 罘\ | ||
| 4234 | 帧\ | ||
| 4235 | 峒\ | ||
| 4236 | 峤\ | ||
| 4237 | 峋\ | ||
| 4238 | 峥\ | ||
| 4239 | 贶\ | ||
| 4240 | 钚\ | ||
| 4241 | 钛\ | ||
| 4242 | 钡\ | ||
| 4243 | 钣\ | ||
| 4244 | 钤\ | ||
| 4245 | 钨\ | ||
| 4246 | 钫\ | ||
| 4247 | 钯\ | ||
| 4248 | 氡\ | ||
| 4249 | 氟\ | ||
| 4250 | 牯\ | ||
| 4251 | 郜\ | ||
| 4252 | 秕\ | ||
| 4253 | 秭\ | ||
| 4254 | 竽\ | ||
| 4255 | 笈\ | ||
| 4256 | 笃\ | ||
| 4257 | 俦\ | ||
| 4258 | 俨\ | ||
| 4259 | 俅\ | ||
| 4260 | 俪\ | ||
| 4261 | 叟\ | ||
| 4262 | 垡\ | ||
| 4263 | 牮\ | ||
| 4264 | 俣\ | ||
| 4265 | 俚\ | ||
| 4266 | 皈\ | ||
| 4267 | 俑\ | ||
| 4268 | 俟\ | ||
| 4269 | 逅\ | ||
| 4270 | 徇\ | ||
| 4271 | 徉\ | ||
| 4272 | 舢\ | ||
| 4273 | 俞\ | ||
| 4274 | 郗\ | ||
| 4275 | 俎\ | ||
| 4276 | 郤\ | ||
| 4277 | 爰\ | ||
| 4278 | 郛\ | ||
| 4279 | 瓴\ | ||
| 4280 | 胨\ | ||
| 4281 | 胪\ | ||
| 4282 | 胛\ | ||
| 4283 | 胂\ | ||
| 4284 | 胙\ | ||
| 4285 | 胍\ | ||
| 4286 | 胗\ | ||
| 4287 | 胝\ | ||
| 4288 | 朐\ | ||
| 4289 | 胫\ | ||
| 4290 | 鸨\ | ||
| 4291 | 匍\ | ||
| 4292 | 狨\ | ||
| 4293 | 狯\ | ||
| 4294 | 飑\ | ||
| 4295 | 狩\ | ||
| 4296 | 狲\ | ||
| 4297 | 訇\ | ||
| 4298 | 逄\ | ||
| 4299 | 昝\ | ||
| 4300 | 饷\ | ||
| 4301 | 饸\ | ||
| 4302 | 饹\ | ||
| 4303 | 胤\ | ||
| 4304 | 孪\ | ||
| 4305 | 娈\ | ||
| 4306 | 弈\ | ||
| 4307 | 奕\ | ||
| 4308 | 庥\ | ||
| 4309 | 疬\ | ||
| 4310 | 疣\ | ||
| 4311 | 疥\ | ||
| 4312 | 疭\ | ||
| 4313 | 庠\ | ||
| 4314 | 竑\ | ||
| 4315 | 彦\ | ||
| 4316 | 飒\ | ||
| 4317 | 闼\ | ||
| 4318 | 闾\ | ||
| 4319 | 闿\ | ||
| 4320 | 阂\ | ||
| 4321 | 羑\ | ||
| 4322 | 迸\ | ||
| 4323 | 籼\ | ||
| 4324 | 酋\ | ||
| 4325 | 炳\ | ||
| 4326 | 炻\ | ||
| 4327 | 炽\ | ||
| 4328 | 炯\ | ||
| 4329 | 烀\ | ||
| 4330 | 炷\ | ||
| 4331 | 烃\ | ||
| 4332 | 洱\ | ||
| 4333 | 洹\ | ||
| 4334 | 洧\ | ||
| 4335 | 洌\ | ||
| 4336 | 浃\ | ||
| 4337 | 洇\ | ||
| 4338 | 洄\ | ||
| 4339 | 洙\ | ||
| 4340 | 涎\ | ||
| 4341 | 洎\ | ||
| 4342 | 洫\ | ||
| 4343 | 浍\ | ||
| 4344 | 洮\ | ||
| 4345 | 洵\ | ||
| 4346 | 浒\ | ||
| 4347 | 浔\ | ||
| 4348 | 浕\ | ||
| 4349 | 洳\ | ||
| 4350 | 恸\ | ||
| 4351 | 恓\ | ||
| 4352 | 恹\ | ||
| 4353 | 恫\ | ||
| 4354 | 恺\ | ||
| 4355 | 恻\ | ||
| 4356 | 恂\ | ||
| 4357 | 恪\ | ||
| 4358 | 恽\ | ||
| 4359 | 宥\ | ||
| 4360 | 扃\ | ||
| 4361 | 衲\ | ||
| 4362 | 衽\ | ||
| 4363 | 衿\ | ||
| 4364 | 袂\ | ||
| 4365 | 祛\ | ||
| 4366 | 祜\ | ||
| 4367 | 祓\ | ||
| 4368 | 祚\ | ||
| 4369 | 诮\ | ||
| 4370 | 祗\ | ||
| 4371 | 祢\ | ||
| 4372 | 诰\ | ||
| 4373 | 诳\ | ||
| 4374 | 鸩\ | ||
| 4375 | 昶\ | ||
| 4376 | 郡\ | ||
| 4377 | 咫\ | ||
| 4378 | 弭\ | ||
| 4379 | 牁\ | ||
| 4380 | 胥\ | ||
| 4381 | 陛\ | ||
| 4382 | 陟\ | ||
| 4383 | 娅\ | ||
| 4384 | 姮\ | ||
| 4385 | 娆\ | ||
| 4386 | 姝\ | ||
| 4387 | 姣\ | ||
| 4388 | 姘\ | ||
| 4389 | 姹\ | ||
| 4390 | 怼\ | ||
| 4391 | 羿\ | ||
| 4392 | 炱\ | ||
| 4393 | 矜\ | ||
| 4394 | 绔\ | ||
| 4395 | 骁\ | ||
| 4396 | 骅\ | ||
| 4397 | 绗\ | ||
| 4398 | 绛\ | ||
| 4399 | 骈\ | ||
| 4400 | 耖\ | ||
| 4401 | 挈\ | ||
| 4402 | 珥\ | ||
| 4403 | 珙\ | ||
| 4404 | 顼\ | ||
| 4405 | 珰\ | ||
| 4406 | 珩\ | ||
| 4407 | 珧\ | ||
| 4408 | 珣\ | ||
| 4409 | 珞\ | ||
| 4410 | 琤\ | ||
| 4411 | 珲\ | ||
| 4412 | 敖\ | ||
| 4413 | 恚\ | ||
| 4414 | 埔\ | ||
| 4415 | 埕\ | ||
| 4416 | 埘\ | ||
| 4417 | 埙\ | ||
| 4418 | 埚\ | ||
| 4419 | 挹\ | ||
| 4420 | 耆\ | ||
| 4421 | 耄\ | ||
| 4422 | 埒\ | ||
| 4423 | 捋\ | ||
| 4424 | 贽\ | ||
| 4425 | 垸\ | ||
| 4426 | 捃\ | ||
| 4427 | 盍\ | ||
| 4428 | 荸\ | ||
| 4429 | 莆\ | ||
| 4430 | 莳\ | ||
| 4431 | 莴\ | ||
| 4432 | 莪\ | ||
| 4433 | 莠\ | ||
| 4434 | 莓\ | ||
| 4435 | 莜\ | ||
| 4436 | 莅\ | ||
| 4437 | 荼\ | ||
| 4438 | 莩\ | ||
| 4439 | 荽\ | ||
| 4440 | 莸\ | ||
| 4441 | 荻\ | ||
| 4442 | 莘\ | ||
| 4443 | 莎\ | ||
| 4444 | 莞\ | ||
| 4445 | 莨\ | ||
| 4446 | 鸪\ | ||
| 4447 | 莼\ | ||
| 4448 | 栲\ | ||
| 4449 | 栳\ | ||
| 4450 | 郴\ | ||
| 4451 | 桓\ | ||
| 4452 | 桡\ | ||
| 4453 | 桎\ | ||
| 4454 | 桢\ | ||
| 4455 | 桤\ | ||
| 4456 | 梃\ | ||
| 4457 | 栝\ | ||
| 4458 | 桕\ | ||
| 4459 | 桁\ | ||
| 4460 | 桧\ | ||
| 4461 | 桅\ | ||
| 4462 | 栟\ | ||
| 4463 | 桉\ | ||
| 4464 | 栩\ | ||
| 4465 | 逑\ | ||
| 4466 | 逋\ | ||
| 4467 | 彧\ | ||
| 4468 | 鬲\ | ||
| 4469 | 豇\ | ||
| 4470 | 酐\ | ||
| 4471 | 逦\ | ||
| 4472 | 厝\ | ||
| 4473 | 孬\ | ||
| 4474 | 砝\ | ||
| 4475 | 砹\ | ||
| 4476 | 砺\ | ||
| 4477 | 砧\ | ||
| 4478 | 砷\ | ||
| 4479 | 砟\ | ||
| 4480 | 砼\ | ||
| 4481 | 砥\ | ||
| 4482 | 砣\ | ||
| 4483 | 剞\ | ||
| 4484 | 砻\ | ||
| 4485 | 轼\ | ||
| 4486 | 轾\ | ||
| 4487 | 辂\ | ||
| 4488 | 鸫\ | ||
| 4489 | 趸\ | ||
| 4490 | 龀\ | ||
| 4491 | 鸬\ | ||
| 4492 | 虔\ | ||
| 4493 | 逍\ | ||
| 4494 | 眬\ | ||
| 4495 | 唛\ | ||
| 4496 | 晟\ | ||
| 4497 | 眩\ | ||
| 4498 | 眙\ | ||
| 4499 | 哧\ | ||
| 4500 | 哽\ | ||
| 4501 | 唔\ | ||
| 4502 | 晁\ | ||
| 4503 | 晏\ | ||
| 4504 | 鸮\ | ||
| 4505 | 趵\ | ||
| 4506 | 趿\ | ||
| 4507 | 畛\ | ||
| 4508 | 蚨\ | ||
| 4509 | 蚜\ | ||
| 4510 | 蚍\ | ||
| 4511 | 蚋\ | ||
| 4512 | 蚬\ | ||
| 4513 | 蚝\ | ||
| 4514 | 蚧\ | ||
| 4515 | 唢\ | ||
| 4516 | 圄\ | ||
| 4517 | 唣\ | ||
| 4518 | 唏\ | ||
| 4519 | 盎\ | ||
| 4520 | 唑\ | ||
| 4521 | 崂\ | ||
| 4522 | 崃\ | ||
| 4523 | 罡\ | ||
| 4524 | 罟\ | ||
| 4525 | 峪\ | ||
| 4526 | 觊\ | ||
| 4527 | 赅\ | ||
| 4528 | 钰\ | ||
| 4529 | 钲\ | ||
| 4530 | 钴\ | ||
| 4531 | 钵\ | ||
| 4532 | 钹\ | ||
| 4533 | 钺\ | ||
| 4534 | 钽\ | ||
| 4535 | 钼\ | ||
| 4536 | 钿\ | ||
| 4537 | 铀\ | ||
| 4538 | 铂\ | ||
| 4539 | 铄\ | ||
| 4540 | 铆\ | ||
| 4541 | 铈\ | ||
| 4542 | 铉\ | ||
| 4543 | 铊\ | ||
| 4544 | 铋\ | ||
| 4545 | 铌\ | ||
| 4546 | 铍\ | ||
| 4547 | 䥽\ | ||
| 4548 | 铎\ | ||
| 4549 | 氩\ | ||
| 4550 | 氤\ | ||
| 4551 | 氦\ | ||
| 4552 | 毪\ | ||
| 4553 | 舐\ | ||
| 4554 | 秣\ | ||
| 4555 | 秫\ | ||
| 4556 | 盉\ | ||
| 4557 | 笄\ | ||
| 4558 | 笕\ | ||
| 4559 | 笊\ | ||
| 4560 | 笏\ | ||
| 4561 | 笆\ | ||
| 4562 | 俸\ | ||
| 4563 | 倩\ | ||
| 4564 | 俵\ | ||
| 4565 | 偌\ | ||
| 4566 | 俳\ | ||
| 4567 | 俶\ | ||
| 4568 | 倬\ | ||
| 4569 | 倏\ | ||
| 4570 | 恁\ | ||
| 4571 | 倭\ | ||
| 4572 | 倪\ | ||
| 4573 | 俾\ | ||
| 4574 | 倜\ | ||
| 4575 | 隼\ | ||
| 4576 | 隽\ | ||
| 4577 | 倌\ | ||
| 4578 | 倥\ | ||
| 4579 | 臬\ | ||
| 4580 | 皋\ | ||
| 4581 | 郫\ | ||
| 4582 | 倨\ | ||
| 4583 | 衄\ | ||
| 4584 | 颀\ | ||
| 4585 | 徕\ | ||
| 4586 | 舫\ | ||
| 4587 | 釜\ | ||
| 4588 | 奚\ | ||
| 4589 | 衾\ | ||
| 4590 | 胯\ | ||
| 4591 | 胱\ | ||
| 4592 | 胴\ | ||
| 4593 | 胭\ | ||
| 4594 | 脍\ | ||
| 4595 | 胼\ | ||
| 4596 | 朕\ | ||
| 4597 | 脒\ | ||
| 4598 | 胺\ | ||
| 4599 | 鸱\ | ||
| 4600 | 玺\ | ||
| 4601 | 鸲\ | ||
| 4602 | 狷\ | ||
| 4603 | 猁\ | ||
| 4604 | 狳\ | ||
| 4605 | 猃\ | ||
| 4606 | 狺\ | ||
| 4607 | 逖\ | ||
| 4608 | 桀\ | ||
| 4609 | 袅\ | ||
| 4610 | 饽\ | ||
| 4611 | 凇\ | ||
| 4612 | 栾\ | ||
| 4613 | 挛\ | ||
| 4614 | 亳\ | ||
| 4615 | 疳\ | ||
| 4616 | 疴\ | ||
| 4617 | 疸\ | ||
| 4618 | 疽\ | ||
| 4619 | 痈\ | ||
| 4620 | 疱\ | ||
| 4621 | 痂\ | ||
| 4622 | 痉\ | ||
| 4623 | 衮\ | ||
| 4624 | 凋\ | ||
| 4625 | 颃\ | ||
| 4626 | 恣\ | ||
| 4627 | 旆\ | ||
| 4628 | 旄\ | ||
| 4629 | 旃\ | ||
| 4630 | 阃\ | ||
| 4631 | 阄\ | ||
| 4632 | 訚\ | ||
| 4633 | 阆\ | ||
| 4634 | 恙\ | ||
| 4635 | 粑\ | ||
| 4636 | 朔\ | ||
| 4637 | 郸\ | ||
| 4638 | 烜\ | ||
| 4639 | 烨\ | ||
| 4640 | 烩\ | ||
| 4641 | 烊\ | ||
| 4642 | 剡\ | ||
| 4643 | 郯\ | ||
| 4644 | 烬\ | ||
| 4645 | 涑\ | ||
| 4646 | 浯\ | ||
| 4647 | 涞\ | ||
| 4648 | 涟\ | ||
| 4649 | 娑\ | ||
| 4650 | 涅\ | ||
| 4651 | 涠\ | ||
| 4652 | 浞\ | ||
| 4653 | 涓\ | ||
| 4654 | 浥\ | ||
| 4655 | 涔\ | ||
| 4656 | 浜\ | ||
| 4657 | 浠\ | ||
| 4658 | 浣\ | ||
| 4659 | 浚\ | ||
| 4660 | 悚\ | ||
| 4661 | 悭\ | ||
| 4662 | 悝\ | ||
| 4663 | 悒\ | ||
| 4664 | 悌\ | ||
| 4665 | 悛\ | ||
| 4666 | 宸\ | ||
| 4667 | 窈\ | ||
| 4668 | 剜\ | ||
| 4669 | 诹\ | ||
| 4670 | 冢\ | ||
| 4671 | 诼\ | ||
| 4672 | 袒\ | ||
| 4673 | 袢\ | ||
| 4674 | 祯\ | ||
| 4675 | 诿\ | ||
| 4676 | 谀\ | ||
| 4677 | 谂\ | ||
| 4678 | 谄\ | ||
| 4679 | 谇\ | ||
| 4680 | 屐\ | ||
| 4681 | 屙\ | ||
| 4682 | 陬\ | ||
| 4683 | 勐\ | ||
| 4684 | 奘\ | ||
| 4685 | 牂\ | ||
| 4686 | 蚩\ | ||
| 4687 | 陲\ | ||
| 4688 | 姬\ | ||
| 4689 | 娠\ | ||
| 4690 | 娌\ | ||
| 4691 | 娉\ | ||
| 4692 | 娲\ | ||
| 4693 | 娩\ | ||
| 4694 | 娴\ | ||
| 4695 | 娣\ | ||
| 4696 | 娓\ | ||
| 4697 | 婀\ | ||
| 4698 | 畚\ | ||
| 4699 | 逡\ | ||
| 4700 | 绠\ | ||
| 4701 | 骊\ | ||
| 4702 | 绡\ | ||
| 4703 | 骋\ | ||
| 4704 | 绥\ | ||
| 4705 | 绦\ | ||
| 4706 | 绨\ | ||
| 4707 | 骎\ | ||
| 4708 | 邕\ | ||
| 4709 | 鸶\ | ||
| 4710 | 彗\ | ||
| 4711 | 耜\ | ||
| 4712 | 焘\ | ||
| 4713 | 舂\ | ||
| 4714 | 琏\ | ||
| 4715 | 琇\ | ||
| 4716 | 麸\ | ||
| 4717 | 揶\ | ||
| 4718 | 埴\ | ||
| 4719 | 埯\ | ||
| 4720 | 捯\ | ||
| 4721 | 掳\ | ||
| 4722 | 掴\ | ||
| 4723 | 埸\ | ||
| 4724 | 埵\ | ||
| 4725 | 赧\ | ||
| 4726 | 埤\ | ||
| 4727 | 捭\ | ||
| 4728 | 逵\ | ||
| 4729 | 埝\ | ||
| 4730 | 堋\ | ||
| 4731 | 堍\ | ||
| 4732 | 掬\ | ||
| 4733 | 鸷\ | ||
| 4734 | 掖\ | ||
| 4735 | 捽\ | ||
| 4736 | 掊\ | ||
| 4737 | 堉\ | ||
| 4738 | 掸\ | ||
| 4739 | 捩\ | ||
| 4740 | 掮\ | ||
| 4741 | 悫\ | ||
| 4742 | 埭\ | ||
| 4743 | 埽\ | ||
| 4744 | 掇\ | ||
| 4745 | 掼\ | ||
| 4746 | 聃\ | ||
| 4747 | 菁\ | ||
| 4748 | 萁\ | ||
| 4749 | 菘\ | ||
| 4750 | 堇\ | ||
| 4751 | 萘\ | ||
| 4752 | 萋\ | ||
| 4753 | 菽\ | ||
| 4754 | 菖\ | ||
| 4755 | 萜\ | ||
| 4756 | 萸\ | ||
| 4757 | 萑\ | ||
| 4758 | 棻\ | ||
| 4759 | 菔\ | ||
| 4760 | 菟\ | ||
| 4761 | 萏\ | ||
| 4762 | 萃\ | ||
| 4763 | 菏\ | ||
| 4764 | 菹\ | ||
| 4765 | 菪\ | ||
| 4766 | 菅\ | ||
| 4767 | 菀\ | ||
| 4768 | 萦\ | ||
| 4769 | 菰\ | ||
| 4770 | 菡\ | ||
| 4771 | 梵\ | ||
| 4772 | 梿\ | ||
| 4773 | 梏\ | ||
| 4774 | 觋\ | ||
| 4775 | 桴\ | ||
| 4776 | 桷\ | ||
| 4777 | 梓\ | ||
| 4778 | 棁\ | ||
| 4779 | 桫\ | ||
| 4780 | 棂\ | ||
| 4781 | 啬\ | ||
| 4782 | 郾\ | ||
| 4783 | 匮\ | ||
| 4784 | 敕\ | ||
| 4785 | 豉\ | ||
| 4786 | 鄄\ | ||
| 4787 | 酞\ | ||
| 4788 | 酚\ | ||
| 4789 | 戛\ | ||
| 4790 | 硎\ | ||
| 4791 | 硭\ | ||
| 4792 | 硒\ | ||
| 4793 | 硖\ | ||
| 4794 | 硗\ | ||
| 4795 | 硐\ | ||
| 4796 | 硇\ | ||
| 4797 | 硌\ | ||
| 4798 | 鸸\ | ||
| 4799 | 瓠\ | ||
| 4800 | 匏\ | ||
| 4801 | 厩\ | ||
| 4802 | 龚\ | ||
| 4803 | 殒\ | ||
| 4804 | 殓\ | ||
| 4805 | 殍\ | ||
| 4806 | 赉\ | ||
| 4807 | 雩\ | ||
| 4808 | 辄\ | ||
| 4809 | 堑\ | ||
| 4810 | 眭\ | ||
| 4811 | 眦\ | ||
| 4812 | 啧\ | ||
| 4813 | 晡\ | ||
| 4814 | 晤\ | ||
| 4815 | 眺\ | ||
| 4816 | 眵\ | ||
| 4817 | 眸\ | ||
| 4818 | 圊\ | ||
| 4819 | 喏\ | ||
| 4820 | 喵\ | ||
| 4821 | 啉\ | ||
| 4822 | 勖\ | ||
| 4823 | 晞\ | ||
| 4824 | 唵\ | ||
| 4825 | 晗\ | ||
| 4826 | 冕\ | ||
| 4827 | 啭\ | ||
| 4828 | 畦\ | ||
| 4829 | 趺\ | ||
| 4830 | 啮\ | ||
| 4831 | 跄\ | ||
| 4832 | 蚶\ | ||
| 4833 | 蛄\ | ||
| 4834 | 蛎\ | ||
| 4835 | 蛆\ | ||
| 4836 | 蚰\ | ||
| 4837 | 蛊\ | ||
| 4838 | 圉\ | ||
| 4839 | 蚱\ | ||
| 4840 | 蛉\ | ||
| 4841 | 蛏\ | ||
| 4842 | 蚴\ | ||
| 4843 | 啁\ | ||
| 4844 | 啕\ | ||
| 4845 | 唿\ | ||
| 4846 | 啐\ | ||
| 4847 | 唼\ | ||
| 4848 | 唷\ | ||
| 4849 | 啖\ | ||
| 4850 | 啵\ | ||
| 4851 | 啶\ | ||
| 4852 | 啷\ | ||
| 4853 | 唳\ | ||
| 4854 | 唰\ | ||
| 4855 | 啜\ | ||
| 4856 | 帻\ | ||
| 4857 | 崚\ | ||
| 4858 | 崦\ | ||
| 4859 | 帼\ | ||
| 4860 | 崮\ | ||
| 4861 | 崤\ | ||
| 4862 | 崆\ | ||
| 4863 | 赇\ | ||
| 4864 | 赈\ | ||
| 4865 | 赊\ | ||
| 4866 | 铑\ | ||
| 4867 | 铒\ | ||
| 4868 | 铗\ | ||
| 4869 | 铙\ | ||
| 4870 | 铟\ | ||
| 4871 | 铠\ | ||
| 4872 | 铡\ | ||
| 4873 | 铢\ | ||
| 4874 | 铣\ | ||
| 4875 | 铤\ | ||
| 4876 | 铧\ | ||
| 4877 | 铨\ | ||
| 4878 | 铩\ | ||
| 4879 | 铪\ | ||
| 4880 | 铫\ | ||
| 4881 | 铬\ | ||
| 4882 | 铮\ | ||
| 4883 | 铯\ | ||
| 4884 | 铰\ | ||
| 4885 | 铱\ | ||
| 4886 | 铳\ | ||
| 4887 | 铵\ | ||
| 4888 | 铷\ | ||
| 4889 | 氪\ | ||
| 4890 | 牾\ | ||
| 4891 | 鸹\ | ||
| 4892 | 秾\ | ||
| 4893 | 逶\ | ||
| 4894 | 笺\ | ||
| 4895 | 筇\ | ||
| 4896 | 笸\ | ||
| 4897 | 笪\ | ||
| 4898 | 笮\ | ||
| 4899 | 笠\ | ||
| 4900 | 笥\ | ||
| 4901 | 笤\ | ||
| 4902 | 笳\ | ||
| 4903 | 笾\ | ||
| 4904 | 笞\ | ||
| 4905 | 偾\ | ||
| 4906 | 偃\ | ||
| 4907 | 偕\ | ||
| 4908 | 偈\ | ||
| 4909 | 傀\ | ||
| 4910 | 偬\ | ||
| 4911 | 偻\ | ||
| 4912 | 皑\ | ||
| 4913 | 皎\ | ||
| 4914 | 鸻\ | ||
| 4915 | 徜\ | ||
| 4916 | 舸\ | ||
| 4917 | 舻\ | ||
| 4918 | 舴\ | ||
| 4919 | 舷\ | ||
| 4920 | 龛\ | ||
| 4921 | 翎\ | ||
| 4922 | 脬\ | ||
| 4923 | 脘\ | ||
| 4924 | 脲\ | ||
| 4925 | 匐\ | ||
| 4926 | 猗\ | ||
| 4927 | 猡\ | ||
| 4928 | 猞\ | ||
| 4929 | 猝\ | ||
| 4930 | 斛\ | ||
| 4931 | 猕\ | ||
| 4932 | 馗\ | ||
| 4933 | 馃\ | ||
| 4934 | 馄\ | ||
| 4935 | 鸾\ | ||
| 4936 | 孰\ | ||
| 4937 | 庹\ | ||
| 4938 | 庾\ | ||
| 4939 | 痔\ | ||
| 4940 | 痍\ | ||
| 4941 | 疵\ | ||
| 4942 | 翊\ | ||
| 4943 | 旌\ | ||
| 4944 | 旎\ | ||
| 4945 | 袤\ | ||
| 4946 | 阇\ | ||
| 4947 | 阈\ | ||
| 4948 | 阉\ | ||
| 4949 | 阊\ | ||
| 4950 | 阋\ | ||
| 4951 | 阍\ | ||
| 4952 | 阏\ | ||
| 4953 | 羟\ | ||
| 4954 | 粝\ | ||
| 4955 | 粕\ | ||
| 4956 | 敝\ | ||
| 4957 | 焐\ | ||
| 4958 | 烯\ | ||
| 4959 | 焓\ | ||
| 4960 | 烽\ | ||
| 4961 | 焖\ | ||
| 4962 | 烷\ | ||
| 4963 | 焗\ | ||
| 4964 | 渍\ | ||
| 4965 | 渚\ | ||
| 4966 | 淇\ | ||
| 4967 | 淅\ | ||
| 4968 | 淞\ | ||
| 4969 | 渎\ | ||
| 4970 | 涿\ | ||
| 4971 | 淖\ | ||
| 4972 | 挲\ | ||
| 4973 | 淠\ | ||
| 4974 | 涸\ | ||
| 4975 | 渑\ | ||
| 4976 | 淦\ | ||
| 4977 | 淝\ | ||
| 4978 | 淬\ | ||
| 4979 | 涪\ | ||
| 4980 | 淙\ | ||
| 4981 | 涫\ | ||
| 4982 | 渌\ | ||
| 4983 | 淄\ | ||
| 4984 | 惬\ | ||
| 4985 | 悻\ | ||
| 4986 | 悱\ | ||
| 4987 | 惝\ | ||
| 4988 | 惘\ | ||
| 4989 | 悸\ | ||
| 4990 | 惆\ | ||
| 4991 | 惚\ | ||
| 4992 | 惇\ | ||
| 4993 | 惮\ | ||
| 4994 | 窕\ | ||
| 4995 | 谌\ | ||
| 4996 | 谏\ | ||
| 4997 | 扈\ | ||
| 4998 | 皲\ | ||
| 4999 | 谑\ | ||
| 5000 | 裆\ | ||
| 5001 | 袷\ | ||
| 5002 | 裉\ | ||
| 5003 | 谒\ | ||
| 5004 | 谔\ | ||
| 5005 | 谕\ | ||
| 5006 | 谖\ | ||
| 5007 | 谗\ | ||
| 5008 | 谙\ | ||
| 5009 | 谛\ | ||
| 5010 | 谝\ | ||
| 5011 | 逯\ | ||
| 5012 | 郿\ | ||
| 5013 | 隈\ | ||
| 5014 | 粜\ | ||
| 5015 | 隍\ | ||
| 5016 | 隗\ | ||
| 5017 | 婧\ | ||
| 5018 | 婊\ | ||
| 5019 | 婕\ | ||
| 5020 | 娼\ | ||
| 5021 | 婢\ | ||
| 5022 | 婵\ | ||
| 5023 | 胬\ | ||
| 5024 | 袈\ | ||
| 5025 | 翌\ | ||
| 5026 | 恿\ | ||
| 5027 | 欸\ | ||
| 5028 | 绫\ | ||
| 5029 | 骐\ | ||
| 5030 | 绮\ | ||
| 5031 | 绯\ | ||
| 5032 | 绱\ | ||
| 5033 | 骒\ | ||
| 5034 | 绲\ | ||
| 5035 | 骓\ | ||
| 5036 | 绶\ | ||
| 5037 | 绺\ | ||
| 5038 | 绻\ | ||
| 5039 | 绾\ | ||
| 5040 | 骖\ | ||
| 5041 | 缁\ | ||
| 5042 | 耠\ | ||
| 5043 | 琫\ | ||
| 5044 | 琵\ | ||
| 5045 | 琶\ | ||
| 5046 | 琪\ | ||
| 5047 | 瑛\ | ||
| 5048 | 琦\ | ||
| 5049 | 琥\ | ||
| 5050 | 琨\ | ||
| 5051 | 靓\ | ||
| 5052 | 琰\ | ||
| 5053 | 琮\ | ||
| 5054 | 琯\ | ||
| 5055 | 琬\ | ||
| 5056 | 琛\ | ||
| 5057 | 琚\ | ||
| 5058 | 辇\ | ||
| 5059 | 鼋\ | ||
| 5060 | 揳\ | ||
| 5061 | 堞\ | ||
| 5062 | 搽\ | ||
| 5063 | 揸\ | ||
| 5064 | 揠\ | ||
| 5065 | 堙\ | ||
| 5066 | 趄\ | ||
| 5067 | 揖\ | ||
| 5068 | 颉\ | ||
| 5069 | 塄\ | ||
| 5070 | 揿\ | ||
| 5071 | 耋\ | ||
| 5072 | 揄\ | ||
| 5073 | 蛩\ | ||
| 5074 | 蛰\ | ||
| 5075 | 塆\ | ||
| 5076 | 摒\ | ||
| 5077 | 揆\ | ||
| 5078 | 掾\ | ||
| 5079 | 聒\ | ||
| 5080 | 葑\ | ||
| 5081 | 葚\ | ||
| 5082 | 靰\ | ||
| 5083 | 靸\ | ||
| 5084 | 葳\ | ||
| 5085 | 葺\ | ||
| 5086 | 葸\ | ||
| 5087 | 萼\ | ||
| 5088 | 葆\ | ||
| 5089 | 葩\ | ||
| 5090 | 葶\ | ||
| 5091 | 蒌\ | ||
| 5092 | 萱\ | ||
| 5093 | 戟\ | ||
| 5094 | 葭\ | ||
| 5095 | 楮\ | ||
| 5096 | 棼\ | ||
| 5097 | 椟\ | ||
| 5098 | 棹\ | ||
| 5099 | 椤\ | ||
| 5100 | 棰\ | ||
| 5101 | 赍\ | ||
| 5102 | 椋\ | ||
| 5103 | 椁\ | ||
| 5104 | 椪\ | ||
| 5105 | 棣\ | ||
| 5106 | 椐\ | ||
| 5107 | 鹁\ | ||
| 5108 | 覃\ | ||
| 5109 | 酤\ | ||
| 5110 | 酢\ | ||
| 5111 | 酡\ | ||
| 5112 | 鹂\ | ||
| 5113 | 厥\ | ||
| 5114 | 殚\ | ||
| 5115 | 殛\ | ||
| 5116 | 雯\ | ||
| 5117 | 雱\ | ||
| 5118 | 辊\ | ||
| 5119 | 辋\ | ||
| 5120 | 椠\ | ||
| 5121 | 辍\ | ||
| 5122 | 辎\ | ||
| 5123 | 斐\ | ||
| 5124 | 睄\ | ||
| 5125 | 睑\ | ||
| 5126 | 睇\ | ||
| 5127 | 睃\ | ||
| 5128 | 戢\ | ||
| 5129 | 喋\ | ||
| 5130 | 嗒\ | ||
| 5131 | 喃\ | ||
| 5132 | 喱\ | ||
| 5133 | 喹\ | ||
| 5134 | 晷\ | ||
| 5135 | 喈\ | ||
| 5136 | 跖\ | ||
| 5137 | 跗\ | ||
| 5138 | 跞\ | ||
| 5139 | 跚\ | ||
| 5140 | 跎\ | ||
| 5141 | 跏\ | ||
| 5142 | 跆\ | ||
| 5143 | 蛱\ | ||
| 5144 | 蛲\ | ||
| 5145 | 蛭\ | ||
| 5146 | 蛳\ | ||
| 5147 | 蛐\ | ||
| 5148 | 蛔\ | ||
| 5149 | 蛞\ | ||
| 5150 | 蛴\ | ||
| 5151 | 蛟\ | ||
| 5152 | 蛘\ | ||
| 5153 | 喁\ | ||
| 5154 | 喟\ | ||
| 5155 | 啾\ | ||
| 5156 | 嗖\ | ||
| 5157 | 喑\ | ||
| 5158 | 嗟\ | ||
| 5159 | 喽\ | ||
| 5160 | 嗞\ | ||
| 5161 | 喀\ | ||
| 5162 | 喔\ | ||
| 5163 | 喙\ | ||
| 5164 | 嵘\ | ||
| 5165 | 嵖\ | ||
| 5166 | 崴\ | ||
| 5167 | 遄\ | ||
| 5168 | 詈\ | ||
| 5169 | 嵎\ | ||
| 5170 | 崽\ | ||
| 5171 | 嵬\ | ||
| 5172 | 嵛\ | ||
| 5173 | 嵯\ | ||
| 5174 | 嵝\ | ||
| 5175 | 嵫\ | ||
| 5176 | 幄\ | ||
| 5177 | 嵋\ | ||
| 5178 | 赕\ | ||
| 5179 | 铻\ | ||
| 5180 | 铼\ | ||
| 5181 | 铿\ | ||
| 5182 | 锃\ | ||
| 5183 | 锂\ | ||
| 5184 | 锆\ | ||
| 5185 | 锇\ | ||
| 5186 | 锉\ | ||
| 5187 | 锏\ | ||
| 5188 | 锑\ | ||
| 5189 | 锒\ | ||
| 5190 | 锔\ | ||
| 5191 | 锕\ | ||
| 5192 | 掣\ | ||
| 5193 | 矬\ | ||
| 5194 | 氰\ | ||
| 5195 | 毳\ | ||
| 5196 | 毽\ | ||
| 5197 | 犊\ | ||
| 5198 | 犄\ | ||
| 5199 | 犋\ | ||
| 5200 | 鹄\ | ||
| 5201 | 犍\ | ||
| 5202 | 嵇\ | ||
| 5203 | 黍\ | ||
| 5204 | 稃\ | ||
| 5205 | 稂\ | ||
| 5206 | 筚\ | ||
| 5207 | 筵\ | ||
| 5208 | 筌\ | ||
| 5209 | 傣\ | ||
| 5210 | 傈\ | ||
| 5211 | 舄\ | ||
| 5212 | 牍\ | ||
| 5213 | 傥\ | ||
| 5214 | 傧\ | ||
| 5215 | 遑\ | ||
| 5216 | 傩\ | ||
| 5217 | 遁\ | ||
| 5218 | 徨\ | ||
| 5219 | 媭\ | ||
| 5220 | 畲\ | ||
| 5221 | 弑\ | ||
| 5222 | 颌\ | ||
| 5223 | 翕\ | ||
| 5224 | 釉\ | ||
| 5225 | 鹆\ | ||
| 5226 | 舜\ | ||
| 5227 | 貂\ | ||
| 5228 | 腈\ | ||
| 5229 | 腌\ | ||
| 5230 | 腓\ | ||
| 5231 | 腆\ | ||
| 5232 | 腴\ | ||
| 5233 | 腑\ | ||
| 5234 | 腚\ | ||
| 5235 | 腱\ | ||
| 5236 | 鱿\ | ||
| 5237 | 鲀\ | ||
| 5238 | 鲂\ | ||
| 5239 | 颍\ | ||
| 5240 | 猢\ | ||
| 5241 | 猹\ | ||
| 5242 | 猥\ | ||
| 5243 | 飓\ | ||
| 5244 | 觞\ | ||
| 5245 | 觚\ | ||
| 5246 | 猱\ | ||
| 5247 | 颎\ | ||
| 5248 | 飧\ | ||
| 5249 | 馇\ | ||
| 5250 | 馊\ | ||
| 5251 | 亵\ | ||
| 5252 | 脔\ | ||
| 5253 | 裒\ | ||
| 5254 | 痣\ | ||
| 5255 | 痨\ | ||
| 5256 | 痦\ | ||
| 5257 | 痞\ | ||
| 5258 | 痤\ | ||
| 5259 | 痫\ | ||
| 5260 | 痧\ | ||
| 5261 | 赓\ | ||
| 5262 | 竦\ | ||
| 5263 | 瓿\ | ||
| 5264 | 啻\ | ||
| 5265 | 颏\ | ||
| 5266 | 鹇\ | ||
| 5267 | 阑\ | ||
| 5268 | 阒\ | ||
| 5269 | 阕\ | ||
| 5270 | 粞\ | ||
| 5271 | 遒\ | ||
| 5272 | 孳\ | ||
| 5273 | 焯\ | ||
| 5274 | 焜\ | ||
| 5275 | 焙\ | ||
| 5276 | 焱\ | ||
| 5277 | 鹈\ | ||
| 5278 | 湛\ | ||
| 5279 | 渫\ | ||
| 5280 | 湮\ | ||
| 5281 | 湎\ | ||
| 5282 | 湜\ | ||
| 5283 | 渭\ | ||
| 5284 | 湍\ | ||
| 5285 | 湫\ | ||
| 5286 | 溲\ | ||
| 5287 | 湟\ | ||
| 5288 | 溆\ | ||
| 5289 | 湲\ | ||
| 5290 | 湔\ | ||
| 5291 | 湉\ | ||
| 5292 | 渥\ | ||
| 5293 | 湄\ | ||
| 5294 | 滁\ | ||
| 5295 | 愠\ | ||
| 5296 | 惺\ | ||
| 5297 | 愦\ | ||
| 5298 | 惴\ | ||
| 5299 | 愀\ | ||
| 5300 | 愎\ | ||
| 5301 | 愔\ | ||
| 5302 | 喾\ | ||
| 5303 | 寐\ | ||
| 5304 | 谟\ | ||
| 5305 | 扉\ | ||
| 5306 | 裢\ | ||
| 5307 | 裎\ | ||
| 5308 | 裥\ | ||
| 5309 | 祾\ | ||
| 5310 | 祺\ | ||
| 5311 | 谠\ | ||
| 5312 | 幂\ | ||
| 5313 | 谡\ | ||
| 5314 | 谥\ | ||
| 5315 | 谧\ | ||
| 5316 | 遐\ | ||
| 5317 | 孱\ | ||
| 5318 | 弼\ | ||
| 5319 | 巽\ | ||
| 5320 | 骘\ | ||
| 5321 | 媪\ | ||
| 5322 | 媛\ | ||
| 5323 | 婷\ | ||
| 5324 | 巯\ | ||
| 5325 | 翚\ | ||
| 5326 | 皴\ | ||
| 5327 | 婺\ | ||
| 5328 | 骛\ | ||
| 5329 | 缂\ | ||
| 5330 | 缃\ | ||
| 5331 | 缄\ | ||
| 5332 | 彘\ | ||
| 5333 | 缇\ | ||
| 5334 | 缈\ | ||
| 5335 | 缌\ | ||
| 5336 | 缑\ | ||
| 5337 | 缒\ | ||
| 5338 | 缗\ | ||
| 5339 | 飨\ | ||
| 5340 | 耢\ | ||
| 5341 | 瑚\ | ||
| 5342 | 瑁\ | ||
| 5343 | 瑜\ | ||
| 5344 | 瑗\ | ||
| 5345 | 瑄\ | ||
| 5346 | 瑕\ | ||
| 5347 | 遨\ | ||
| 5348 | 骜\ | ||
| 5349 | 韫\ | ||
| 5350 | 髡\ | ||
| 5351 | 塬\ | ||
| 5352 | 鄢\ | ||
| 5353 | 趔\ | ||
| 5354 | 趑\ | ||
| 5355 | 摅\ | ||
| 5356 | 摁\ | ||
| 5357 | 蜇\ | ||
| 5358 | 搋\ | ||
| 5359 | 搪\ | ||
| 5360 | 搐\ | ||
| 5361 | 搛\ | ||
| 5362 | 搠\ | ||
| 5363 | 摈\ | ||
| 5364 | 彀\ | ||
| 5365 | 毂\ | ||
| 5366 | 搦\ | ||
| 5367 | 搡\ | ||
| 5368 | 蓁\ | ||
| 5369 | 戡\ | ||
| 5370 | 蓍\ | ||
| 5371 | 鄞\ | ||
| 5372 | 靳\ | ||
| 5373 | 蓐\ | ||
| 5374 | 蓦\ | ||
| 5375 | 鹋\ | ||
| 5376 | 蒽\ | ||
| 5377 | 蓓\ | ||
| 5378 | 蓖\ | ||
| 5379 | 蓊\ | ||
| 5380 | 蒯\ | ||
| 5381 | 蓟\ | ||
| 5382 | 蓑\ | ||
| 5383 | 蒿\ | ||
| 5384 | 蒺\ | ||
| 5385 | 蓠\ | ||
| 5386 | 蒟\ | ||
| 5387 | 蒡\ | ||
| 5388 | 蒹\ | ||
| 5389 | 蒴\ | ||
| 5390 | 蒗\ | ||
| 5391 | 蓥\ | ||
| 5392 | 颐\ | ||
| 5393 | 楔\ | ||
| 5394 | 楠\ | ||
| 5395 | 楂\ | ||
| 5396 | 楝\ | ||
| 5397 | 楫\ | ||
| 5398 | 楸\ | ||
| 5399 | 椴\ | ||
| 5400 | 槌\ | ||
| 5401 | 楯\ | ||
| 5402 | 皙\ | ||
| 5403 | 榈\ | ||
| 5404 | 槎\ | ||
| 5405 | 榉\ | ||
| 5406 | 楦\ | ||
| 5407 | 楣\ | ||
| 5408 | 楹\ | ||
| 5409 | 椽\ | ||
| 5410 | 裘\ | ||
| 5411 | 剽\ | ||
| 5412 | 甄\ | ||
| 5413 | 酮\ | ||
| 5414 | 酰\ | ||
| 5415 | 酯\ | ||
| 5416 | 酩\ | ||
| 5417 | 蜃\ | ||
| 5418 | 碛\ | ||
| 5419 | 碓\ | ||
| 5420 | 硼\ | ||
| 5421 | 碉\ | ||
| 5422 | 碚\ | ||
| 5423 | 碇\ | ||
| 5424 | 碜\ | ||
| 5425 | 鹌\ | ||
| 5426 | 辏\ | ||
| 5427 | 龃\ | ||
| 5428 | 龅\ | ||
| 5429 | 訾\ | ||
| 5430 | 粲\ | ||
| 5431 | 虞\ | ||
| 5432 | 睚\ | ||
| 5433 | 嗪\ | ||
| 5434 | 韪\ | ||
| 5435 | 嗷\ | ||
| 5436 | 嗉\ | ||
| 5437 | 睨\ | ||
| 5438 | 睢\ | ||
| 5439 | 雎\ | ||
| 5440 | 睥\ | ||
| 5441 | 嘟\ | ||
| 5442 | 嗑\ | ||
| 5443 | 嗫\ | ||
| 5444 | 嗬\ | ||
| 5445 | 嗔\ | ||
| 5446 | 嗝\ | ||
| 5447 | 戥\ | ||
| 5448 | 嗄\ | ||
| 5449 | 煦\ | ||
| 5450 | 暄\ | ||
| 5451 | 遢\ | ||
| 5452 | 暌\ | ||
| 5453 | 跬\ | ||
| 5454 | 跶\ | ||
| 5455 | 跸\ | ||
| 5456 | 跐\ | ||
| 5457 | 跣\ | ||
| 5458 | 跹\ | ||
| 5459 | 跻\ | ||
| 5460 | 蛸\ | ||
| 5461 | 蜊\ | ||
| 5462 | 蜍\ | ||
| 5463 | 蜉\ | ||
| 5464 | 蜣\ | ||
| 5465 | 畹\ | ||
| 5466 | 蛹\ | ||
| 5467 | 嗣\ | ||
| 5468 | 嗯\ | ||
| 5469 | 嗥\ | ||
| 5470 | 嗲\ | ||
| 5471 | 嗳\ | ||
| 5472 | 嗌\ | ||
| 5473 | 嗍\ | ||
| 5474 | 嗨\ | ||
| 5475 | 嗐\ | ||
| 5476 | 嗤\ | ||
| 5477 | 嗵\ | ||
| 5478 | 罨\ | ||
| 5479 | 嵊\ | ||
| 5480 | 嵩\ | ||
| 5481 | 嵴\ | ||
| 5482 | 骰\ | ||
| 5483 | 锗\ | ||
| 5484 | 锛\ | ||
| 5485 | 锜\ | ||
| 5486 | 锝\ | ||
| 5487 | 锞\ | ||
| 5488 | 锟\ | ||
| 5489 | 锢\ | ||
| 5490 | 锨\ | ||
| 5491 | 锩\ | ||
| 5492 | 锭\ | ||
| 5493 | 锱\ | ||
| 5494 | 雉\ | ||
| 5495 | 氲\ | ||
| 5496 | 犏\ | ||
| 5497 | 歃\ | ||
| 5498 | 稞\ | ||
| 5499 | 稗\ | ||
| 5500 | 稔\ | ||
| 5501 | 筠\ | ||
| 5502 | 筢\ | ||
| 5503 | 筮\ | ||
| 5504 | 筲\ | ||
| 5505 | 筱\ | ||
| 5506 | 牒\ | ||
| 5507 | 煲\ | ||
| 5508 | 敫\ | ||
| 5509 | 徭\ | ||
| 5510 | 愆\ | ||
| 5511 | 艄\ | ||
| 5512 | 觎\ | ||
| 5513 | 毹\ | ||
| 5514 | 貊\ | ||
| 5515 | 貅\ | ||
| 5516 | 貉\ | ||
| 5517 | 颔\ | ||
| 5518 | 腠\ | ||
| 5519 | 腩\ | ||
| 5520 | 腼\ | ||
| 5521 | 腭\ | ||
| 5522 | 腧\ | ||
| 5523 | 塍\ | ||
| 5524 | 媵\ | ||
| 5525 | 詹\ | ||
| 5526 | 鲅\ | ||
| 5527 | 鲆\ | ||
| 5528 | 鲇\ | ||
| 5529 | 鲈\ | ||
| 5530 | 稣\ | ||
| 5531 | 鲋\ | ||
| 5532 | 鲐\ | ||
| 5533 | 肄\ | ||
| 5534 | 鹐\ | ||
| 5535 | 飕\ | ||
| 5536 | 觥\ | ||
| 5537 | 遛\ | ||
| 5538 | 馐\ | ||
| 5539 | 鹑\ | ||
| 5540 | 亶\ | ||
| 5541 | 瘃\ | ||
| 5542 | 痱\ | ||
| 5543 | 痼\ | ||
| 5544 | 痿\ | ||
| 5545 | 瘐\ | ||
| 5546 | 瘁\ | ||
| 5547 | 瘆\ | ||
| 5548 | 麂\ | ||
| 5549 | 裔\ | ||
| 5550 | 歆\ | ||
| 5551 | 旒\ | ||
| 5552 | 雍\ | ||
| 5553 | 阖\ | ||
| 5554 | 阗\ | ||
| 5555 | 阙\ | ||
| 5556 | 羧\ | ||
| 5557 | 豢\ | ||
| 5558 | 粳\ | ||
| 5559 | 猷\ | ||
| 5560 | 煳\ | ||
| 5561 | 煜\ | ||
| 5562 | 煨\ | ||
| 5563 | 煅\ | ||
| 5564 | 煊\ | ||
| 5565 | 煸\ | ||
| 5566 | 煺\ | ||
| 5567 | 滟\ | ||
| 5568 | 溱\ | ||
| 5569 | 溘\ | ||
| 5570 | 漭\ | ||
| 5571 | 滢\ | ||
| 5572 | 溥\ | ||
| 5573 | 溧\ | ||
| 5574 | 溽\ | ||
| 5575 | 裟\ | ||
| 5576 | 溻\ | ||
| 5577 | 溷\ | ||
| 5578 | 滗\ | ||
| 5579 | 滫\ | ||
| 5580 | 溴\ | ||
| 5581 | 滏\ | ||
| 5582 | 滃\ | ||
| 5583 | 滦\ | ||
| 5584 | 溏\ | ||
| 5585 | 滂\ | ||
| 5586 | 滓\ | ||
| 5587 | 溟\ | ||
| 5588 | 滪\ | ||
| 5589 | 愫\ | ||
| 5590 | 慑\ | ||
| 5591 | 慊\ | ||
| 5592 | 鲎\ | ||
| 5593 | 骞\ | ||
| 5594 | 窦\ | ||
| 5595 | 窠\ | ||
| 5596 | 窣\ | ||
| 5597 | 裱\ | ||
| 5598 | 褚\ | ||
| 5599 | 裨\ | ||
| 5600 | 裾\ | ||
| 5601 | 裰\ | ||
| 5602 | 禊\ | ||
| 5603 | 谩\ | ||
| 5604 | 谪\ | ||
| 5605 | 媾\ | ||
| 5606 | 嫫\ | ||
| 5607 | 媲\ | ||
| 5608 | 嫒\ | ||
| 5609 | 嫔\ | ||
| 5610 | 媸\ | ||
| 5611 | 缙\ | ||
| 5612 | 缜\ | ||
| 5613 | 缛\ | ||
| 5614 | 辔\ | ||
| 5615 | 骝\ | ||
| 5616 | 缟\ | ||
| 5617 | 缡\ | ||
| 5618 | 缢\ | ||
| 5619 | 缣\ | ||
| 5620 | 骟\ | ||
| 5621 | 耥\ | ||
| 5622 | 璈\ | ||
| 5623 | 瑶\ | ||
| 5624 | 瑭\ | ||
| 5625 | 獒\ | ||
| 5626 | 觏\ | ||
| 5627 | 慝\ | ||
| 5628 | 嫠\ | ||
| 5629 | 韬\ | ||
| 5630 | 叆\ | ||
| 5631 | 髦\ | ||
| 5632 | 摽\ | ||
| 5633 | 墁\ | ||
| 5634 | 撂\ | ||
| 5635 | 摞\ | ||
| 5636 | 撄\ | ||
| 5637 | 翥\ | ||
| 5638 | 踅\ | ||
| 5639 | 摭\ | ||
| 5640 | 墉\ | ||
| 5641 | 墒\ | ||
| 5642 | 榖\ | ||
| 5643 | 綦\ | ||
| 5644 | 蔫\ | ||
| 5645 | 蔷\ | ||
| 5646 | 靺\ | ||
| 5647 | 靼\ | ||
| 5648 | 鞅\ | ||
| 5649 | 靿\ | ||
| 5650 | 甍\ | ||
| 5651 | 蔸\ | ||
| 5652 | 蔟\ | ||
| 5653 | 蔺\ | ||
| 5654 | 戬\ | ||
| 5655 | 蕖\ | ||
| 5656 | 蔻\ | ||
| 5657 | 蓿\ | ||
| 5658 | 斡\ | ||
| 5659 | 鹕\ | ||
| 5660 | 蓼\ | ||
| 5661 | 榛\ | ||
| 5662 | 榧\ | ||
| 5663 | 榻\ | ||
| 5664 | 榫\ | ||
| 5665 | 榭\ | ||
| 5666 | 槔\ | ||
| 5667 | 榱\ | ||
| 5668 | 槁\ | ||
| 5669 | 槟\ | ||
| 5670 | 槠\ | ||
| 5671 | 榷\ | ||
| 5672 | 僰\ | ||
| 5673 | 酽\ | ||
| 5674 | 酶\ | ||
| 5675 | 酹\ | ||
| 5676 | 厮\ | ||
| 5677 | 碡\ | ||
| 5678 | 碴\ | ||
| 5679 | 碣\ | ||
| 5680 | 碲\ | ||
| 5681 | 磋\ | ||
| 5682 | 臧\ | ||
| 5683 | 豨\ | ||
| 5684 | 殡\ | ||
| 5685 | 霆\ | ||
| 5686 | 霁\ | ||
| 5687 | 辕\ | ||
| 5688 | 蜚\ | ||
| 5689 | 裴\ | ||
| 5690 | 翡\ | ||
| 5691 | 龇\ | ||
| 5692 | 龈\ | ||
| 5693 | 睿\ | ||
| 5694 | 䁖\ | ||
| 5695 | 睽\ | ||
| 5696 | 嘞\ | ||
| 5697 | 嘈\ | ||
| 5698 | 嘌\ | ||
| 5699 | 嘁\ | ||
| 5700 | 嘎\ | ||
| 5701 | 暧\ | ||
| 5702 | 暝\ | ||
| 5703 | 踌\ | ||
| 5704 | 踉\ | ||
| 5705 | 蜞\ | ||
| 5706 | 蜥\ | ||
| 5707 | 蜮\ | ||
| 5708 | 蝈\ | ||
| 5709 | 蜴\ | ||
| 5710 | 蜱\ | ||
| 5711 | 蜩\ | ||
| 5712 | 蜷\ | ||
| 5713 | 蜿\ | ||
| 5714 | 螂\ | ||
| 5715 | 蜢\ | ||
| 5716 | 嘘\ | ||
| 5717 | 嘡\ | ||
| 5718 | 鹗\ | ||
| 5719 | 嘣\ | ||
| 5720 | 嘤\ | ||
| 5721 | 嘚\ | ||
| 5722 | 嗾\ | ||
| 5723 | 嘧\ | ||
| 5724 | 罴\ | ||
| 5725 | 罱\ | ||
| 5726 | 幔\ | ||
| 5727 | 嶂\ | ||
| 5728 | 幛\ | ||
| 5729 | 赙\ | ||
| 5730 | 罂\ | ||
| 5731 | 骷\ | ||
| 5732 | 骶\ | ||
| 5733 | 鹘\ | ||
| 5734 | 锲\ | ||
| 5735 | 锴\ | ||
| 5736 | 锶\ | ||
| 5737 | 锷\ | ||
| 5738 | 锸\ | ||
| 5739 | 锵\ | ||
| 5740 | 镁\ | ||
| 5741 | 镂\ | ||
| 5742 | 犒\ | ||
| 5743 | 箐\ | ||
| 5744 | 箦\ | ||
| 5745 | 箧\ | ||
| 5746 | 箍\ | ||
| 5747 | 箸\ | ||
| 5748 | 箬\ | ||
| 5749 | 箅\ | ||
| 5750 | 箪\ | ||
| 5751 | 箔\ | ||
| 5752 | 箜\ | ||
| 5753 | 箢\ | ||
| 5754 | 箓\ | ||
| 5755 | 毓\ | ||
| 5756 | 僖\ | ||
| 5757 | 儆\ | ||
| 5758 | 僳\ | ||
| 5759 | 僭\ | ||
| 5760 | 劁\ | ||
| 5761 | 僮\ | ||
| 5762 | 魃\ | ||
| 5763 | 魆\ | ||
| 5764 | 睾\ | ||
| 5765 | 艋\ | ||
| 5766 | 鄱\ | ||
| 5767 | 膈\ | ||
| 5768 | 膑\ | ||
| 5769 | 鲑\ | ||
| 5770 | 鲔\ | ||
| 5771 | 鲚\ | ||
| 5772 | 鲛\ | ||
| 5773 | 鲟\ | ||
| 5774 | 獐\ | ||
| 5775 | 觫\ | ||
| 5776 | 雒\ | ||
| 5777 | 夤\ | ||
| 5778 | 馑\ | ||
| 5779 | 銮\ | ||
| 5780 | 塾\ | ||
| 5781 | 麽\ | ||
| 5782 | 瘌\ | ||
| 5783 | 瘊\ | ||
| 5784 | 瘘\ | ||
| 5785 | 瘙\ | ||
| 5786 | 廖\ | ||
| 5787 | 韶\ | ||
| 5788 | 旖\ | ||
| 5789 | 膂\ | ||
| 5790 | 阚\ | ||
| 5791 | 鄯\ | ||
| 5792 | 鲞\ | ||
| 5793 | 粿\ | ||
| 5794 | 粼\ | ||
| 5795 | 粽\ | ||
| 5796 | 糁\ | ||
| 5797 | 槊\ | ||
| 5798 | 鹚\ | ||
| 5799 | 熘\ | ||
| 5800 | 熥\ | ||
| 5801 | 潢\ | ||
| 5802 | 漕\ | ||
| 5803 | 滹\ | ||
| 5804 | 漯\ | ||
| 5805 | 漶\ | ||
| 5806 | 潋\ | ||
| 5807 | 潴\ | ||
| 5808 | 漪\ | ||
| 5809 | 漉\ | ||
| 5810 | 漳\ | ||
| 5811 | 漩\ | ||
| 5812 | 澉\ | ||
| 5813 | 潍\ | ||
| 5814 | 慵\ | ||
| 5815 | 搴\ | ||
| 5816 | 窨\ | ||
| 5817 | 寤\ | ||
| 5818 | 綮\ | ||
| 5819 | 谮\ | ||
| 5820 | 褡\ | ||
| 5821 | 褙\ | ||
| 5822 | 褓\ | ||
| 5823 | 褛\ | ||
| 5824 | 褊\ | ||
| 5825 | 谯\ | ||
| 5826 | 谰\ | ||
| 5827 | 谲\ | ||
| 5828 | 暨\ | ||
| 5829 | 屣\ | ||
| 5830 | 鹛\ | ||
| 5831 | 嫣\ | ||
| 5832 | 嫱\ | ||
| 5833 | 嫖\ | ||
| 5834 | 嫦\ | ||
| 5835 | 嫚\ | ||
| 5836 | 嫘\ | ||
| 5837 | 嫡\ | ||
| 5838 | 鼐\ | ||
| 5839 | 翟\ | ||
| 5840 | 瞀\ | ||
| 5841 | 鹜\ | ||
| 5842 | 骠\ | ||
| 5843 | 缥\ | ||
| 5844 | 缦\ | ||
| 5845 | 缧\ | ||
| 5846 | 缨\ | ||
| 5847 | 骢\ | ||
| 5848 | 缪\ | ||
| 5849 | 缫\ | ||
| 5850 | 耦\ | ||
| 5851 | 耧\ | ||
| 5852 | 瑾\ | ||
| 5853 | 璜\ | ||
| 5854 | 璀\ | ||
| 5855 | 璎\ | ||
| 5856 | 璁\ | ||
| 5857 | 璋\ | ||
| 5858 | 璇\ | ||
| 5859 | 奭\ | ||
| 5860 | 髯\ | ||
| 5861 | 髫\ | ||
| 5862 | 撷\ | ||
| 5863 | 撅\ | ||
| 5864 | 赭\ | ||
| 5865 | 撸\ | ||
| 5866 | 鋆\ | ||
| 5867 | 撙\ | ||
| 5868 | 撺\ | ||
| 5869 | 墀\ | ||
| 5870 | 聩\ | ||
| 5871 | 觐\ | ||
| 5872 | 鞑\ | ||
| 5873 | 蕙\ | ||
| 5874 | 鞒\ | ||
| 5875 | 蕈\ | ||
| 5876 | 蕨\ | ||
| 5877 | 蕤\ | ||
| 5878 | 蕞\ | ||
| 5879 | 蕺\ | ||
| 5880 | 瞢\ | ||
| 5881 | 蕃\ | ||
| 5882 | 蕲\ | ||
| 5883 | 赜\ | ||
| 5884 | 槿\ | ||
| 5885 | 樯\ | ||
| 5886 | 槭\ | ||
| 5887 | 樗\ | ||
| 5888 | 樘\ | ||
| 5889 | 樊\ | ||
| 5890 | 槲\ | ||
| 5891 | 醌\ | ||
| 5892 | 醅\ | ||
| 5893 | 靥\ | ||
| 5894 | 魇\ | ||
| 5895 | 餍\ | ||
| 5896 | 磔\ | ||
| 5897 | 磙\ | ||
| 5898 | 霈\ | ||
| 5899 | 辘\ | ||
| 5900 | 龉\ | ||
| 5901 | 龊\ | ||
| 5902 | 觑\ | ||
| 5903 | 瞌\ | ||
| 5904 | 瞋\ | ||
| 5905 | 瞑\ | ||
| 5906 | 嘭\ | ||
| 5907 | 噎\ | ||
| 5908 | 噶\ | ||
| 5909 | 颙\ | ||
| 5910 | 暹\ | ||
| 5911 | 噘\ | ||
| 5912 | 踔\ | ||
| 5913 | 踝\ | ||
| 5914 | 踟\ | ||
| 5915 | 踒\ | ||
| 5916 | 踬\ | ||
| 5917 | 踮\ | ||
| 5918 | 踯\ | ||
| 5919 | 踺\ | ||
| 5920 | 踞\ | ||
| 5921 | 蝽\ | ||
| 5922 | 蝾\ | ||
| 5923 | 蝻\ | ||
| 5924 | 蝰\ | ||
| 5925 | 蝮\ | ||
| 5926 | 螋\ | ||
| 5927 | 蝓\ | ||
| 5928 | 蝣\ | ||
| 5929 | 蝼\ | ||
| 5930 | 噗\ | ||
| 5931 | 嘬\ | ||
| 5932 | 颚\ | ||
| 5933 | 噍\ | ||
| 5934 | 噢\ | ||
| 5935 | 噙\ | ||
| 5936 | 噜\ | ||
| 5937 | 噌\ | ||
| 5938 | 噔\ | ||
| 5939 | 颛\ | ||
| 5940 | 幞\ | ||
| 5941 | 幡\ | ||
| 5942 | 嶙\ | ||
| 5943 | 嶝\ | ||
| 5944 | 骺\ | ||
| 5945 | 骼\ | ||
| 5946 | 骸\ | ||
| 5947 | 镊\ | ||
| 5948 | 镉\ | ||
| 5949 | 镌\ | ||
| 5950 | 镍\ | ||
| 5951 | 镏\ | ||
| 5952 | 镒\ | ||
| 5953 | 镓\ | ||
| 5954 | 镔\ | ||
| 5955 | 稷\ | ||
| 5956 | 箴\ | ||
| 5957 | 篑\ | ||
| 5958 | 篁\ | ||
| 5959 | 篌\ | ||
| 5960 | 篆\ | ||
| 5961 | 牖\ | ||
| 5962 | 儋\ | ||
| 5963 | 徵\ | ||
| 5964 | 磐\ | ||
| 5965 | 虢\ | ||
| 5966 | 鹞\ | ||
| 5967 | 膘\ | ||
| 5968 | 滕\ | ||
| 5969 | 鲠\ | ||
| 5970 | 鲡\ | ||
| 5971 | 鲢\ | ||
| 5972 | 鲣\ | ||
| 5973 | 鲥\ | ||
| 5974 | 鲧\ | ||
| 5975 | 鲩\ | ||
| 5976 | 獗\ | ||
| 5977 | 獠\ | ||
| 5978 | 觯\ | ||
| 5979 | 馓\ | ||
| 5980 | 馔\ | ||
| 5981 | 麾\ | ||
| 5982 | 廛\ | ||
| 5983 | 瘛\ | ||
| 5984 | 瘼\ | ||
| 5985 | 瘢\ | ||
| 5986 | 瘠\ | ||
| 5987 | 齑\ | ||
| 5988 | 羯\ | ||
| 5989 | 羰\ | ||
| 5990 | 𥻗\ | ||
| 5991 | 遴\ | ||
| 5992 | 糌\ | ||
| 5993 | 糍\ | ||
| 5994 | 糅\ | ||
| 5995 | 熜\ | ||
| 5996 | 熵\ | ||
| 5997 | 熠\ | ||
| 5998 | 澍\ | ||
| 5999 | 澌\ | ||
| 6000 | 潸\ | ||
| 6001 | 潦\ | ||
| 6002 | 潲\ | ||
| 6003 | 鋈\ | ||
| 6004 | 潟\ | ||
| 6005 | 潼\ | ||
| 6006 | 潺\ | ||
| 6007 | 憬\ | ||
| 6008 | 憧\ | ||
| 6009 | 寮\ | ||
| 6010 | 窳\ | ||
| 6011 | 谳\ | ||
| 6012 | 褴\ | ||
| 6013 | 褟\ | ||
| 6014 | 褫\ | ||
| 6015 | 谵\ | ||
| 6016 | 熨\ | ||
| 6017 | 屦\ | ||
| 6018 | 嬉\ | ||
| 6019 | 勰\ | ||
| 6020 | 戮\ | ||
| 6021 | 蝥\ | ||
| 6022 | 缬\ | ||
| 6023 | 缮\ | ||
| 6024 | 缯\ | ||
| 6025 | 骣\ | ||
| 6026 | 畿\ | ||
| 6027 | 耩\ | ||
| 6028 | 耨\ | ||
| 6029 | 耪\ | ||
| 6030 | 璞\ | ||
| 6031 | 璟\ | ||
| 6032 | 靛\ | ||
| 6033 | 璠\ | ||
| 6034 | 璘\ | ||
| 6035 | 聱\ | ||
| 6036 | 螯\ | ||
| 6037 | 髻\ | ||
| 6038 | 髭\ | ||
| 6039 | 髹\ | ||
| 6040 | 擀\ | ||
| 6041 | 熹\ | ||
| 6042 | 甏\ | ||
| 6043 | 擞\ | ||
| 6044 | 縠\ | ||
| 6045 | 磬\ | ||
| 6046 | 颞\ | ||
| 6047 | 蕻\ | ||
| 6048 | 鞘\ | ||
| 6049 | 颟\ | ||
| 6050 | 薤\ | ||
| 6051 | 薨\ | ||
| 6052 | 檠\ | ||
| 6053 | 薏\ | ||
| 6054 | 薮\ | ||
| 6055 | 薜\ | ||
| 6056 | 薅\ | ||
| 6057 | 樾\ | ||
| 6058 | 橛\ | ||
| 6059 | 橇\ | ||
| 6060 | 樵\ | ||
| 6061 | 檎\ | ||
| 6062 | 橹\ | ||
| 6063 | 樽\ | ||
| 6064 | 樨\ | ||
| 6065 | 橼\ | ||
| 6066 | 墼\ | ||
| 6067 | 橐\ | ||
| 6068 | 翮\ | ||
| 6069 | 醛\ | ||
| 6070 | 醐\ | ||
| 6071 | 醍\ | ||
| 6072 | 醚\ | ||
| 6073 | 磲\ | ||
| 6074 | 赝\ | ||
| 6075 | 飙\ | ||
| 6076 | 殪\ | ||
| 6077 | 霖\ | ||
| 6078 | 霏\ | ||
| 6079 | 霓\ | ||
| 6080 | 錾\ | ||
| 6081 | 辚\ | ||
| 6082 | 臻\ | ||
| 6083 | 遽\ | ||
| 6084 | 氅\ | ||
| 6085 | 瞟\ | ||
| 6086 | 瞠\ | ||
| 6087 | 瞰\ | ||
| 6088 | 嚄\ | ||
| 6089 | 嚆\ | ||
| 6090 | 噤\ | ||
| 6091 | 暾\ | ||
| 6092 | 蹀\ | ||
| 6093 | 踹\ | ||
| 6094 | 踵\ | ||
| 6095 | 踽\ | ||
| 6096 | 蹉\ | ||
| 6097 | 蹁\ | ||
| 6098 | 螨\ | ||
| 6099 | 蟒\ | ||
| 6100 | 螈\ | ||
| 6101 | 螅\ | ||
| 6102 | 螭\ | ||
| 6103 | 螠\ | ||
| 6104 | 螟\ | ||
| 6105 | 噱\ | ||
| 6106 | 噬\ | ||
| 6107 | 噫\ | ||
| 6108 | 噻\ | ||
| 6109 | 噼\ | ||
| 6110 | 罹\ | ||
| 6111 | 圜\ | ||
| 6112 | 䦃\ | ||
| 6113 | 镖\ | ||
| 6114 | 镗\ | ||
| 6115 | 镘\ | ||
| 6116 | 镚\ | ||
| 6117 | 镛\ | ||
| 6118 | 镝\ | ||
| 6119 | 镞\ | ||
| 6120 | 镠\ | ||
| 6121 | 氇\ | ||
| 6122 | 氆\ | ||
| 6123 | 憩\ | ||
| 6124 | 穑\ | ||
| 6125 | 篝\ | ||
| 6126 | 篥\ | ||
| 6127 | 篦\ | ||
| 6128 | 篪\ | ||
| 6129 | 篙\ | ||
| 6130 | 盥\ | ||
| 6131 | 劓\ | ||
| 6132 | 翱\ | ||
| 6133 | 魉\ | ||
| 6134 | 魈\ | ||
| 6135 | 徼\ | ||
| 6136 | 歙\ | ||
| 6137 | 膳\ | ||
| 6138 | 膦\ | ||
| 6139 | 膙\ | ||
| 6140 | 鲮\ | ||
| 6141 | 鲱\ | ||
| 6142 | 鲲\ | ||
| 6143 | 鲳\ | ||
| 6144 | 鲴\ | ||
| 6145 | 鲵\ | ||
| 6146 | 鲷\ | ||
| 6147 | 鲻\ | ||
| 6148 | 獴\ | ||
| 6149 | 獭\ | ||
| 6150 | 獬\ | ||
| 6151 | 邂\ | ||
| 6152 | 鹧\ | ||
| 6153 | 廨\ | ||
| 6154 | 赟\ | ||
| 6155 | 瘰\ | ||
| 6156 | 廪\ | ||
| 6157 | 瘿\ | ||
| 6158 | 瘵\ | ||
| 6159 | 瘴\ | ||
| 6160 | 癃\ | ||
| 6161 | 瘳\ | ||
| 6162 | 斓\ | ||
| 6163 | 麇\ | ||
| 6164 | 麈\ | ||
| 6165 | 嬴\ | ||
| 6166 | 壅\ | ||
| 6167 | 羲\ | ||
| 6168 | 糗\ | ||
| 6169 | 瞥\ | ||
| 6170 | 甑\ | ||
| 6171 | 燎\ | ||
| 6172 | 燠\ | ||
| 6173 | 燔\ | ||
| 6174 | 燧\ | ||
| 6175 | 濑\ | ||
| 6176 | 濉\ | ||
| 6177 | 潞\ | ||
| 6178 | 澧\ | ||
| 6179 | 澹\ | ||
| 6180 | 澥\ | ||
| 6181 | 澶\ | ||
| 6182 | 濂\ | ||
| 6183 | 褰\ | ||
| 6184 | 寰\ | ||
| 6185 | 窸\ | ||
| 6186 | 褶\ | ||
| 6187 | 禧\ | ||
| 6188 | 嬖\ | ||
| 6189 | 犟\ | ||
| 6190 | 隰\ | ||
| 6191 | 嬗\ | ||
| 6192 | 颡\ | ||
| 6193 | 缱\ | ||
| 6194 | 缲\ | ||
| 6195 | 缳\ | ||
| 6196 | 璨\ | ||
| 6197 | 璩\ | ||
| 6198 | 璐\ | ||
| 6199 | 璪\ | ||
| 6200 | 螫\ | ||
| 6201 | 擤\ | ||
| 6202 | 壕\ | ||
| 6203 | 觳\ | ||
| 6204 | 罄\ | ||
| 6205 | 擢\ | ||
| 6206 | 薹\ | ||
| 6207 | 鞡\ | ||
| 6208 | 鞬\ | ||
| 6209 | 薷\ | ||
| 6210 | 薰\ | ||
| 6211 | 藓\ | ||
| 6212 | 藁\ | ||
| 6213 | 檄\ | ||
| 6214 | 檩\ | ||
| 6215 | 懋\ | ||
| 6216 | 醢\ | ||
| 6217 | 翳\ | ||
| 6218 | 礅\ | ||
| 6219 | 磴\ | ||
| 6220 | 鹩\ | ||
| 6221 | 龋\ | ||
| 6222 | 龌\ | ||
| 6223 | 豳\ | ||
| 6224 | 壑\ | ||
| 6225 | 黻\ | ||
| 6226 | 嚏\ | ||
| 6227 | 嚅\ | ||
| 6228 | 蹑\ | ||
| 6229 | 蹒\ | ||
| 6230 | 蹊\ | ||
| 6231 | 蟥\ | ||
| 6232 | 螬\ | ||
| 6233 | 螵\ | ||
| 6234 | 疃\ | ||
| 6235 | 螳\ | ||
| 6236 | 蟑\ | ||
| 6237 | 嚓\ | ||
| 6238 | 羁\ | ||
| 6239 | 罽\ | ||
| 6240 | 罾\ | ||
| 6241 | 嶷\ | ||
| 6242 | 黜\ | ||
| 6243 | 黝\ | ||
| 6244 | 髁\ | ||
| 6245 | 髀\ | ||
| 6246 | 镡\ | ||
| 6247 | 镢\ | ||
| 6248 | 镣\ | ||
| 6249 | 镦\ | ||
| 6250 | 镧\ | ||
| 6251 | 镩\ | ||
| 6252 | 镪\ | ||
| 6253 | 镫\ | ||
| 6254 | 罅\ | ||
| 6255 | 黏\ | ||
| 6256 | 簌\ | ||
| 6257 | 篾\ | ||
| 6258 | 篼\ | ||
| 6259 | 簖\ | ||
| 6260 | 簋\ | ||
| 6261 | 鼢\ | ||
| 6262 | 黛\ | ||
| 6263 | 儡\ | ||
| 6264 | 鹪\ | ||
| 6265 | 鼾\ | ||
| 6266 | 皤\ | ||
| 6267 | 魍\ | ||
| 6268 | 龠\ | ||
| 6269 | 繇\ | ||
| 6270 | 貘\ | ||
| 6271 | 邈\ | ||
| 6272 | 貔\ | ||
| 6273 | 臌\ | ||
| 6274 | 膻\ | ||
| 6275 | 臆\ | ||
| 6276 | 臃\ | ||
| 6277 | 鲼\ | ||
| 6278 | 鲽\ | ||
| 6279 | 鳀\ | ||
| 6280 | 鳃\ | ||
| 6281 | 鳅\ | ||
| 6282 | 鳇\ | ||
| 6283 | 鳊\ | ||
| 6284 | 螽\ | ||
| 6285 | 燮\ | ||
| 6286 | 鹫\ | ||
| 6287 | 襄\ | ||
| 6288 | 糜\ | ||
| 6289 | 縻\ | ||
| 6290 | 膺\ | ||
| 6291 | 癍\ | ||
| 6292 | 麋\ | ||
| 6293 | 懑\ | ||
| 6294 | 濡\ | ||
| 6295 | 濮\ | ||
| 6296 | 濞\ | ||
| 6297 | 濠\ | ||
| 6298 | 濯\ | ||
| 6299 | 蹇\ | ||
| 6300 | 謇\ | ||
| 6301 | 邃\ | ||
| 6302 | 襁\ | ||
| 6303 | 檗\ | ||
| 6304 | 擘\ | ||
| 6305 | 孺\ | ||
| 6306 | 隳\ | ||
| 6307 | 嬷\ | ||
| 6308 | 蟊\ | ||
| 6309 | 鹬\ | ||
| 6310 | 鍪\ | ||
| 6311 | 鏊\ | ||
| 6312 | 鳌\ | ||
| 6313 | 鬈\ | ||
| 6314 | 鬃\ | ||
| 6315 | 瞽\ | ||
| 6316 | 鞯\ | ||
| 6317 | 鞨\ | ||
| 6318 | 鞫\ | ||
| 6319 | 鞧\ | ||
| 6320 | 鞣\ | ||
| 6321 | 藜\ | ||
| 6322 | 藠\ | ||
| 6323 | 藩\ | ||
| 6324 | 醪\ | ||
| 6325 | 蹙\ | ||
| 6326 | 礓\ | ||
| 6327 | 燹\ | ||
| 6328 | 餮\ | ||
| 6329 | 瞿\ | ||
| 6330 | 曛\ | ||
| 6331 | 颢\ | ||
| 6332 | 曜\ | ||
| 6333 | 躇\ | ||
| 6334 | 蹚\ | ||
| 6335 | 鹭\ | ||
| 6336 | 蟛\ | ||
| 6337 | 蟪\ | ||
| 6338 | 蟠\ | ||
| 6339 | 蟮\ | ||
| 6340 | 鹮\ | ||
| 6341 | 黠\ | ||
| 6342 | 黟\ | ||
| 6343 | 髅\ | ||
| 6344 | 髂\ | ||
| 6345 | 镬\ | ||
| 6346 | 镭\ | ||
| 6347 | 镯\ | ||
| 6348 | 馥\ | ||
| 6349 | 簟\ | ||
| 6350 | 簪\ | ||
| 6351 | 鼬\ | ||
| 6352 | 雠\ | ||
| 6353 | 艟\ | ||
| 6354 | 鳎\ | ||
| 6355 | 鳏\ | ||
| 6356 | 鳐\ | ||
| 6357 | 癞\ | ||
| 6358 | 癔\ | ||
| 6359 | 癜\ | ||
| 6360 | 癖\ | ||
| 6361 | 糨\ | ||
| 6362 | 蹩\ | ||
| 6363 | 鎏\ | ||
| 6364 | 懵\ | ||
| 6365 | 彝\ | ||
| 6366 | 邋\ | ||
| 6367 | 鬏\ | ||
| 6368 | 攉\ | ||
| 6369 | 攒\ | ||
| 6370 | 鞲\ | ||
| 6371 | 鞴\ | ||
| 6372 | 藿\ | ||
| 6373 | 蘧\ | ||
| 6374 | 蘅\ | ||
| 6375 | 麓\ | ||
| 6376 | 醮\ | ||
| 6377 | 醯\ | ||
| 6378 | 酃\ | ||
| 6379 | 霪\ | ||
| 6380 | 霭\ | ||
| 6381 | 霨\ | ||
| 6382 | 黼\ | ||
| 6383 | 嚯\ | ||
| 6384 | 蹰\ | ||
| 6385 | 蹶\ | ||
| 6386 | 蹽\ | ||
| 6387 | 蹼\ | ||
| 6388 | 蹴\ | ||
| 6389 | 蹾\ | ||
| 6390 | 蹿\ | ||
| 6391 | 蠖\ | ||
| 6392 | 蠓\ | ||
| 6393 | 蟾\ | ||
| 6394 | 蠊\ | ||
| 6395 | 黢\ | ||
| 6396 | 髋\ | ||
| 6397 | 髌\ | ||
| 6398 | 镲\ | ||
| 6399 | 籀\ | ||
| 6400 | 籁\ | ||
| 6401 | 齁\ | ||
| 6402 | 魑\ | ||
| 6403 | 艨\ | ||
| 6404 | 鳓\ | ||
| 6405 | 鳔\ | ||
| 6406 | 鳕\ | ||
| 6407 | 鳗\ | ||
| 6408 | 鳙\ | ||
| 6409 | 麒\ | ||
| 6410 | 鏖\ | ||
| 6411 | 羸\ | ||
| 6412 | 㸆\ | ||
| 6413 | 瀚\ | ||
| 6414 | 瀣\ | ||
| 6415 | 瀛\ | ||
| 6416 | 襦\ | ||
| 6417 | 谶\ | ||
| 6418 | 襞\ | ||
| 6419 | 骥\ | ||
| 6420 | 缵\ | ||
| 6421 | 瓒\ | ||
| 6422 | 攘\ | ||
| 6423 | 蘩\ | ||
| 6424 | 蘖\ | ||
| 6425 | 醴\ | ||
| 6426 | 霰\ | ||
| 6427 | 酆\ | ||
| 6428 | 矍\ | ||
| 6429 | 曦\ | ||
| 6430 | 躅\ | ||
| 6431 | 鼍\ | ||
| 6432 | 巉\ | ||
| 6433 | 黩\ | ||
| 6434 | 黥\ | ||
| 6435 | 黪\ | ||
| 6436 | 镳\ | ||
| 6437 | 镴\ | ||
| 6438 | 黧\ | ||
| 6439 | 纂\ | ||
| 6440 | 璺\ | ||
| 6441 | 鼯\ | ||
| 6442 | 臜\ | ||
| 6443 | 鳜\ | ||
| 6444 | 鳝\ | ||
| 6445 | 鳟\ | ||
| 6446 | 獾\ | ||
| 6447 | 孀\ | ||
| 6448 | 骧\ | ||
| 6449 | 瓘\ | ||
| 6450 | 鼙\ | ||
| 6451 | 醺\ | ||
| 6452 | 礴\ | ||
| 6453 | 颦\ | ||
| 6454 | 曩\ | ||
| 6455 | 鳢\ | ||
| 6456 | 癫\ | ||
| 6457 | 麝\ | ||
| 6458 | 夔\ | ||
| 6459 | 爝\ | ||
| 6460 | 灏\ | ||
| 6461 | 禳\ | ||
| 6462 | 鐾\ | ||
| 6463 | 羼\ | ||
| 6464 | 蠡\ | ||
| 6465 | 耱\ | ||
| 6466 | 懿\ | ||
| 6467 | 蘸\ | ||
| 6468 | 鹳\ | ||
| 6469 | 霾\ | ||
| 6470 | 氍\ | ||
| 6471 | 饕\ | ||
| 6472 | 躐\ | ||
| 6473 | 髑\ | ||
| 6474 | 镵\ | ||
| 6475 | 穰\ | ||
| 6476 | 饔\ | ||
| 6477 | 鬻\ | ||
| 6478 | 鬟\ | ||
| 6479 | 趱\ | ||
| 6480 | 攫\ | ||
| 6481 | 攥\ | ||
| 6482 | 颧\ | ||
| 6483 | 躜\ | ||
| 6484 | 鼹\ | ||
| 6485 | 癯\ | ||
| 6486 | 麟\ | ||
| 6487 | 蠲\ | ||
| 6488 | 蠹\ | ||
| 6489 | 躞\ | ||
| 6490 | 衢\ | ||
| 6491 | 鑫\ | ||
| 6492 | 灞\ | ||
| 6493 | 襻\ | ||
| 6494 | 纛\ | ||
| 6495 | 鬣\ | ||
| 6496 | 攮\ | ||
| 6497 | 囔\ | ||
| 6498 | 馕\ | ||
| 6499 | 戆\ | ||
| 6500 | 爨\ | ||
| 6501 | 齉\ | ||
| 6502 | 亍\ | ||
| 6503 | 尢\ | ||
| 6504 | 彳\ | ||
| 6505 | 卬\ | ||
| 6506 | 殳\ | ||
| 6507 | 𠙶\ | ||
| 6508 | 毌\ | ||
| 6509 | 邘\ | ||
| 6510 | 戋\ | ||
| 6511 | 圢\ | ||
| 6512 | 氕\ | ||
| 6513 | 伋\ | ||
| 6514 | 仝\ | ||
| 6515 | 冮\ | ||
| 6516 | 氿\ | ||
| 6517 | 汈\ | ||
| 6518 | 氾\ | ||
| 6519 | 忉\ | ||
| 6520 | 宄\ | ||
| 6521 | \ | ||
| 6522 | 讱\ | ||
| 6523 | 扞\ | ||
| 6524 | 圲\ | ||
| 6525 | 圫\ | ||
| 6526 | 芏\ | ||
| 6527 | 芃\ | ||
| 6528 | 朳\ | ||
| 6529 | 朸\ | ||
| 6530 | 𨙸\ | ||
| 6531 | 邨\ | ||
| 6532 | 吒\ | ||
| 6533 | 吖\ | ||
| 6534 | 屼\ | ||
| 6535 | 屾\ | ||
| 6536 | 辿\ | ||
| 6537 | 钆\ | ||
| 6538 | 仳\ | ||
| 6539 | 伣\ | ||
| 6540 | 伈\ | ||
| 6541 | 癿\ | ||
| 6542 | 甪\ | ||
| 6543 | 邠\ | ||
| 6544 | 犴\ | ||
| 6545 | 冱\ | ||
| 6546 | 邡\ | ||
| 6547 | 闫\ | ||
| 6548 | \ | ||
| 6549 | 汋\ | ||
| 6550 | 䜣\ | ||
| 6551 | 讻\ | ||
| 6552 | \ | ||
| 6553 | 孖\ | ||
| 6554 | \ | ||
| 6555 | 纩\ | ||
| 6556 | 玒\ | ||
| 6557 | 玓\ | ||
| 6558 | 玘\ | ||
| 6559 | 玚\ | ||
| 6560 | 刬\ | ||
| 6561 | \ | ||
| 6562 | 坜\ | ||
| 6563 | 坉\ | ||
| 6564 | 扽\ | ||
| 6565 | \ | ||
| 6566 | 坋\ | ||
| 6567 | 扺\ | ||
| 6568 | 㧑\ | ||
| 6569 | 毐\ | ||
| 6570 | 芰\ | ||
| 6571 | 芣\ | ||
| 6572 | 苊\ | ||
| 6573 | 苉\ | ||
| 6574 | 芘\ | ||
| 6575 | 芴\ | ||
| 6576 | 芠\ | ||
| 6577 | \ | ||
| 6578 | 芤\ | ||
| 6579 | 杕\ | ||
| 6580 | 杙\ | ||
| 6581 | 杄\ | ||
| 6582 | 杧\ | ||
| 6583 | 杩\ | ||
| 6584 | 尪\ | ||
| 6585 | 尨\ | ||
| 6586 | 轪\ | ||
| 6587 | \ | ||
| 6588 | 坒\ | ||
| 6589 | 芈\ | ||
| 6590 | 旴\ | ||
| 6591 | 旵\ | ||
| 6592 | 呙\ | ||
| 6593 | 㕮\ | ||
| 6594 | 岍\ | ||
| 6595 | \ | ||
| 6596 | 岠\ | ||
| 6597 | 岜\ | ||
| 6598 | 呇\ | ||
| 6599 | 冏\ | ||
| 6600 | 觃\ | ||
| 6601 | 岙\ | ||
| 6602 | 伾\ | ||
| 6603 | 㑇\ | ||
| 6604 | 伭\ | ||
| 6605 | 佖\ | ||
| 6606 | 伲\ | ||
| 6607 | 佁\ | ||
| 6608 | 飏\ | ||
| 6609 | 狃\ | ||
| 6610 | 闶\ | ||
| 6611 | 汧\ | ||
| 6612 | 汫\ | ||
| 6613 | 𣲘\ | ||
| 6614 | 𣲗\ | ||
| 6615 | 沄\ | ||
| 6616 | 沘\ | ||
| 6617 | \ | ||
| 6618 | 汭\ | ||
| 6619 | 㳇\ | ||
| 6620 | 沇\ | ||
| 6621 | 忮\ | ||
| 6622 | 忳\ | ||
| 6623 | 忺\ | ||
| 6624 | \ | ||
| 6625 | 祃\ | ||
| 6626 | 诇\ | ||
| 6627 | 邲\ | ||
| 6628 | 诎\ | ||
| 6629 | 诐\ | ||
| 6630 | 屃\ | ||
| 6631 | \ | ||
| 6632 | 岊\ | ||
| 6633 | 阽\ | ||
| 6634 | 䢺\ | ||
| 6635 | 阼\ | ||
| 6636 | 妧\ | ||
| 6637 | 妘\ | ||
| 6638 | 𨚕\ | ||
| 6639 | 纮\ | ||
| 6640 | 驲\ | ||
| 6641 | \ | ||
| 6642 | 纻\ | ||
| 6643 | \ | ||
| 6644 | \ | ||
| 6645 | 纼\ | ||
| 6646 | 玤\ | ||
| 6647 | 玞\ | ||
| 6648 | 玱\ | ||
| 6649 | 玟\ | ||
| 6650 | 邽\ | ||
| 6651 | 邿\ | ||
| 6652 | 坥\ | ||
| 6653 | 坰\ | ||
| 6654 | 坬\ | ||
| 6655 | 坽\ | ||
| 6656 | 弆\ | ||
| 6657 | 耵\ | ||
| 6658 | 䢼\ | ||
| 6659 | 𦭜\ | ||
| 6660 | 茋\ | ||
| 6661 | 苧\ | ||
| 6662 | 苾\ | ||
| 6663 | 苠\ | ||
| 6664 | 枅\ | ||
| 6665 | 㭎\ | ||
| 6666 | 枘\ | ||
| 6667 | 枍\ | ||
| 6668 | 矼\ | ||
| 6669 | 矻\ | ||
| 6670 | 匼\ | ||
| 6671 | \ | ||
| 6672 | \ | ||
| 6673 | \ | ||
| 6674 | 旿\ | ||
| 6675 | 昇\ | ||
| 6676 | 昄\ | ||
| 6677 | 昒\ | ||
| 6678 | 昈\ | ||
| 6679 | 咉\ | ||
| 6680 | 咇\ | ||
| 6681 | 咍\ | ||
| 6682 | 岵\ | ||
| 6683 | 岽\ | ||
| 6684 | 岨\ | ||
| 6685 | 岞\ | ||
| 6686 | 峂\ | ||
| 6687 | 㟃\ | ||
| 6688 | 囷\ | ||
| 6689 | \ | ||
| 6690 | 钐\ | ||
| 6691 | 钔\ | ||
| 6692 | 钖\ | ||
| 6693 | 牥\ | ||
| 6694 | 佴\ | ||
| 6695 | 垈\ | ||
| 6696 | 侁\ | ||
| 6697 | 侹\ | ||
| 6698 | 佸\ | ||
| 6699 | 佺\ | ||
| 6700 | 隹\ | ||
| 6701 | 㑊\ | ||
| 6702 | 侂\ | ||
| 6703 | 佽\ | ||
| 6704 | 侘\ | ||
| 6705 | 郈\ | ||
| 6706 | 舠\ | ||
| 6707 | 郐\ | ||
| 6708 | 郃\ | ||
| 6709 | 攽\ | ||
| 6710 | 肭\ | ||
| 6711 | 肸\ | ||
| 6712 | 肷\ | ||
| 6713 | 狉\ | ||
| 6714 | 狝\ | ||
| 6715 | 饳\ | ||
| 6716 | 忞\ | ||
| 6717 | 於\ | ||
| 6718 | 炌\ | ||
| 6719 | 炆\ | ||
| 6720 | 泙\ | ||
| 6721 | 沺\ | ||
| 6722 | 泂\ | ||
| 6723 | 泜\ | ||
| 6724 | 泃\ | ||
| 6725 | 泇\ | ||
| 6726 | 怊\ | ||
| 6727 | 峃\ | ||
| 6728 | 穸\ | ||
| 6729 | 祋\ | ||
| 6730 | 祊\ | ||
| 6731 | 詷\ | ||
| 6732 | \ | ||
| 6733 | \ | ||
| 6734 | 鸤\ | ||
| 6735 | 弢\ | ||
| 6736 | 弨\ | ||
| 6737 | 陑\ | ||
| 6738 | \ | ||
| 6739 | 陎\ | ||
| 6740 | \ | ||
| 6741 | 卺\ | ||
| 6742 | 乸\ | ||
| 6743 | 妭\ | ||
| 6744 | 姈\ | ||
| 6745 | 娙\ | ||
| 6746 | 迳\ | ||
| 6747 | 叕\ | ||
| 6748 | \ | ||
| 6749 | 驵\ | ||
| 6750 | \ | ||
| 6751 | 䌹\ | ||
| 6752 | 驺\ | ||
| 6753 | 𫠊\ | ||
| 6754 | 绋\ | ||
| 6755 | 绐\ | ||
| 6756 | 砉\ | ||
| 6757 | 耔\ | ||
| 6758 | 㛃\ | ||
| 6759 | 玶\ | ||
| 6760 | 珇\ | ||
| 6761 | 珅\ | ||
| 6762 | \ | ||
| 6763 | 珋\ | ||
| 6764 | 玹\ | ||
| 6765 | 珌\ | ||
| 6766 | 玿\ | ||
| 6767 | 韨\ | ||
| 6768 | 垚\ | ||
| 6769 | 垯\ | ||
| 6770 | 垙\ | ||
| 6771 | 垲\ | ||
| 6772 | 埏\ | ||
| 6773 | 垍\ | ||
| 6774 | 耇\ | ||
| 6775 | \ | ||
| 6776 | 垎\ | ||
| 6777 | 垴\ | ||
| 6778 | 垟\ | ||
| 6779 | 垞\ | ||
| 6780 | 挓\ | ||
| 6781 | 垵\ | ||
| 6782 | 垏\ | ||
| 6783 | 拶\ | ||
| 6784 | 荖\ | ||
| 6785 | 荁\ | ||
| 6786 | 荙\ | ||
| 6787 | 荛\ | ||
| 6788 | 茈\ | ||
| 6789 | 茽\ | ||
| 6790 | 荄\ | ||
| 6791 | 茺\ | ||
| 6792 | \ | ||
| 6793 | 荓\ | ||
| 6794 | 茳\ | ||
| 6795 | 𦰡\ | ||
| 6796 | 茛\ | ||
| 6797 | 荭\ | ||
| 6798 | 㭕\ | ||
| 6799 | 柷\ | ||
| 6800 | 柃\ | ||
| 6801 | 柊\ | ||
| 6802 | 枹\ | ||
| 6803 | 栐\ | ||
| 6804 | 柖\ | ||
| 6805 | 郚\ | ||
| 6806 | 剅\ | ||
| 6807 | 䴓\ | ||
| 6808 | 迺\ | ||
| 6809 | 厖\ | ||
| 6810 | 砆\ | ||
| 6811 | 砑\ | ||
| 6812 | 砄\ | ||
| 6813 | 耏\ | ||
| 6814 | 奓\ | ||
| 6815 | 䶮\ | ||
| 6816 | 轵\ | ||
| 6817 | 轷\ | ||
| 6818 | 轹\ | ||
| 6819 | 轺\ | ||
| 6820 | 昺\ | ||
| 6821 | \ | ||
| 6822 | 昽\ | ||
| 6823 | 盷\ | ||
| 6824 | 咡\ | ||
| 6825 | 咺\ | ||
| 6826 | 昳\ | ||
| 6827 | 昣\ | ||
| 6828 | 哒\ | ||
| 6829 | 昤\ | ||
| 6830 | 昫\ | ||
| 6831 | 昡\ | ||
| 6832 | 咥\ | ||
| 6833 | 昪\ | ||
| 6834 | 虷\ | ||
| 6835 | 虸\ | ||
| 6836 | 哃\ | ||
| 6837 | 峘\ | ||
| 6838 | 耑\ | ||
| 6839 | 峛\ | ||
| 6840 | \ | ||
| 6841 | 峗\ | ||
| 6842 | 峧\ | ||
| 6843 | 帡\ | ||
| 6844 | 钘\ | ||
| 6845 | \ | ||
| 6846 | 钜\ | ||
| 6847 | \ | ||
| 6848 | \ | ||
| 6849 | \ | ||
| 6850 | 钪\ | ||
| 6851 | 钬\ | ||
| 6852 | 钭\ | ||
| 6853 | 矧\ | ||
| 6854 | 秬\ | ||
| 6855 | 俫\ | ||
| 6856 | 舁\ | ||
| 6857 | 俜\ | ||
| 6858 | 俙\ | ||
| 6859 | 俍\ | ||
| 6860 | 垕\ | ||
| 6861 | 衎\ | ||
| 6862 | 舣\ | ||
| 6863 | 弇\ | ||
| 6864 | 侴\ | ||
| 6865 | 鸧\ | ||
| 6866 | 䏡\ | ||
| 6867 | 胠\ | ||
| 6868 | 𦙶\ | ||
| 6869 | 胈\ | ||
| 6870 | 胩\ | ||
| 6871 | 胣\ | ||
| 6872 | 朏\ | ||
| 6873 | 飐\ | ||
| 6874 | 訄\ | ||
| 6875 | 饻\ | ||
| 6876 | 庤\ | ||
| 6877 | 疢\ | ||
| 6878 | 炣\ | ||
| 6879 | 炟\ | ||
| 6880 | 㶲\ | ||
| 6881 | 洭\ | ||
| 6882 | 洘\ | ||
| 6883 | 洓\ | ||
| 6884 | 洿\ | ||
| 6885 | 㳚\ | ||
| 6886 | 泚\ | ||
| 6887 | 浈\ | ||
| 6888 | 浉\ | ||
| 6889 | 洸\ | ||
| 6890 | 洑\ | ||
| 6891 | 洢\ | ||
| 6892 | 洈\ | ||
| 6893 | 洚\ | ||
| 6894 | 洺\ | ||
| 6895 | 洨\ | ||
| 6896 | 浐\ | ||
| 6897 | 㳘\ | ||
| 6898 | 洴\ | ||
| 6899 | 洣\ | ||
| 6900 | 恔\ | ||
| 6901 | 宬\ | ||
| 6902 | 窀\ | ||
| 6903 | 扂\ | ||
| 6904 | 袆\ | ||
| 6905 | 祏\ | ||
| 6906 | 祐\ | ||
| 6907 | 祕\ | ||
| 6908 | 叚\ | ||
| 6909 | 陧\ | ||
| 6910 | 陞\ | ||
| 6911 | 娀\ | ||
| 6912 | 姞\ | ||
| 6913 | 姱\ | ||
| 6914 | 姤\ | ||
| 6915 | 姶\ | ||
| 6916 | 姽\ | ||
| 6917 | 枲\ | ||
| 6918 | 绖\ | ||
| 6919 | 骃\ | ||
| 6920 | \ | ||
| 6921 | \ | ||
| 6922 | \ | ||
| 6923 | \ | ||
| 6924 | 彖\ | ||
| 6925 | 骉\ | ||
| 6926 | 恝\ | ||
| 6927 | 珪\ | ||
| 6928 | 珛\ | ||
| 6929 | 珹\ | ||
| 6930 | 琊\ | ||
| 6931 | 玼\ | ||
| 6932 | 珖\ | ||
| 6933 | \ | ||
| 6934 | 珽\ | ||
| 6935 | 珦\ | ||
| 6936 | 珫\ | ||
| 6937 | 珒\ | ||
| 6938 | \ | ||
| 6939 | 珢\ | ||
| 6940 | 珕\ | ||
| 6941 | 珝\ | ||
| 6942 | \ | ||
| 6943 | 埗\ | ||
| 6944 | 垾\ | ||
| 6945 | 垺\ | ||
| 6946 | 埆\ | ||
| 6947 | 垿\ | ||
| 6948 | 埌\ | ||
| 6949 | 埇\ | ||
| 6950 | 莰\ | ||
| 6951 | 茝\ | ||
| 6952 | \ | ||
| 6953 | 鄀\ | ||
| 6954 | 莶\ | ||
| 6955 | 莝\ | ||
| 6956 | 䓖\ | ||
| 6957 | 莙\ | ||
| 6958 | 栻\ | ||
| 6959 | 桠\ | ||
| 6960 | \ | ||
| 6961 | 桄\ | ||
| 6962 | 梠\ | ||
| 6963 | 栴\ | ||
| 6964 | 梴\ | ||
| 6965 | 栒\ | ||
| 6966 | 酎\ | ||
| 6967 | 酏\ | ||
| 6968 | \ | ||
| 6969 | 砵\ | ||
| 6970 | 砠\ | ||
| 6971 | 砫\ | ||
| 6972 | 砬\ | ||
| 6973 | 硁\ | ||
| 6974 | 恧\ | ||
| 6975 | 翃\ | ||
| 6976 | 郪\ | ||
| 6977 | 𨐈\ | ||
| 6978 | 辀\ | ||
| 6979 | 辁\ | ||
| 6980 | \ | ||
| 6981 | 剕\ | ||
| 6982 | 赀\ | ||
| 6983 | 哢\ | ||
| 6984 | 晅\ | ||
| 6985 | 晊\ | ||
| 6986 | 唝\ | ||
| 6987 | 哳\ | ||
| 6988 | 哱\ | ||
| 6989 | 冔\ | ||
| 6990 | 晔\ | ||
| 6991 | 晐\ | ||
| 6992 | 晖\ | ||
| 6993 | 畖\ | ||
| 6994 | 蚄\ | ||
| 6995 | 蚆\ | ||
| 6996 | \ | ||
| 6997 | 帱\ | ||
| 6998 | 崁\ | ||
| 6999 | 峿\ | ||
| 7000 | \ | ||
| 7001 | 崄\ | ||
| 7002 | 帨\ | ||
| 7003 | 崀\ | ||
| 7004 | 赆\ | ||
| 7005 | \ | ||
| 7006 | 钷\ | ||
| 7007 | \ | ||
| 7008 | \ | ||
| 7009 | \ | ||
| 7010 | \ | ||
| 7011 | 眚\ | ||
| 7012 | 甡\ | ||
| 7013 | 笫\ | ||
| 7014 | 倻\ | ||
| 7015 | 倴\ | ||
| 7016 | 脩\ | ||
| 7017 | 倮\ | ||
| 7018 | 倕\ | ||
| 7019 | 倞\ | ||
| 7020 | \ | ||
| 7021 | 倓\ | ||
| 7022 | 倧\ | ||
| 7023 | 衃\ | ||
| 7024 | 虒\ | ||
| 7025 | 舭\ | ||
| 7026 | 舯\ | ||
| 7027 | 舥\ | ||
| 7028 | 瓞\ | ||
| 7029 | 鬯\ | ||
| 7030 | 鸰\ | ||
| 7031 | 脎\ | ||
| 7032 | 朓\ | ||
| 7033 | 胲\ | ||
| 7034 | 虓\ | ||
| 7035 | 鱽\ | ||
| 7036 | 狴\ | ||
| 7037 | 峱\ | ||
| 7038 | 狻\ | ||
| 7039 | 眢\ | ||
| 7040 | \ | ||
| 7041 | 勍\ | ||
| 7042 | 痄\ | ||
| 7043 | 疰\ | ||
| 7044 | 痃\ | ||
| 7045 | 竘\ | ||
| 7046 | 羖\ | ||
| 7047 | 羓\ | ||
| 7048 | 桊\ | ||
| 7049 | 敉\ | ||
| 7050 | 烠\ | ||
| 7051 | 烔\ | ||
| 7052 | 烶\ | ||
| 7053 | 烻\ | ||
| 7054 | \ | ||
| 7055 | 涍\ | ||
| 7056 | 浡\ | ||
| 7057 | 浭\ | ||
| 7058 | 浬\ | ||
| 7059 | 涄\ | ||
| 7060 | 涢\ | ||
| 7061 | 涐\ | ||
| 7062 | 浰\ | ||
| 7063 | 浟\ | ||
| 7064 | 浛\ | ||
| 7065 | 浼\ | ||
| 7066 | 浲\ | ||
| 7067 | 涘\ | ||
| 7068 | 悈\ | ||
| 7069 | 悃\ | ||
| 7070 | 悢\ | ||
| 7071 | \ | ||
| 7072 | 宧\ | ||
| 7073 | 窅\ | ||
| 7074 | 窊\ | ||
| 7075 | 窎\ | ||
| 7076 | 扅\ | ||
| 7077 | 扆\ | ||
| 7078 | 袪\ | ||
| 7079 | 袗\ | ||
| 7080 | 袯\ | ||
| 7081 | 祧\ | ||
| 7082 | 隺\ | ||
| 7083 | 堲\ | ||
| 7084 | 疍\ | ||
| 7085 | 𨺙\ | ||
| 7086 | 陴\ | ||
| 7087 | 烝\ | ||
| 7088 | 砮\ | ||
| 7089 | 㛚\ | ||
| 7090 | 哿\ | ||
| 7091 | 翀\ | ||
| 7092 | 翂\ | ||
| 7093 | 剟\ | ||
| 7094 | \ | ||
| 7095 | \ | ||
| 7096 | 绤\ | ||
| 7097 | 骍\ | ||
| 7098 | \ | ||
| 7099 | 䂮\ | ||
| 7100 | 琎\ | ||
| 7101 | 珸\ | ||
| 7102 | 珵\ | ||
| 7103 | 琄\ | ||
| 7104 | 琈\ | ||
| 7105 | 琀\ | ||
| 7106 | 珺\ | ||
| 7107 | 掭\ | ||
| 7108 | 堎\ | ||
| 7109 | 堐\ | ||
| 7110 | 埼\ | ||
| 7111 | 掎\ | ||
| 7112 | 埫\ | ||
| 7113 | 堌\ | ||
| 7114 | 晢\ | ||
| 7115 | \ | ||
| 7116 | 掞\ | ||
| 7117 | 埪\ | ||
| 7118 | 壸\ | ||
| 7119 | 㙍\ | ||
| 7120 | 聍\ | ||
| 7121 | 菝\ | ||
| 7122 | 萚\ | ||
| 7123 | 菥\ | ||
| 7124 | 莿\ | ||
| 7125 | 䓫\ | ||
| 7126 | 勚\ | ||
| 7127 | 䓬\ | ||
| 7128 | 萆\ | ||
| 7129 | 菂\ | ||
| 7130 | 菍\ | ||
| 7131 | 菼\ | ||
| 7132 | 萣\ | ||
| 7133 | 䓨\ | ||
| 7134 | 菉\ | ||
| 7135 | 䓛\ | ||
| 7136 | 梼\ | ||
| 7137 | 梽\ | ||
| 7138 | 桲\ | ||
| 7139 | 梾\ | ||
| 7140 | 桯\ | ||
| 7141 | 梣\ | ||
| 7142 | 梌\ | ||
| 7143 | 桹\ | ||
| 7144 | 敔\ | ||
| 7145 | 厣\ | ||
| 7146 | 硔\ | ||
| 7147 | \ | ||
| 7148 | 硙\ | ||
| 7149 | 硚\ | ||
| 7150 | 硊\ | ||
| 7151 | 硍\ | ||
| 7152 | 勔\ | ||
| 7153 | 䴕\ | ||
| 7154 | 龁\ | ||
| 7155 | 逴\ | ||
| 7156 | 唪\ | ||
| 7157 | 啫\ | ||
| 7158 | 翈\ | ||
| 7159 | 㫰\ | ||
| 7160 | 晙\ | ||
| 7161 | 畤\ | ||
| 7162 | \ | ||
| 7163 | 趼\ | ||
| 7164 | 跂\ | ||
| 7165 | 蛃\ | ||
| 7166 | 蚲\ | ||
| 7167 | \ | ||
| 7168 | 蚺\ | ||
| 7169 | 啴\ | ||
| 7170 | 䎃\ | ||
| 7171 | 崧\ | ||
| 7172 | 崟\ | ||
| 7173 | 崞\ | ||
| 7174 | 崒\ | ||
| 7175 | 崌\ | ||
| 7176 | 崡\ | ||
| 7177 | 铏\ | ||
| 7178 | \ | ||
| 7179 | \ | ||
| 7180 | 铕\ | ||
| 7181 | \ | ||
| 7182 | 铖\ | ||
| 7183 | 铘\ | ||
| 7184 | 铚\ | ||
| 7185 | 铞\ | ||
| 7186 | 铥\ | ||
| 7187 | 铴\ | ||
| 7188 | 牻\ | ||
| 7189 | 牿\ | ||
| 7190 | 稆\ | ||
| 7191 | 笱\ | ||
| 7192 | 笯\ | ||
| 7193 | 偰\ | ||
| 7194 | 偡\ | ||
| 7195 | 鸺\ | ||
| 7196 | 偭\ | ||
| 7197 | 偲\ | ||
| 7198 | 偁\ | ||
| 7199 | 㿠\ | ||
| 7200 | 鄅\ | ||
| 7201 | 偓\ | ||
| 7202 | 徛\ | ||
| 7203 | 衒\ | ||
| 7204 | 舳\ | ||
| 7205 | 舲\ | ||
| 7206 | 鸼\ | ||
| 7207 | 悆\ | ||
| 7208 | 鄃\ | ||
| 7209 | 瓻\ | ||
| 7210 | 䝙\ | ||
| 7211 | 脶\ | ||
| 7212 | 脞\ | ||
| 7213 | 脟\ | ||
| 7214 | 䏲\ | ||
| 7215 | 鱾\ | ||
| 7216 | 猇\ | ||
| 7217 | 猊\ | ||
| 7218 | 猄\ | ||
| 7219 | 觖\ | ||
| 7220 | 𠅤\ | ||
| 7221 | 庱\ | ||
| 7222 | 庼\ | ||
| 7223 | 庳\ | ||
| 7224 | 痓\ | ||
| 7225 | 䴔\ | ||
| 7226 | 竫\ | ||
| 7227 | 堃\ | ||
| 7228 | 阌\ | ||
| 7229 | 羝\ | ||
| 7230 | 羕\ | ||
| 7231 | 焆\ | ||
| 7232 | 烺\ | ||
| 7233 | 焌\ | ||
| 7234 | 淏\ | ||
| 7235 | \ | ||
| 7236 | 淟\ | ||
| 7237 | 淜\ | ||
| 7238 | 淴\ | ||
| 7239 | 淯\ | ||
| 7240 | 湴\ | ||
| 7241 | 涴\ | ||
| 7242 | \ | ||
| 7243 | 㥄\ | ||
| 7244 | 惛\ | ||
| 7245 | 惔\ | ||
| 7246 | 悰\ | ||
| 7247 | 惙\ | ||
| 7248 | 寁\ | ||
| 7249 | 逭\ | ||
| 7250 | \ | ||
| 7251 | \ | ||
| 7252 | 袼\ | ||
| 7253 | 裈\ | ||
| 7254 | 祲\ | ||
| 7255 | \ | ||
| 7256 | \ | ||
| 7257 | 谞\ | ||
| 7258 | 艴\ | ||
| 7259 | 弸\ | ||
| 7260 | 弶\ | ||
| 7261 | \ | ||
| 7262 | 隃\ | ||
| 7263 | 婞\ | ||
| 7264 | 娵\ | ||
| 7265 | 婼\ | ||
| 7266 | 媖\ | ||
| 7267 | 婳\ | ||
| 7268 | 婍\ | ||
| 7269 | 婌\ | ||
| 7270 | 婫\ | ||
| 7271 | 婤\ | ||
| 7272 | 婘\ | ||
| 7273 | 婠\ | ||
| 7274 | \ | ||
| 7275 | \ | ||
| 7276 | \ | ||
| 7277 | \ | ||
| 7278 | 绹\ | ||
| 7279 | \ | ||
| 7280 | \ | ||
| 7281 | 骕\ | ||
| 7282 | \ | ||
| 7283 | 絜\ | ||
| 7284 | 珷\ | ||
| 7285 | 琲\ | ||
| 7286 | 琡\ | ||
| 7287 | 琟\ | ||
| 7288 | 琔\ | ||
| 7289 | 琭\ | ||
| 7290 | 堾\ | ||
| 7291 | 堼\ | ||
| 7292 | 揕\ | ||
| 7293 | 㙘\ | ||
| 7294 | 堧\ | ||
| 7295 | 喆\ | ||
| 7296 | 堨\ | ||
| 7297 | 塅\ | ||
| 7298 | 堠\ | ||
| 7299 | 絷\ | ||
| 7300 | \ | ||
| 7301 | 𡎚\ | ||
| 7302 | 葜\ | ||
| 7303 | 惎\ | ||
| 7304 | 萳\ | ||
| 7305 | 葙\ | ||
| 7306 | 靬\ | ||
| 7307 | 葴\ | ||
| 7308 | 蒇\ | ||
| 7309 | 蒈\ | ||
| 7310 | 鄚\ | ||
| 7311 | 蒉\ | ||
| 7312 | 蓇\ | ||
| 7313 | 萩\ | ||
| 7314 | 蒐\ | ||
| 7315 | 葰\ | ||
| 7316 | 葎\ | ||
| 7317 | 鄑\ | ||
| 7318 | 蒎\ | ||
| 7319 | 葖\ | ||
| 7320 | 蒄\ | ||
| 7321 | 萹\ | ||
| 7322 | 棤\ | ||
| 7323 | 棽\ | ||
| 7324 | 棫\ | ||
| 7325 | 椓\ | ||
| 7326 | 椑\ | ||
| 7327 | \ | ||
| 7328 | 鹀\ | ||
| 7329 | 椆\ | ||
| 7330 | 棓\ | ||
| 7331 | 棬\ | ||
| 7332 | 棪\ | ||
| 7333 | 椀\ | ||
| 7334 | 楗\ | ||
| 7335 | \ | ||
| 7336 | 甦\ | ||
| 7337 | 酦\ | ||
| 7338 | 觌\ | ||
| 7339 | 奡\ | ||
| 7340 | 皕\ | ||
| 7341 | 硪\ | ||
| 7342 | 欹\ | ||
| 7343 | 詟\ | ||
| 7344 | \ | ||
| 7345 | 辌\ | ||
| 7346 | 棐\ | ||
| 7347 | 龂\ | ||
| 7348 | \ | ||
| 7349 | 黹\ | ||
| 7350 | 牚\ | ||
| 7351 | 睎\ | ||
| 7352 | 晫\ | ||
| 7353 | 晪\ | ||
| 7354 | 晱\ | ||
| 7355 | 𧿹\ | ||
| 7356 | 蛑\ | ||
| 7357 | 畯\ | ||
| 7358 | 斝\ | ||
| 7359 | 喤\ | ||
| 7360 | 崶\ | ||
| 7361 | 嵁\ | ||
| 7362 | 嵽\ | ||
| 7363 | 崾\ | ||
| 7364 | 嵅\ | ||
| 7365 | 崿\ | ||
| 7366 | 嵚\ | ||
| 7367 | 翙\ | ||
| 7368 | \ | ||
| 7369 | 圌\ | ||
| 7370 | 圐\ | ||
| 7371 | 赑\ | ||
| 7372 | 淼\ | ||
| 7373 | 赒\ | ||
| 7374 | \ | ||
| 7375 | 铹\ | ||
| 7376 | \ | ||
| 7377 | 铽\ | ||
| 7378 | 𨱇\ | ||
| 7379 | \ | ||
| 7380 | 锊\ | ||
| 7381 | 锍\ | ||
| 7382 | 锎\ | ||
| 7383 | \ | ||
| 7384 | 锓\ | ||
| 7385 | 犇\ | ||
| 7386 | 颋\ | ||
| 7387 | 稌\ | ||
| 7388 | 筀\ | ||
| 7389 | 筘\ | ||
| 7390 | 筜\ | ||
| 7391 | 筥\ | ||
| 7392 | 筅\ | ||
| 7393 | 傃\ | ||
| 7394 | 傉\ | ||
| 7395 | 翛\ | ||
| 7396 | 傒\ | ||
| 7397 | 傕\ | ||
| 7398 | 舾\ | ||
| 7399 | 畬\ | ||
| 7400 | \ | ||
| 7401 | 脿\ | ||
| 7402 | 腘\ | ||
| 7403 | 䐃\ | ||
| 7404 | 腙\ | ||
| 7405 | 腒\ | ||
| 7406 | \ | ||
| 7407 | 鲃\ | ||
| 7408 | 猰\ | ||
| 7409 | \ | ||
| 7410 | 猯\ | ||
| 7411 | 㺄\ | ||
| 7412 | 馉\ | ||
| 7413 | 凓\ | ||
| 7414 | 鄗\ | ||
| 7415 | \ | ||
| 7416 | 廋\ | ||
| 7417 | 廆\ | ||
| 7418 | 鄌\ | ||
| 7419 | 粢\ | ||
| 7420 | 遆\ | ||
| 7421 | 旐\ | ||
| 7422 | \ | ||
| 7423 | 焞\ | ||
| 7424 | \ | ||
| 7425 | 欻\ | ||
| 7426 | 𣸣\ | ||
| 7427 | 溚\ | ||
| 7428 | 溁\ | ||
| 7429 | 湝\ | ||
| 7430 | 渰\ | ||
| 7431 | 湓\ | ||
| 7432 | 㴔\ | ||
| 7433 | 渟\ | ||
| 7434 | 溠\ | ||
| 7435 | 渼\ | ||
| 7436 | 溇\ | ||
| 7437 | 湣\ | ||
| 7438 | 湑\ | ||
| 7439 | 溞\ | ||
| 7440 | 愐\ | ||
| 7441 | 愃\ | ||
| 7442 | 敩\ | ||
| 7443 | 甯\ | ||
| 7444 | 棨\ | ||
| 7445 | 扊\ | ||
| 7446 | 裣\ | ||
| 7447 | 祼\ | ||
| 7448 | 婻\ | ||
| 7449 | 媆\ | ||
| 7450 | 媞\ | ||
| 7451 | 㛹\ | ||
| 7452 | 媓\ | ||
| 7453 | 媂\ | ||
| 7454 | 媄\ | ||
| 7455 | 毵\ | ||
| 7456 | 矞\ | ||
| 7457 | \ | ||
| 7458 | \ | ||
| 7459 | 缊\ | ||
| 7460 | 缐\ | ||
| 7461 | 骙\ | ||
| 7462 | 瑃\ | ||
| 7463 | 瑓\ | ||
| 7464 | 瑅\ | ||
| 7465 | 瑆\ | ||
| 7466 | 䴖\ | ||
| 7467 | 瑖\ | ||
| 7468 | 瑝\ | ||
| 7469 | 瑔\ | ||
| 7470 | 瑀\ | ||
| 7471 | 𤧛\ | ||
| 7472 | 瑳\ | ||
| 7473 | 瑂\ | ||
| 7474 | 嶅\ | ||
| 7475 | 瑑\ | ||
| 7476 | 遘\ | ||
| 7477 | 髢\ | ||
| 7478 | 塥\ | ||
| 7479 | 堽\ | ||
| 7480 | 赪\ | ||
| 7481 | 摛\ | ||
| 7482 | 塝\ | ||
| 7483 | 搒\ | ||
| 7484 | 搌\ | ||
| 7485 | 蒱\ | ||
| 7486 | 蒨\ | ||
| 7487 | 蓏\ | ||
| 7488 | 蔀\ | ||
| 7489 | 蓢\ | ||
| 7490 | 蓂\ | ||
| 7491 | 蒻\ | ||
| 7492 | 蓣\ | ||
| 7493 | 椹\ | ||
| 7494 | 楪\ | ||
| 7495 | 榃\ | ||
| 7496 | 榅\ | ||
| 7497 | 楒\ | ||
| 7498 | 楞\ | ||
| 7499 | 楩\ | ||
| 7500 | 榇\ | ||
| 7501 | 椸\ | ||
| 7502 | 楙\ | ||
| 7503 | 歅\ | ||
| 7504 | \ | ||
| 7505 | 碃\ | ||
| 7506 | 碏\ | ||
| 7507 | \ | ||
| 7508 | 碈\ | ||
| 7509 | 䃅\ | ||
| 7510 | 硿\ | ||
| 7511 | 鄠\ | ||
| 7512 | 辒\ | ||
| 7513 | \ | ||
| 7514 | \ | ||
| 7515 | 龆\ | ||
| 7516 | 觜\ | ||
| 7517 | 䣘\ | ||
| 7518 | 暕\ | ||
| 7519 | 鹍\ | ||
| 7520 | \ | ||
| 7521 | 㬊\ | ||
| 7522 | 暅\ | ||
| 7523 | 跱\ | ||
| 7524 | 蜐\ | ||
| 7525 | 蜎\ | ||
| 7526 | 嵲\ | ||
| 7527 | 赗\ | ||
| 7528 | 骱\ | ||
| 7529 | 锖\ | ||
| 7530 | \ | ||
| 7531 | 锘\ | ||
| 7532 | 锳\ | ||
| 7533 | 锧\ | ||
| 7534 | 锪\ | ||
| 7535 | \ | ||
| 7536 | 锫\ | ||
| 7537 | 锬\ | ||
| 7538 | \ | ||
| 7539 | 稑\ | ||
| 7540 | 稙\ | ||
| 7541 | 䅟\ | ||
| 7542 | \ | ||
| 7543 | 筻\ | ||
| 7544 | 筼\ | ||
| 7545 | 筶\ | ||
| 7546 | 筦\ | ||
| 7547 | 筤\ | ||
| 7548 | 傺\ | ||
| 7549 | 鹎\ | ||
| 7550 | 僇\ | ||
| 7551 | 艅\ | ||
| 7552 | 艉\ | ||
| 7553 | 谼\ | ||
| 7554 | 貆\ | ||
| 7555 | 腽\ | ||
| 7556 | 腨\ | ||
| 7557 | 腯\ | ||
| 7558 | 鲉\ | ||
| 7559 | 鲊\ | ||
| 7560 | 鲌\ | ||
| 7561 | 䲟\ | ||
| 7562 | \ | ||
| 7563 | \ | ||
| 7564 | 鲏\ | ||
| 7565 | 雊\ | ||
| 7566 | 猺\ | ||
| 7567 | 飔\ | ||
| 7568 | 觟\ | ||
| 7569 | 𦝼\ | ||
| 7570 | 馌\ | ||
| 7571 | 裛\ | ||
| 7572 | 廒\ | ||
| 7573 | 瘀\ | ||
| 7574 | 瘅\ | ||
| 7575 | 鄘\ | ||
| 7576 | 鹒\ | ||
| 7577 | 鄜\ | ||
| 7578 | 麀\ | ||
| 7579 | 鄣\ | ||
| 7580 | 阘\ | ||
| 7581 | \ | ||
| 7582 | 煁\ | ||
| 7583 | 煃\ | ||
| 7584 | 煴\ | ||
| 7585 | 煋\ | ||
| 7586 | 煟\ | ||
| 7587 | 煓\ | ||
| 7588 | 滠\ | ||
| 7589 | 溍\ | ||
| 7590 | 溹\ | ||
| 7591 | 滆\ | ||
| 7592 | 滉\ | ||
| 7593 | 溦\ | ||
| 7594 | 溵\ | ||
| 7595 | 漷\ | ||
| 7596 | 滧\ | ||
| 7597 | 滘\ | ||
| 7598 | 滍\ | ||
| 7599 | 愭\ | ||
| 7600 | 慥\ | ||
| 7601 | 慆\ | ||
| 7602 | 塱\ | ||
| 7603 | \ | ||
| 7604 | 裼\ | ||
| 7605 | 禋\ | ||
| 7606 | 禔\ | ||
| 7607 | 禘\ | ||
| 7608 | 禒\ | ||
| 7609 | 谫\ | ||
| 7610 | 鹔\ | ||
| 7611 | \ | ||
| 7612 | 愍\ | ||
| 7613 | 嫄\ | ||
| 7614 | 媱\ | ||
| 7615 | 戤\ | ||
| 7616 | 勠\ | ||
| 7617 | 戣\ | ||
| 7618 | \ | ||
| 7619 | \ | ||
| 7620 | 缞\ | ||
| 7621 | 耤\ | ||
| 7622 | 瑧\ | ||
| 7623 | \ | ||
| 7624 | 瑨\ | ||
| 7625 | 瑱\ | ||
| 7626 | 瑷\ | ||
| 7627 | 瑢\ | ||
| 7628 | 斠\ | ||
| 7629 | 摏\ | ||
| 7630 | 墕\ | ||
| 7631 | 墈\ | ||
| 7632 | 墐\ | ||
| 7633 | 墘\ | ||
| 7634 | 摴\ | ||
| 7635 | 銎\ | ||
| 7636 | 𡐓\ | ||
| 7637 | 墚\ | ||
| 7638 | 撖\ | ||
| 7639 | \ | ||
| 7640 | 靽\ | ||
| 7641 | 鞁\ | ||
| 7642 | 蔌\ | ||
| 7643 | 蔈\ | ||
| 7644 | 蓰\ | ||
| 7645 | 蔹\ | ||
| 7646 | 蔊\ | ||
| 7647 | 嘏\ | ||
| 7648 | 榰\ | ||
| 7649 | 榑\ | ||
| 7650 | 槚\ | ||
| 7651 | 𣗋\ | ||
| 7652 | 槜\ | ||
| 7653 | 榍\ | ||
| 7654 | 疐\ | ||
| 7655 | \ | ||
| 7656 | 酺\ | ||
| 7657 | 酾\ | ||
| 7658 | 酲\ | ||
| 7659 | 酴\ | ||
| 7660 | 碶\ | ||
| 7661 | 䃎\ | ||
| 7662 | \ | ||
| 7663 | 碨\ | ||
| 7664 | 𥔲\ | ||
| 7665 | 碹\ | ||
| 7666 | 碥\ | ||
| 7667 | 劂\ | ||
| 7668 | \ | ||
| 7669 | 䴗\ | ||
| 7670 | 夥\ | ||
| 7671 | 瞍\ | ||
| 7672 | 鹖\ | ||
| 7673 | 㬎\ | ||
| 7674 | 跽\ | ||
| 7675 | 蜾\ | ||
| 7676 | 幖\ | ||
| 7677 | 嶍\ | ||
| 7678 | 圙\ | ||
| 7679 | 𨱏\ | ||
| 7680 | 锺\ | ||
| 7681 | 锼\ | ||
| 7682 | 锽\ | ||
| 7683 | \ | ||
| 7684 | 锾\ | ||
| 7685 | 锿\ | ||
| 7686 | 镃\ | ||
| 7687 | 镄\ | ||
| 7688 | 镅\ | ||
| 7689 | 馝\ | ||
| 7690 | 鹙\ | ||
| 7691 | 箨\ | ||
| 7692 | 箖\ | ||
| 7693 | 劄\ | ||
| 7694 | 僬\ | ||
| 7695 | 僦\ | ||
| 7696 | 僔\ | ||
| 7697 | 僎\ | ||
| 7698 | 槃\ | ||
| 7699 | 㙦\ | ||
| 7700 | 鲒\ | ||
| 7701 | 鲕\ | ||
| 7702 | \ | ||
| 7703 | 鲖\ | ||
| 7704 | 鲗\ | ||
| 7705 | 鲘\ | ||
| 7706 | 鲙\ | ||
| 7707 | \ | ||
| 7708 | \ | ||
| 7709 | 𩽾\ | ||
| 7710 | 夐\ | ||
| 7711 | 獍\ | ||
| 7712 | 飗\ | ||
| 7713 | \ | ||
| 7714 | 凘\ | ||
| 7715 | 廑\ | ||
| 7716 | 廙\ | ||
| 7717 | 瘗\ | ||
| 7718 | 瘥\ | ||
| 7719 | 瘕\ | ||
| 7720 | 鲝\ | ||
| 7721 | 鄫\ | ||
| 7722 | 熇\ | ||
| 7723 | 漹\ | ||
| 7724 | 漖\ | ||
| 7725 | 潆\ | ||
| 7726 | 漤\ | ||
| 7727 | 潩\ | ||
| 7728 | 漼\ | ||
| 7729 | 漴\ | ||
| 7730 | 㽏\ | ||
| 7731 | 漈\ | ||
| 7732 | 漋\ | ||
| 7733 | 漻\ | ||
| 7734 | 慬\ | ||
| 7735 | 窬\ | ||
| 7736 | 窭\ | ||
| 7737 | 㮾\ | ||
| 7738 | \ | ||
| 7739 | 褕\ | ||
| 7740 | 禛\ | ||
| 7741 | 禚\ | ||
| 7742 | 隩\ | ||
| 7743 | 嫕\ | ||
| 7744 | 嫭\ | ||
| 7745 | 嫜\ | ||
| 7746 | 嫪\ | ||
| 7747 | \ | ||
| 7748 | 㻬\ | ||
| 7749 | 麹\ | ||
| 7750 | 璆\ | ||
| 7751 | 漦\ | ||
| 7752 | 叇\ | ||
| 7753 | 墣\ | ||
| 7754 | 墦\ | ||
| 7755 | 墡\ | ||
| 7756 | 劐\ | ||
| 7757 | 薁\ | ||
| 7758 | 蕰\ | ||
| 7759 | 蔃\ | ||
| 7760 | 鼒\ | ||
| 7761 | 槱\ | ||
| 7762 | 鹝\ | ||
| 7763 | 磏\ | ||
| 7764 | 磉\ | ||
| 7765 | 殣\ | ||
| 7766 | 慭\ | ||
| 7767 | 霅\ | ||
| 7768 | 暵\ | ||
| 7769 | 暲\ | ||
| 7770 | 暶\ | ||
| 7771 | 踦\ | ||
| 7772 | 踣\ | ||
| 7773 | 䗖\ | ||
| 7774 | 蝘\ | ||
| 7775 | 蝲\ | ||
| 7776 | 蝤\ | ||
| 7777 | 噇\ | ||
| 7778 | 噂\ | ||
| 7779 | 噀\ | ||
| 7780 | 罶\ | ||
| 7781 | 嶲\ | ||
| 7782 | 嶓\ | ||
| 7783 | 㠇\ | ||
| 7784 | 嶟\ | ||
| 7785 | 嶒\ | ||
| 7786 | 镆\ | ||
| 7787 | 镈\ | ||
| 7788 | 镋\ | ||
| 7789 | 镎\ | ||
| 7790 | \ | ||
| 7791 | 镕\ | ||
| 7792 | 稹\ | ||
| 7793 | 儇\ | ||
| 7794 | 皞\ | ||
| 7795 | 皛\ | ||
| 7796 | 䴘\ | ||
| 7797 | 艎\ | ||
| 7798 | 艏\ | ||
| 7799 | 鹟\ | ||
| 7800 | 𩾃\ | ||
| 7801 | 鲦\ | ||
| 7802 | 鲪\ | ||
| 7803 | 鲬\ | ||
| 7804 | 橥\ | ||
| 7805 | 觭\ | ||
| 7806 | 鹠\ | ||
| 7807 | 鹡\ | ||
| 7808 | 糇\ | ||
| 7809 | 糈\ | ||
| 7810 | 翦\ | ||
| 7811 | 鹢\ | ||
| 7812 | 鹣\ | ||
| 7813 | 熛\ | ||
| 7814 | 潖\ | ||
| 7815 | 潵\ | ||
| 7816 | 㵐\ | ||
| 7817 | 澂\ | ||
| 7818 | 澛\ | ||
| 7819 | 瑬\ | ||
| 7820 | 潽\ | ||
| 7821 | 潾\ | ||
| 7822 | 潏\ | ||
| 7823 | 憭\ | ||
| 7824 | 憕\ | ||
| 7825 | \ | ||
| 7826 | 戭\ | ||
| 7827 | 褯\ | ||
| 7828 | 禤\ | ||
| 7829 | \ | ||
| 7830 | 嫽\ | ||
| 7831 | 遹\ | ||
| 7832 | \ | ||
| 7833 | 璥\ | ||
| 7834 | 璲\ | ||
| 7835 | 璒\ | ||
| 7836 | 憙\ | ||
| 7837 | 擐\ | ||
| 7838 | 鄹\ | ||
| 7839 | 薳\ | ||
| 7840 | 鞔\ | ||
| 7841 | 黇\ | ||
| 7842 | \ | ||
| 7843 | 蕗\ | ||
| 7844 | 薢\ | ||
| 7845 | 蕹\ | ||
| 7846 | 橞\ | ||
| 7847 | 橑\ | ||
| 7848 | 橦\ | ||
| 7849 | 醑\ | ||
| 7850 | 觱\ | ||
| 7851 | 磡\ | ||
| 7852 | 𥕢\ | ||
| 7853 | 磜\ | ||
| 7854 | 豮\ | ||
| 7855 | \ | ||
| 7856 | \ | ||
| 7857 | \ | ||
| 7858 | 鹾\ | ||
| 7859 | 虤\ | ||
| 7860 | 暿\ | ||
| 7861 | 曌\ | ||
| 7862 | 曈\ | ||
| 7863 | 㬚\ | ||
| 7864 | 蹅\ | ||
| 7865 | 踶\ | ||
| 7866 | 䗛\ | ||
| 7867 | 螗\ | ||
| 7868 | 疁\ | ||
| 7869 | 㠓\ | ||
| 7870 | 幪\ | ||
| 7871 | \ | ||
| 7872 | 嶦\ | ||
| 7873 | \ | ||
| 7874 | 𨱑\ | ||
| 7875 | \ | ||
| 7876 | 馞\ | ||
| 7877 | 穄\ | ||
| 7878 | 篚\ | ||
| 7879 | 篯\ | ||
| 7880 | 簉\ | ||
| 7881 | 鼽\ | ||
| 7882 | 衠\ | ||
| 7883 | 盦\ | ||
| 7884 | 螣\ | ||
| 7885 | 縢\ | ||
| 7886 | 鲭\ | ||
| 7887 | 鲯\ | ||
| 7888 | 鲰\ | ||
| 7889 | 鲺\ | ||
| 7890 | 鲹\ | ||
| 7891 | \ | ||
| 7892 | 亸\ | ||
| 7893 | 癀\ | ||
| 7894 | 瘭\ | ||
| 7895 | \ | ||
| 7896 | 羱\ | ||
| 7897 | 糒\ | ||
| 7898 | 燋\ | ||
| 7899 | 熻\ | ||
| 7900 | 燊\ | ||
| 7901 | 燚\ | ||
| 7902 | 燏\ | ||
| 7903 | 濩\ | ||
| 7904 | 濋\ | ||
| 7905 | 澪\ | ||
| 7906 | 澽\ | ||
| 7907 | 澴\ | ||
| 7908 | 澭\ | ||
| 7909 | 澼\ | ||
| 7910 | 憷\ | ||
| 7911 | 憺\ | ||
| 7912 | 懔\ | ||
| 7913 | 黉\ | ||
| 7914 | 嬛\ | ||
| 7915 | 鹨\ | ||
| 7916 | 翯\ | ||
| 7917 | \ | ||
| 7918 | 璱\ | ||
| 7919 | 𤩽\ | ||
| 7920 | 璬\ | ||
| 7921 | 璮\ | ||
| 7922 | 髽\ | ||
| 7923 | 擿\ | ||
| 7924 | 薿\ | ||
| 7925 | 薸\ | ||
| 7926 | 檑\ | ||
| 7927 | 櫆\ | ||
| 7928 | 檞\ | ||
| 7929 | 醨\ | ||
| 7930 | 繄\ | ||
| 7931 | 磹\ | ||
| 7932 | 磻\ | ||
| 7933 | 瞫\ | ||
| 7934 | 瞵\ | ||
| 7935 | 蹐\ | ||
| 7936 | 蟏\ | ||
| 7937 | 㘎\ | ||
| 7938 | \ | ||
| 7939 | 镤\ | ||
| 7940 | \ | ||
| 7941 | \ | ||
| 7942 | 镥\ | ||
| 7943 | 镨\ | ||
| 7944 | \ | ||
| 7945 | 𨱔\ | ||
| 7946 | \ | ||
| 7947 | \ | ||
| 7948 | 矰\ | ||
| 7949 | 穙\ | ||
| 7950 | 穜\ | ||
| 7951 | 穟\ | ||
| 7952 | 簕\ | ||
| 7953 | 簃\ | ||
| 7954 | 簏\ | ||
| 7955 | 儦\ | ||
| 7956 | 魋\ | ||
| 7957 | 斶\ | ||
| 7958 | 艚\ | ||
| 7959 | \ | ||
| 7960 | 谿\ | ||
| 7961 | 䲠\ | ||
| 7962 | \ | ||
| 7963 | 鲾\ | ||
| 7964 | \ | ||
| 7965 | 鲿\ | ||
| 7966 | 鳁\ | ||
| 7967 | 鳂\ | ||
| 7968 | 鳈\ | ||
| 7969 | 鳉\ | ||
| 7970 | 獯\ | ||
| 7971 | 䗪\ | ||
| 7972 | 馘\ | ||
| 7973 | 襕\ | ||
| 7974 | 襚\ | ||
| 7975 | \ | ||
| 7976 | 螱\ | ||
| 7977 | 甓\ | ||
| 7978 | 嬬\ | ||
| 7979 | 嬥\ | ||
| 7980 | 𦈡\ | ||
| 7981 | \ | ||
| 7982 | 瓀\ | ||
| 7983 | 釐\ | ||
| 7984 | 鬶\ | ||
| 7985 | 爇\ | ||
| 7986 | 鞳\ | ||
| 7987 | 鞮\ | ||
| 7988 | \ | ||
| 7989 | 藟\ | ||
| 7990 | 藦\ | ||
| 7991 | 藨\ | ||
| 7992 | 鹲\ | ||
| 7993 | 檫\ | ||
| 7994 | 黡\ | ||
| 7995 | 礞\ | ||
| 7996 | 礌\ | ||
| 7997 | 𥖨\ | ||
| 7998 | 蹢\ | ||
| 7999 | 蹜\ | ||
| 8000 | 蟫\ | ||
| 8001 | 䗴\ | ||
| 8002 | 嚚\ | ||
| 8003 | 髃\ | ||
| 8004 | 镮\ | ||
| 8005 | 镱\ | ||
| 8006 | 酂\ | ||
| 8007 | 馧\ | ||
| 8008 | 簠\ | ||
| 8009 | 簝\ | ||
| 8010 | 簰\ | ||
| 8011 | 鼫\ | ||
| 8012 | 鼩\ | ||
| 8013 | 皦\ | ||
| 8014 | 臑\ | ||
| 8015 | 䲢\ | ||
| 8016 | 鳑\ | ||
| 8017 | 鳒\ | ||
| 8018 | 鹱\ | ||
| 8019 | 鹯\ | ||
| 8020 | 癗\ | ||
| 8021 | 𦒍\ | ||
| 8022 | 旞\ | ||
| 8023 | 翷\ | ||
| 8024 | 冁\ | ||
| 8025 | 䎖\ | ||
| 8026 | 瀔\ | ||
| 8027 | 瀍\ | ||
| 8028 | 瀌\ | ||
| 8029 | 襜\ | ||
| 8030 | 䴙\ | ||
| 8031 | \ | ||
| 8032 | 嚭\ | ||
| 8033 | 㰀\ | ||
| 8034 | 鬷\ | ||
| 8035 | 醭\ | ||
| 8036 | 蹯\ | ||
| 8037 | 蠋\ | ||
| 8038 | 翾\ | ||
| 8039 | 鳘\ | ||
| 8040 | 儳\ | ||
| 8041 | 儴\ | ||
| 8042 | 鼗\ | ||
| 8043 | 鰶\ | ||
| 8044 | 𩾌\ | ||
| 8045 | 鳚\ | ||
| 8046 | 鳛\ | ||
| 8047 | 麑\ | ||
| 8048 | 麖\ | ||
| 8049 | 蠃\ | ||
| 8050 | 彟\ | ||
| 8051 | 嬿\ | ||
| 8052 | 鬒\ | ||
| 8053 | 蘘\ | ||
| 8054 | 欂\ | ||
| 8055 | 醵\ | ||
| 8056 | 颥\ | ||
| 8057 | 甗\ | ||
| 8058 | 𨟠\ | ||
| 8059 | 巇\ | ||
| 8060 | 酅\ | ||
| 8061 | 髎\ | ||
| 8062 | 犨\ | ||
| 8063 | \ | ||
| 8064 | 𨭉\ | ||
| 8065 | 㸌\ | ||
| 8066 | 爔\ | ||
| 8067 | 瀱\ | ||
| 8068 | 瀹\ | ||
| 8069 | 瀼\ | ||
| 8070 | 瀵\ | ||
| 8071 | 襫\ | ||
| 8072 | 孅\ | ||
| 8073 | 骦\ | ||
| 8074 | \ | ||
| 8075 | 耰\ | ||
| 8076 | 𤫉\ | ||
| 8077 | 瓖\ | ||
| 8078 | 鬘\ | ||
| 8079 | 趯\ | ||
| 8080 | \ | ||
| 8081 | 罍\ | ||
| 8082 | 鼱\ | ||
| 8083 | 鳠\ | ||
| 8084 | 鳡\ | ||
| 8085 | 鳣\ | ||
| 8086 | 爟\ | ||
| 8087 | 爚\ | ||
| 8088 | 灈\ | ||
| 8089 | 韂\ | ||
| 8090 | 糵\ | ||
| 8091 | 蘼\ | ||
| 8092 | 礵\ | ||
| 8093 | 鹴\ | ||
| 8094 | 躔\ | ||
| 8095 | 皭\ | ||
| 8096 | 龢\ | ||
| 8097 | 鳤\ | ||
| 8098 | 亹\ | ||
| 8099 | 籥\ | ||
| 8100 | 鼷\ | ||
| 8101 | 鱲\ | ||
| 8102 | 玃\ | ||
| 8103 | 醾\ | ||
| 8104 | 齇\ | ||
| 8105 | 觿\ | ||
| 8106 | 蠼\ | ||
| 8107 | ,\ | ||
| 8108 | 。\ | ||
| 8109 | 、\ | ||
| 8110 | “\ | ||
| 8111 | ”\ | ||
| 8112 | :\ | ||
| 8113 | .\ | ||
| 8114 | ,\ | ||
| 8115 | ;\ | ||
| 8116 | ?\ | ||
| 8117 | )\ | ||
| 8118 | (\ | ||
| 8119 | -\ | ||
| 8120 | )\ | ||
| 8121 | (\ | ||
| 8122 | 》\ | ||
| 8123 | 《\ | ||
| 8124 | !\ | ||
| 8125 | [\ | ||
| 8126 | ]\ | ||
| 8127 | %\ | ||
| 8128 | "\ | ||
| 8129 | …\ | ||
| 8130 | /\ | ||
| 8131 | ’\ | ||
| 8132 | ‘\ | ||
| 8133 | _\ | ||
| 8134 | =\ | ||
| 8135 | +\ | ||
| 8136 | □\ | ||
| 8137 | '\ | ||
| 8138 | 【\ | ||
| 8139 | 】\ | ||
| 8140 | ~\ | ||
| 8141 | *\ | ||
| 8142 | ★\ | ||
| 8143 | ―\ | ||
| 8144 | ●\ | ||
| 8145 | &\ | ||
| 8146 | ■\ | ||
| 8147 | 「\ | ||
| 8148 | 」\ | ||
| 8149 | ~\ | ||
| 8150 | ☆\ | ||
| 8151 | #\ | ||
| 8152 | >\ | ||
| 8153 | {\ | ||
| 8154 | →\ | ||
| 8155 | }\ | ||
| 8156 | @\ | ||
| 8157 | ℃\ | ||
| 8158 | |\ | ||
| 8159 | ◆\ | ||
| 8160 | \\ | ||
| 8161 | 〉\ | ||
| 8162 | 〈\ | ||
| 8163 | 〕\ | ||
| 8164 | 〔\ | ||
| 8165 | ━\ | ||
| 8166 | β\ | ||
| 8167 | $\ | ||
| 8168 | °\ | ||
| 8169 | √\ | ||
| 8170 | ※\ | ||
| 8171 | ′\ | ||
| 8172 | ±\ | ||
| 8173 | ▲\ | ||
| 8174 | `\ | ||
| 8175 | ^\ | ||
| 8176 | ÷\ | ||
| 8177 | ┐\ | ||
| 8178 | ≥\ | ||
| 8179 | ┌\ | ||
| 8180 | α\ | ||
| 8181 | ¥\ | ||
| 8182 | ≤\ | ||
| 8183 | 『\ | ||
| 8184 | <\ | ||
| 8185 | 』\ | ||
| 8186 | ‰\ | ||
| 8187 | П\ | ||
| 8188 | ∩\ | ||
| 8189 | ◇\ | ||
| 8190 | ∈\ | ||
| 8191 | ↓\ | ||
| 8192 | ∵\ | ||
| 8193 | ≠\ | ||
| 8194 | ®\ | ||
| 8195 | △\ | ||
| 8196 | ▽\ | ||
| 8197 | ·\ | ||
| 8198 | 0\ | ||
| 8199 | 1\ | ||
| 8200 | 2\ | ||
| 8201 | 3\ | ||
| 8202 | 4\ | ||
| 8203 | 5\ | ||
| 8204 | 6\ | ||
| 8205 | 7\ | ||
| 8206 | 8\ | ||
| 8207 | 9\ | ||
| 8208 | a\ | ||
| 8209 | b\ | ||
| 8210 | c\ | ||
| 8211 | d\ | ||
| 8212 | e\ | ||
| 8213 | f\ | ||
| 8214 | g\ | ||
| 8215 | h\ | ||
| 8216 | i\ | ||
| 8217 | j\ | ||
| 8218 | k\ | ||
| 8219 | l\ | ||
| 8220 | m\ | ||
| 8221 | n\ | ||
| 8222 | o\ | ||
| 8223 | p\ | ||
| 8224 | q\ | ||
| 8225 | r\ | ||
| 8226 | s\ | ||
| 8227 | t\ | ||
| 8228 | u\ | ||
| 8229 | v\ | ||
| 8230 | w\ | ||
| 8231 | x\ | ||
| 8232 | y\ | ||
| 8233 | z\ | ||
| 8234 | A\ | ||
| 8235 | B\ | ||
| 8236 | C\ | ||
| 8237 | D\ | ||
| 8238 | E\ | ||
| 8239 | F\ | ||
| 8240 | G\ | ||
| 8241 | H\ | ||
| 8242 | I\ | ||
| 8243 | J\ | ||
| 8244 | K\ | ||
| 8245 | L\ | ||
| 8246 | M\ | ||
| 8247 | N\ | ||
| 8248 | O\ | ||
| 8249 | P\ | ||
| 8250 | Q\ | ||
| 8251 | R\ | ||
| 8252 | S\ | ||
| 8253 | T\ | ||
| 8254 | U\ | ||
| 8255 | V\ | ||
| 8256 | W\ | ||
| 8257 | X\ | ||
| 8258 | Y\ | ||
| 8259 | Z""" |
| 1 | import cv2 | ||
| 2 | import time | ||
| 3 | import numpy as np | ||
| 4 | from .alphabets import alphabet | ||
| 5 | import tritonclient.grpc as grpcclient | ||
| 6 | |||
| 7 | |||
| 8 | def sort_poly(p): | ||
| 9 | # Find the minimum coordinate using (Xi+Yi) | ||
| 10 | min_axis = np.argmin(np.sum(p, axis=1)) | ||
| 11 | # Sort the box coordinates | ||
| 12 | p = p[[min_axis, (min_axis + 1) % 4, (min_axis + 2) % 4, (min_axis + 3) % 4]] | ||
| 13 | if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]): | ||
| 14 | return p | ||
| 15 | else: | ||
| 16 | return p[[0, 3, 2, 1]] | ||
| 17 | |||
| 18 | def client_init(url="localhost:8001", | ||
| 19 | ssl=False, private_key=None, root_certificates=None, certificate_chain=None, | ||
| 20 | verbose=False): | ||
| 21 | triton_client = grpcclient.InferenceServerClient( | ||
| 22 | url=url, | ||
| 23 | verbose=verbose, | ||
| 24 | ssl=ssl, | ||
| 25 | root_certificates=root_certificates, | ||
| 26 | private_key=private_key, | ||
| 27 | certificate_chain=certificate_chain) | ||
| 28 | return triton_client | ||
| 29 | |||
| 30 | class textRecServer: | ||
| 31 | """_summary_ | ||
| 32 | """ | ||
| 33 | def __init__(self): | ||
| 34 | super().__init__() | ||
| 35 | self.charactersS = ' ' + alphabet | ||
| 36 | self.batchsize = 8 | ||
| 37 | |||
| 38 | self.input_name = 'INPUT__0' | ||
| 39 | self.output_name = 'OUTPUT__0' | ||
| 40 | self.model_name = 'text_rec_torch' | ||
| 41 | self.np_type = np.float32 | ||
| 42 | self.quant_type = "FP32" | ||
| 43 | self.compression_algorithm = None | ||
| 44 | self.outputs = [] | ||
| 45 | self.outputs.append(grpcclient.InferRequestedOutput(self.output_name)) | ||
| 46 | |||
| 47 | def preprocess_one_image(self, image): | ||
| 48 | _, w, _ = image.shape | ||
| 49 | image = self._transform(image, w) | ||
| 50 | return image | ||
| 51 | |||
| 52 | def predict_batch(self, im, boxes): | ||
| 53 | """Summary | ||
| 54 | |||
| 55 | Args: | ||
| 56 | im (TYPE): RGB | ||
| 57 | boxes (TYPE): Description | ||
| 58 | |||
| 59 | Returns: | ||
| 60 | TYPE: Description | ||
| 61 | """ | ||
| 62 | |||
| 63 | triton_client = client_init("localhost:8001") | ||
| 64 | count_boxes = len(boxes) | ||
| 65 | boxes = sorted(boxes, | ||
| 66 | key=lambda box: int(32.0 * (np.linalg.norm(box[0] - box[1])) / (np.linalg.norm(box[3] - box[0]))), | ||
| 67 | reverse=True) | ||
| 68 | |||
| 69 | results = {} | ||
| 70 | labels = [] | ||
| 71 | rectime = 0.0 | ||
| 72 | if len(boxes) != 0: | ||
| 73 | for i in range(len(boxes) // self.batchsize + int(len(boxes) % self.batchsize != 0)): | ||
| 74 | box = boxes[min(len(boxes)-1, i * self.batchsize)] | ||
| 75 | w, h = [int(np.linalg.norm(box[0] - box[1])), int(np.linalg.norm(box[3] - box[0]))] | ||
| 76 | width = max(32, min(int(32.0 * w / h), 960)) | ||
| 77 | if width < 32: | ||
| 78 | continue | ||
| 79 | slices = [] | ||
| 80 | for index, box in enumerate(boxes[i * self.batchsize:(i + 1) * self.batchsize]): | ||
| 81 | _box = [n for a in box for n in a] | ||
| 82 | if i * self.batchsize + index < count_boxes: | ||
| 83 | results[i * self.batchsize + index] = [list(map(int, _box))] | ||
| 84 | w, h = [int(np.linalg.norm(box[0] - box[1])), int(np.linalg.norm(box[3] - box[0]))] | ||
| 85 | pts1 = np.float32(box) | ||
| 86 | pts2 = np.float32([[0, 0], [w, 0], [w, h], [0, h]]) | ||
| 87 | |||
| 88 | # 前处理优化 | ||
| 89 | xmin, ymin, _w, _h = cv2.boundingRect(pts1) | ||
| 90 | xmax, ymax = xmin+_w, ymin+_h | ||
| 91 | xmin, ymin = max(0, xmin), max(0, ymin) | ||
| 92 | im_sclice = im[int(ymin):int(ymax), int(xmin):int(xmax), :] | ||
| 93 | pts1[:, 0] -= xmin | ||
| 94 | pts1[:, 1] -= ymin | ||
| 95 | |||
| 96 | M = cv2.getPerspectiveTransform(pts1, pts2) | ||
| 97 | im_crop = cv2.warpPerspective(im_sclice, M, (w, h)) | ||
| 98 | im_crop = self._transform(im_crop, width) | ||
| 99 | slices.append(im_crop) | ||
| 100 | start_rec = time.time() | ||
| 101 | slices = self.np_type(slices) | ||
| 102 | slices = slices.transpose(0, 3, 1, 2) | ||
| 103 | slices = slices/127.5-1. | ||
| 104 | inputs = [] | ||
| 105 | inputs.append(grpcclient.InferInput(self.input_name, list(slices.shape), self.quant_type)) | ||
| 106 | inputs[0].set_data_from_numpy(slices) | ||
| 107 | |||
| 108 | # inference | ||
| 109 | preds = triton_client.infer( | ||
| 110 | model_name=self.model_name, | ||
| 111 | inputs=inputs, | ||
| 112 | outputs=self.outputs, | ||
| 113 | compression_algorithm=self.compression_algorithm | ||
| 114 | ) | ||
| 115 | preds = preds.as_numpy(self.output_name).copy() | ||
| 116 | preds = preds.transpose(1, 0) | ||
| 117 | tmp_labels = self.decode(preds) | ||
| 118 | rectime += (time.time() - start_rec) | ||
| 119 | labels.extend(tmp_labels) | ||
| 120 | |||
| 121 | for index, label in enumerate(labels[:count_boxes]): | ||
| 122 | label = label.replace(' ', '').replace('¥', '¥') | ||
| 123 | if label == '': | ||
| 124 | del results[index] | ||
| 125 | continue | ||
| 126 | results[index].append(label) | ||
| 127 | # 重新排序 | ||
| 128 | results = list(results.values()) | ||
| 129 | results = sorted(results, key=lambda x: x[0][1], reverse=False) # 按 y0 从小到大排 | ||
| 130 | keys = [str(i) for i in range(len(results))] | ||
| 131 | results = dict(zip(keys, results)) | ||
| 132 | else: | ||
| 133 | results = dict() | ||
| 134 | rectime = -1 | ||
| 135 | return results, rectime | ||
| 136 | |||
| 137 | def decode(self, preds): | ||
| 138 | res = [] | ||
| 139 | for t in preds: | ||
| 140 | length = len(t) | ||
| 141 | char_list = [] | ||
| 142 | for i in range(length): | ||
| 143 | if t[i] != 0 and (not (i > 0 and t[i-1] == t[i])): | ||
| 144 | char_list.append(self.charactersS[t[i]]) | ||
| 145 | res.append(u''.join(char_list)) | ||
| 146 | return res | ||
| 147 | |||
| 148 | def _transform(self, im, width): | ||
| 149 | height=32 | ||
| 150 | |||
| 151 | ori_h, ori_w = im.shape[:2] | ||
| 152 | ratio1 = width * 1.0 / ori_w | ||
| 153 | ratio2 = height * 1.0 / ori_h | ||
| 154 | if ratio1 < ratio2: | ||
| 155 | ratio = ratio1 | ||
| 156 | else: | ||
| 157 | ratio = ratio2 | ||
| 158 | new_w, new_h = int(ori_w * ratio), int(ori_h * ratio) | ||
| 159 | if new_w<4: | ||
| 160 | new_w = 4 | ||
| 161 | im = cv2.resize(im, (new_w, new_h)) | ||
| 162 | img = np.ones((height, width, 3), dtype=np.uint8)*230 | ||
| 163 | img[:im.shape[0], :im.shape[1], :] = im | ||
| 164 | return img |
| 1 | from . import text_detector | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : Lyu Kui | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Create Date : 2022-06-01 19:00:18 | ||
| 5 | # @Last Modified : 2022-07-15 11:41:25 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | import os | ||
| 9 | import cv2 | ||
| 10 | import time | ||
| 11 | import pyclipper | ||
| 12 | import numpy as np | ||
| 13 | # import tensorflow as tf | ||
| 14 | from shapely.geometry import Polygon | ||
| 15 | |||
| 16 | # import grpc | ||
| 17 | # from tensorflow_serving.apis import predict_pb2 | ||
| 18 | # from tensorflow_serving.apis import prediction_service_pb2_grpc | ||
| 19 | |||
| 20 | import tritonclient.grpc as grpcclient | ||
| 21 | |||
| 22 | |||
| 23 | def resize_with_padding(src, limit_max=1024): | ||
| 24 | '''限制长边不大于 limit_max 短边等比例缩放,以 0 填充''' | ||
| 25 | img = src.copy() | ||
| 26 | |||
| 27 | h, w, _ = img.shape | ||
| 28 | max_side = max(h, w) | ||
| 29 | ratio = limit_max / max_side if max_side > limit_max else 1 | ||
| 30 | h, w = int(h * ratio), int(w * ratio) | ||
| 31 | proc = cv2.resize(img, (w, h)) | ||
| 32 | |||
| 33 | canvas = np.zeros((limit_max, limit_max, 3), dtype=np.float32) | ||
| 34 | canvas[0:h, 0:w, :] = proc | ||
| 35 | return canvas, ratio | ||
| 36 | |||
| 37 | def rectangle_boxes_zoom(boxes, offset=1): | ||
| 38 | '''Scale the rectangle boxes via offset | ||
| 39 | Input: | ||
| 40 | boxes: with shape (-1, 4, 2) | ||
| 41 | offset: how many pix do you wanna zoom, we recommend less than 5 | ||
| 42 | Output: | ||
| 43 | boxes: zoomed | ||
| 44 | ''' | ||
| 45 | boxes = np.array(boxes) | ||
| 46 | boxes += [[[-offset,-offset], [offset,-offset], [offset,offset], [-offset,offset]]] | ||
| 47 | return boxes | ||
| 48 | |||
| 49 | def polygons_from_probmap(preds, ratio): | ||
| 50 | # 二值化 | ||
| 51 | prob_map_pred = np.array(preds, dtype=np.uint8)[0,:,:,0] | ||
| 52 | # 输入:二值图、轮廓检索(层次)模式、轮廓渐进方法 | ||
| 53 | # 输出:轮廓、层级关系 | ||
| 54 | contours, hierarchy = cv2.findContours(prob_map_pred, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | ||
| 55 | |||
| 56 | boxes = [] | ||
| 57 | for contour in contours: | ||
| 58 | if len(contour) < 4: | ||
| 59 | continue | ||
| 60 | |||
| 61 | # Vatti clipping | ||
| 62 | polygon = Polygon(np.array(contour).reshape((-1, 2))).buffer(0) | ||
| 63 | polygon = polygon.convex_hull if polygon.type == 'MultiPolygon' else polygon # Note: 这里不是 bug 是我们故意而为之 | ||
| 64 | |||
| 65 | if polygon.area < 10: | ||
| 66 | continue | ||
| 67 | |||
| 68 | distance = polygon.area * 1.5 / polygon.length | ||
| 69 | offset = pyclipper.PyclipperOffset() | ||
| 70 | offset.AddPath(list(polygon.exterior.coords), pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) | ||
| 71 | expanded = np.array(offset.Execute(distance)[0]) # Note: 这里不是 bug 是我们故意而为之 | ||
| 72 | |||
| 73 | # Convert polygon to rectangle | ||
| 74 | rect = cv2.minAreaRect(expanded) | ||
| 75 | box = cv2.boxPoints(rect) | ||
| 76 | # make clock-wise order | ||
| 77 | box = np.roll(box, 4-box.sum(axis=1).argmin(), 0) | ||
| 78 | box = np.array(box/ratio, dtype=np.int32) | ||
| 79 | boxes.append(box) | ||
| 80 | |||
| 81 | return boxes | ||
| 82 | |||
| 83 | def predict(image): | ||
| 84 | |||
| 85 | image_resized, ratio = resize_with_padding(image, limit_max=1280) | ||
| 86 | input_data = np.expand_dims(image_resized/255., axis=0) | ||
| 87 | |||
| 88 | # options = [('grpc.max_send_message_length', 1000 * 1024 * 1024), | ||
| 89 | # ('grpc.max_receive_message_length', 1000 * 1024 * 1024)] | ||
| 90 | # channel = grpc.insecure_channel('localhost:8500', options=options) | ||
| 91 | # stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) | ||
| 92 | |||
| 93 | # request = predict_pb2.PredictRequest() | ||
| 94 | # request.model_spec.name = 'dbnet_model' | ||
| 95 | # request.model_spec.signature_name = 'serving_default' | ||
| 96 | # request.inputs['input_1'].CopyFrom(tf.make_tensor_proto(inputs)) | ||
| 97 | |||
| 98 | # result = stub.Predict(request, 100.0) # 100 secs timeout | ||
| 99 | |||
| 100 | # preds = tf.make_ndarray(result.outputs['tf.math.greater']) | ||
| 101 | |||
| 102 | triton_client = grpcclient.InferenceServerClient("localhost:8001") | ||
| 103 | |||
| 104 | # Initialize the data | ||
| 105 | inputs = [grpcclient.InferInput('input_1', input_data.shape, "FP32")] | ||
| 106 | inputs[0].set_data_from_numpy(input_data) | ||
| 107 | outputs = [grpcclient.InferRequestedOutput("tf.math.greater")] | ||
| 108 | |||
| 109 | # Inference | ||
| 110 | results = triton_client.infer( | ||
| 111 | model_name="dbnet_model", | ||
| 112 | inputs=inputs, | ||
| 113 | outputs=outputs | ||
| 114 | ) | ||
| 115 | # Get the output arrays from the results | ||
| 116 | preds = results.as_numpy("tf.math.greater") | ||
| 117 | |||
| 118 | boxes = polygons_from_probmap(preds, ratio) | ||
| 119 | #boxes = rectangle_boxes_zoom(boxes, offset=0) | ||
| 120 | |||
| 121 | return boxes |
ocr_engine/turnsole/ocr_engine/__init__.py
0 → 100644
| 1 | # import grpc | ||
| 2 | import turnsole | ||
| 3 | import numpy as np | ||
| 4 | # import tensorflow as tf | ||
| 5 | # from tensorflow_serving.apis import predict_pb2, prediction_service_pb2_grpc | ||
| 6 | |||
| 7 | import tritonclient.grpc as grpcclient | ||
| 8 | |||
| 9 | |||
| 10 | class ObjectDetection(): | ||
| 11 | |||
| 12 | """通用文件检测算法 | ||
| 13 | 输入图片输出检测结果 | ||
| 14 | |||
| 15 | API 文档请参阅: | ||
| 16 | """ | ||
| 17 | |||
| 18 | def __init__(self, confidence_threshold=0.5): | ||
| 19 | """初始化检测对象 | ||
| 20 | |||
| 21 | Args: | ||
| 22 | confidence_threshold (float, optional): 目标检测模型的分类置信度 | ||
| 23 | """ | ||
| 24 | |||
| 25 | self.lable2index = { | ||
| 26 | 'id_card_info': 0, | ||
| 27 | 'id_card_guohui': 1, | ||
| 28 | 'lssfz_front': 2, | ||
| 29 | 'lssfz_back': 3, | ||
| 30 | 'jzz_front': 4, | ||
| 31 | 'jzz_back': 5, | ||
| 32 | 'txz_front': 6, | ||
| 33 | 'txz_back': 7, | ||
| 34 | 'bank_card': 8, | ||
| 35 | 'vehicle_license_front': 9, | ||
| 36 | 'vehicle_license_back': 10, | ||
| 37 | 'driving_license_front': 11, | ||
| 38 | 'driving_license_back': 12, | ||
| 39 | 'vrc_page_12': 13, | ||
| 40 | 'vrc_page_34': 14, | ||
| 41 | } | ||
| 42 | self.index2lable = list(self.lable2index.keys()) | ||
| 43 | |||
| 44 | # def resize_and_pad_to_384(self, image, jitter=True): | ||
| 45 | # """长边在 256-384 之间随机取一个数,四边 pad 到 384 | ||
| 46 | |||
| 47 | # Args: | ||
| 48 | # image (TYPE): An image represented as a numpy ndarray. | ||
| 49 | # """ | ||
| 50 | # image_shape = tf.cast(tf.shape(image)[:2], dtype=tf.float32) | ||
| 51 | # max_side = tf.random.uniform( | ||
| 52 | # (), 256, 384, dtype=tf.float32) if jitter else 384. | ||
| 53 | # ratio = max_side / tf.reduce_max(image_shape) | ||
| 54 | # image_shape = tf.cast(ratio * image_shape, dtype=tf.int32) | ||
| 55 | # image = tf.image.resize(image, image_shape) | ||
| 56 | # image = tf.image.pad_to_bounding_box(image, 0, 0, 384, 384) | ||
| 57 | # return image, ratio | ||
| 58 | |||
| 59 | def process(self, image): | ||
| 60 | """Processes an image and returns a list of the detected object location and classes data. | ||
| 61 | |||
| 62 | Args: | ||
| 63 | image (TYPE): An image represented as a numpy ndarray. | ||
| 64 | """ | ||
| 65 | h, w, _ = image.shape | ||
| 66 | # image, ratio = self.resize_and_pad_to_384(image, jitter=False) | ||
| 67 | image, ratio = turnsole.resize_with_pad(image, target_height=384, target_width=384) | ||
| 68 | input_data = np.expand_dims(image/255., axis=0) | ||
| 69 | |||
| 70 | # options = [('grpc.max_send_message_length', 1000 * 1024 * 1024), | ||
| 71 | # ('grpc.max_receive_message_length', 1000 * 1024 * 1024)] | ||
| 72 | # channel = grpc.insecure_channel('localhost:8500', options=options) | ||
| 73 | # stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) | ||
| 74 | |||
| 75 | # request = predict_pb2.PredictRequest() | ||
| 76 | # request.model_spec.name = 'object_detection' | ||
| 77 | # request.model_spec.signature_name = 'serving_default' | ||
| 78 | # request.inputs['image'].CopyFrom(tf.make_tensor_proto(inputs, dtype='float32')) | ||
| 79 | # # 100 secs timeout | ||
| 80 | # result = stub.Predict(request, 100.0) | ||
| 81 | |||
| 82 | # # saved_model_cli show --dir saved_model/ --all # 查看 saved model 的输入输出 | ||
| 83 | # boxes = tf.make_ndarray(result.outputs['decode_predictions']) | ||
| 84 | # scores = tf.make_ndarray(result.outputs['decode_predictions_1']) | ||
| 85 | # classes = tf.make_ndarray(result.outputs['decode_predictions_2']) | ||
| 86 | # valid_detections = tf.make_ndarray( | ||
| 87 | # result.outputs['decode_predictions_3']) | ||
| 88 | |||
| 89 | triton_client = grpcclient.InferenceServerClient("localhost:8001") | ||
| 90 | |||
| 91 | # Initialize the data | ||
| 92 | inputs = [grpcclient.InferInput('image', input_data.shape, "FP32")] | ||
| 93 | inputs[0].set_data_from_numpy(input_data.astype('float32')) | ||
| 94 | outputs = [ | ||
| 95 | grpcclient.InferRequestedOutput("decode_predictions"), | ||
| 96 | grpcclient.InferRequestedOutput("decode_predictions_1"), | ||
| 97 | grpcclient.InferRequestedOutput("decode_predictions_2"), | ||
| 98 | grpcclient.InferRequestedOutput("decode_predictions_3") | ||
| 99 | ] | ||
| 100 | |||
| 101 | # Inference | ||
| 102 | results = triton_client.infer( | ||
| 103 | model_name="object_detection", | ||
| 104 | inputs=inputs, | ||
| 105 | outputs=outputs | ||
| 106 | ) | ||
| 107 | # Get the output arrays from the results | ||
| 108 | boxes = results.as_numpy("decode_predictions") | ||
| 109 | scores = results.as_numpy("decode_predictions_1") | ||
| 110 | classes = results.as_numpy("decode_predictions_2") | ||
| 111 | valid_detections = results.as_numpy("decode_predictions_3") | ||
| 112 | |||
| 113 | boxes = boxes[0][:valid_detections[0]] | ||
| 114 | scores = scores[0][:valid_detections[0]] | ||
| 115 | classes = classes[0][:valid_detections[0]] | ||
| 116 | |||
| 117 | object_list = [] | ||
| 118 | for box, score, class_index in zip(boxes, scores, classes): | ||
| 119 | xmin, ymin, xmax, ymax = box / ratio | ||
| 120 | xmin = max(0, int(xmin)) | ||
| 121 | ymin = max(0, int(ymin)) | ||
| 122 | xmax = min(w, int(xmax)) | ||
| 123 | ymax = min(h, int(ymax)) | ||
| 124 | class_label = self.index2lable[int(class_index)] | ||
| 125 | item = { | ||
| 126 | "label": class_label, | ||
| 127 | "confidence": float(score), | ||
| 128 | "location": { | ||
| 129 | "xmin": xmin, | ||
| 130 | "ymin": ymin, | ||
| 131 | "xmax": xmax, | ||
| 132 | "ymax": ymax | ||
| 133 | } | ||
| 134 | } | ||
| 135 | object_list.append(item) | ||
| 136 | |||
| 137 | return object_list | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : lk | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Create Date : 2022-06-28 14:38:57 | ||
| 5 | # @Last Modified : 2022-09-06 14:37:47 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | from .utils import SignatureDetection | ||
| 9 | |||
| 10 | signature_detector = SignatureDetection() | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : lk | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Create Date : 2022-02-08 14:10:00 | ||
| 5 | # @Last Modified : 2022-09-06 14:45:10 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | import turnsole | ||
| 9 | import numpy as np | ||
| 10 | # import tensorflow as tf | ||
| 11 | |||
| 12 | # import grpc | ||
| 13 | # from tensorflow_serving.apis import predict_pb2 | ||
| 14 | # from tensorflow_serving.apis import prediction_service_pb2_grpc | ||
| 15 | |||
| 16 | import tritonclient.grpc as grpcclient | ||
| 17 | |||
| 18 | |||
| 19 | # def resize_and_pad_to_1024(image, jitter=True): | ||
| 20 | # # 长边在 512-1024 之间随机取一个数,四边 pad 到 1024 | ||
| 21 | # image_shape = tf.cast(tf.shape(image)[:2], dtype=tf.float32) | ||
| 22 | # max_side = tf.random.uniform((), 512, 1024, dtype=tf.float32) if jitter else 1024. | ||
| 23 | # ratio = max_side / tf.reduce_max(image_shape) | ||
| 24 | # image_shape = tf.cast(ratio * image_shape, dtype=tf.int32) | ||
| 25 | # image = tf.image.resize(image, image_shape) | ||
| 26 | # image = tf.image.pad_to_bounding_box(image, 0, 0, 1024, 1024) | ||
| 27 | # return image, ratio | ||
| 28 | |||
| 29 | class SignatureDetection(): | ||
| 30 | |||
| 31 | """签字盖章检测算法 | ||
| 32 | 输入图片输出检测结果 | ||
| 33 | |||
| 34 | API 文档请参阅: | ||
| 35 | """ | ||
| 36 | |||
| 37 | def __init__(self, confidence_threshold=0.5): | ||
| 38 | """初始化检测对象 | ||
| 39 | |||
| 40 | Args: | ||
| 41 | confidence_threshold (float, optional): 目标检测模型的分类置信度 | ||
| 42 | """ | ||
| 43 | |||
| 44 | self.lable2index = { | ||
| 45 | 'circle': 0, | ||
| 46 | 'ellipse': 1, | ||
| 47 | 'rectangle': 2, | ||
| 48 | 'signature': 3, | ||
| 49 | 'qr_code': 4, | ||
| 50 | 'bar_code': 5 | ||
| 51 | } | ||
| 52 | self.index2lable = { | ||
| 53 | 0: 'circle', | ||
| 54 | 1: 'ellipse', | ||
| 55 | 2: 'rectangle', | ||
| 56 | 3: 'signature', | ||
| 57 | 4: 'qr_code', | ||
| 58 | 5: 'bar_code' | ||
| 59 | } | ||
| 60 | |||
| 61 | |||
| 62 | def process(self, image): | ||
| 63 | """Processes an image and returns a list of the detected signature location and classes data. | ||
| 64 | |||
| 65 | Args: | ||
| 66 | image (TYPE): An image represented as a numpy ndarray. | ||
| 67 | """ | ||
| 68 | h, w, _ = image.shape | ||
| 69 | |||
| 70 | # image, ratio = resize_and_pad_to_1024(image, jitter=False) | ||
| 71 | image, ratio = turnsole.resize_with_pad(image, target_height=1024, target_width=1024) | ||
| 72 | input_data = np.expand_dims(np.float32(image/255.), axis=0) | ||
| 73 | |||
| 74 | # options = [('grpc.max_send_message_length', 1000 * 1024 * 1024), | ||
| 75 | # ('grpc.max_receive_message_length', 1000 * 1024 * 1024)] | ||
| 76 | # channel = grpc.insecure_channel('localhost:8500', options=options) | ||
| 77 | # stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) | ||
| 78 | |||
| 79 | # request = predict_pb2.PredictRequest() | ||
| 80 | # request.model_spec.name = 'signature_model' | ||
| 81 | # request.model_spec.signature_name = 'serving_default' | ||
| 82 | # request.inputs['image'].CopyFrom(tf.make_tensor_proto(inputs, dtype='float32')) | ||
| 83 | # result = stub.Predict(request, 100.0) # 100 secs timeout | ||
| 84 | |||
| 85 | # # saved_model_cli show --dir saved_model/ --all # 查看 saved model 的输入输出 | ||
| 86 | # boxes = tf.make_ndarray(result.outputs['decode_predictions']) | ||
| 87 | # scores = tf.make_ndarray(result.outputs['decode_predictions_1']) | ||
| 88 | # classes = tf.make_ndarray(result.outputs['decode_predictions_2']) | ||
| 89 | # valid_detections = tf.make_ndarray(result.outputs['decode_predictions_3']) | ||
| 90 | |||
| 91 | triton_client = grpcclient.InferenceServerClient("localhost:8001") | ||
| 92 | |||
| 93 | # Initialize the data | ||
| 94 | inputs = [grpcclient.InferInput('image', input_data.shape, "FP32")] | ||
| 95 | inputs[0].set_data_from_numpy(input_data) | ||
| 96 | outputs = [ | ||
| 97 | grpcclient.InferRequestedOutput("decode_predictions"), | ||
| 98 | grpcclient.InferRequestedOutput("decode_predictions_1"), | ||
| 99 | grpcclient.InferRequestedOutput("decode_predictions_2"), | ||
| 100 | grpcclient.InferRequestedOutput("decode_predictions_3") | ||
| 101 | ] | ||
| 102 | |||
| 103 | # Inference | ||
| 104 | results = triton_client.infer( | ||
| 105 | model_name="signature_model", | ||
| 106 | inputs=inputs, | ||
| 107 | outputs=outputs | ||
| 108 | ) | ||
| 109 | # Get the output arrays from the results | ||
| 110 | boxes = results.as_numpy("decode_predictions") | ||
| 111 | scores = results.as_numpy("decode_predictions_1") | ||
| 112 | classes = results.as_numpy("decode_predictions_2") | ||
| 113 | valid_detections = results.as_numpy("decode_predictions_3") | ||
| 114 | |||
| 115 | boxes = boxes[0][:valid_detections[0]] | ||
| 116 | scores = scores[0][:valid_detections[0]] | ||
| 117 | classes = classes[0][:valid_detections[0]] | ||
| 118 | |||
| 119 | signature_list = [] | ||
| 120 | for box, score, class_index in zip(boxes, scores, classes): | ||
| 121 | xmin, ymin, xmax, ymax = box / ratio | ||
| 122 | class_label = self.index2lable[class_index] | ||
| 123 | item = { | ||
| 124 | "label": class_label, | ||
| 125 | "confidence": float(score), | ||
| 126 | "location": { | ||
| 127 | "xmin": max(0, int(xmin)), | ||
| 128 | "ymin": max(0, int(ymin)), | ||
| 129 | "xmax": min(w, int(xmax)), | ||
| 130 | "ymax": min(h, int(ymax)) | ||
| 131 | } | ||
| 132 | } | ||
| 133 | signature_list.append(item) | ||
| 134 | |||
| 135 | return signature_list |
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : Lyu Kui | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Create Date : 2022-06-16 11:01:36 | ||
| 5 | # @Last Modified : 2022-07-15 10:57:06 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | from .read_data import base64_to_bgr | ||
| 9 | from .read_data import bytes_to_bgr | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : Lyu Kui | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Create Date : 2022-06-16 10:59:50 | ||
| 5 | # @Last Modified : 2022-08-03 14:59:15 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | import cv2 | ||
| 9 | import base64 | ||
| 10 | import numpy as np | ||
| 11 | import tensorflow as tf | ||
| 12 | |||
| 13 | |||
| 14 | def base64_to_bgr(img64): | ||
| 15 | """把 base64 转换成图片 | ||
| 16 | 单通道的灰度图或四通道的透明图都将自动转换成三通道的 BGR 图 | ||
| 17 | |||
| 18 | Args: | ||
| 19 | img64 (TYPE): Description | ||
| 20 | |||
| 21 | Returns: | ||
| 22 | TYPE: image is a 3-D uint8 Tensor of shape [height, width, channels] where channels is BGR | ||
| 23 | """ | ||
| 24 | encoded_image = base64.b64decode(img64) | ||
| 25 | img_array = np.frombuffer(encoded_image, np.uint8) | ||
| 26 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
| 27 | return image | ||
| 28 | |||
| 29 | def bytes_to_bgr(buffer: bytes): | ||
| 30 | """Read a byte stream as a OpenCV image | ||
| 31 | |||
| 32 | Args: | ||
| 33 | buffer (TYPE): bytes of a decoded image | ||
| 34 | """ | ||
| 35 | img_array = np.frombuffer(buffer, np.uint8) | ||
| 36 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
| 37 | |||
| 38 | # image = tf.io.decode_image(buffer, channels=3) | ||
| 39 | # image = np.array(image)[...,::-1] | ||
| 40 | return image | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/turnsole/paths.py
0 → 100644
| 1 | # -*- coding: utf-8 -*- | ||
| 2 | # @Author : Lyu Kui | ||
| 3 | # @Email : 9428.al@gmail.com | ||
| 4 | # @Created Date : 2021-03-04 17:50:09 | ||
| 5 | # @Last Modified : 2021-03-10 14:03:02 | ||
| 6 | # @Description : | ||
| 7 | |||
| 8 | import os | ||
| 9 | |||
| 10 | image_types = (".jpg", ".jpeg", ".png", ".bmp", ".tif", ".tiff") | ||
| 11 | |||
| 12 | |||
| 13 | def list_images(basePath, contains=None): | ||
| 14 | # return the set of files that are valid | ||
| 15 | return list_files(basePath, validExts=image_types, contains=contains) | ||
| 16 | |||
| 17 | def list_files(basePath, validExts=None, contains=None): | ||
| 18 | # loop over the directory structure | ||
| 19 | for (rootDir, dirNames, filenames) in os.walk(basePath): | ||
| 20 | # loop over the filenames in the current directory | ||
| 21 | for filename in filenames: | ||
| 22 | # if the contains string is not none and the filename does not contain | ||
| 23 | # the supplied string, then ignore the file | ||
| 24 | if contains is not None and filename.find(contains) == -1: | ||
| 25 | continue | ||
| 26 | |||
| 27 | # determine the file extension of the current file | ||
| 28 | ext = filename[filename.rfind("."):].lower() | ||
| 29 | |||
| 30 | # check to see if the file is an image and should be processed | ||
| 31 | if validExts is None or ext.endswith(validExts): | ||
| 32 | # construct the path to the image and yield it | ||
| 33 | imagePath = os.path.join(rootDir, filename) | ||
| 34 | yield imagePath | ||
| 35 | |||
| 36 | def get_filename(filePath): | ||
| 37 | basename = os.path.basename(filePath) | ||
| 38 | fname, fextension = os.path.splitext(basename) | ||
| 39 | return fname | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/turnsole/pdf_tools.py
0 → 100644
| 1 | import cv2 | ||
| 2 | import fitz | ||
| 3 | import numpy as np | ||
| 4 | |||
| 5 | def pdf_to_images(pdf_path: str): | ||
| 6 | """PDF 转 OpenCV Image | ||
| 7 | |||
| 8 | Args: | ||
| 9 | pdf_path (str): Description | ||
| 10 | |||
| 11 | Returns: | ||
| 12 | TYPE: Description | ||
| 13 | """ | ||
| 14 | images = [] | ||
| 15 | doc = fitz.open(pdf_path) | ||
| 16 | # producer = doc.metadata.get('producer') | ||
| 17 | |||
| 18 | for pno in range(doc.page_count): | ||
| 19 | page = doc.load_page(pno) | ||
| 20 | |||
| 21 | all_texts = page.get_text().replace('\n', '').strip() | ||
| 22 | # 根据经验过滤掉特殊情况 | ||
| 23 | all_texts = all_texts.strip('Click to buy NOW!PDF-XChangewww.docu-track.comClick to buy NOW!PDF-XChangewww.docu-track.com') | ||
| 24 | blocks = page.get_text("dict")["blocks"] | ||
| 25 | imgblocks = [b for b in blocks if b["type"] == 1] | ||
| 26 | |||
| 27 | page_images = [] | ||
| 28 | # 如果一个字都没有, | ||
| 29 | if len(all_texts) == 0 and len(imgblocks) != 0: | ||
| 30 | # # 这些 producer 包含碎图,如果真的是碎图我们把碎图拼接一下 | ||
| 31 | # if producer in ['Microsoft: Print To PDF', | ||
| 32 | # 'GPL Ghostscript 8.71', | ||
| 33 | # 'doPDF Ver 7.3 Build 398 (Windows 7 Business Edition (SP 1) - Version: 6.1.7601 (x64))', | ||
| 34 | # '福昕阅读器PDF打印机 版本 11.0.114.4386']: | ||
| 35 | patches = [] | ||
| 36 | for imgblock in imgblocks: | ||
| 37 | contents = imgblock["image"] | ||
| 38 | img_array = np.frombuffer(contents, dtype=np.uint8) | ||
| 39 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
| 40 | patches.append(image) | ||
| 41 | try: | ||
| 42 | try: | ||
| 43 | image = np.concatenate(patches, axis=0) | ||
| 44 | page_images.append(image) | ||
| 45 | except: | ||
| 46 | image = np.concatenate(patches, axis=1) | ||
| 47 | page_images.append(image) | ||
| 48 | except: | ||
| 49 | # 当两张拼不到一块的时候我们可以认为他是两张图,如果超过两张那就不一定了 | ||
| 50 | if len(patches) == 2: | ||
| 51 | page_images = patches | ||
| 52 | else: | ||
| 53 | pix = page.get_pixmap(dpi=350) | ||
| 54 | contents = pix.tobytes(output="png") | ||
| 55 | img_array = np.frombuffer(contents, dtype=np.uint8) | ||
| 56 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
| 57 | page_images.append(image) | ||
| 58 | # else: | ||
| 59 | # for imgblock in imgblocks: | ||
| 60 | # contents = imgblock["image"] | ||
| 61 | # img_array = np.frombuffer(contents, dtype=np.uint8) | ||
| 62 | # image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
| 63 | # page_images.append(image) | ||
| 64 | else: | ||
| 65 | pix = page.get_pixmap(dpi=350) | ||
| 66 | contents = pix.tobytes(output="png") | ||
| 67 | img_array = np.frombuffer(contents, dtype=np.uint8) | ||
| 68 | image = cv2.imdecode(img_array, cv2.IMREAD_COLOR) | ||
| 69 | page_images.append(image) | ||
| 70 | images.append(page_images) | ||
| 71 | return images | ||
| 72 |
ocr_engine/turnsole/video/__init__.py
0 → 100644
ocr_engine/turnsole/video/count_frames.py
0 → 100644
| 1 | # import the necessary packages | ||
| 2 | # from ..convenience import is_cv3 | ||
| 3 | import cv2 | ||
| 4 | |||
| 5 | def count_frames(path, override=False): | ||
| 6 | # grab a pointer to the video file and initialize the total | ||
| 7 | # number of frames read | ||
| 8 | video = cv2.VideoCapture(path) | ||
| 9 | total = 0 | ||
| 10 | |||
| 11 | # if the override flag is passed in, revert to the manual | ||
| 12 | # method of counting frames | ||
| 13 | if override: | ||
| 14 | total = count_frames_manual(video) | ||
| 15 | |||
| 16 | # otherwise, let's try the fast way first | ||
| 17 | else: | ||
| 18 | # lets try to determine the number of frames in a video | ||
| 19 | # via video properties; this method can be very buggy | ||
| 20 | # and might throw an error based on your OpenCV version | ||
| 21 | # or may fail entirely based on your which video codecs | ||
| 22 | # you have installed | ||
| 23 | try: | ||
| 24 | # # check if we are using OpenCV 3 | ||
| 25 | # if is_cv3(): | ||
| 26 | # total = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | ||
| 27 | |||
| 28 | # # otherwise, we are using OpenCV 2.4 | ||
| 29 | # else: | ||
| 30 | # total = int(video.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT)) | ||
| 31 | |||
| 32 | total = int(video.get(cv2.cv.CV_CAP_PROP_FRAME_COUNT)) | ||
| 33 | |||
| 34 | # uh-oh, we got an error -- revert to counting manually | ||
| 35 | except: | ||
| 36 | total = count_frames_manual(video) | ||
| 37 | |||
| 38 | # release the video file pointer | ||
| 39 | video.release() | ||
| 40 | |||
| 41 | # return the total number of frames in the video | ||
| 42 | return total | ||
| 43 | |||
| 44 | def count_frames_manual(video): | ||
| 45 | # initialize the total number of frames read | ||
| 46 | total = 0 | ||
| 47 | |||
| 48 | # loop over the frames of the video | ||
| 49 | while True: | ||
| 50 | # grab the current frame | ||
| 51 | (grabbed, frame) = video.read() | ||
| 52 | |||
| 53 | # check to see if we have reached the end of the | ||
| 54 | # video | ||
| 55 | if not grabbed: | ||
| 56 | break | ||
| 57 | |||
| 58 | # increment the total number of frames read | ||
| 59 | total += 1 | ||
| 60 | |||
| 61 | # return the total number of frames in the video file | ||
| 62 | return total | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/turnsole/video/filevideostream.py
0 → 100644
| 1 | # import the necessary packages | ||
| 2 | from threading import Thread | ||
| 3 | import sys | ||
| 4 | import cv2 | ||
| 5 | import time | ||
| 6 | |||
| 7 | # import the Queue class from Python 3 | ||
| 8 | if sys.version_info >= (3, 0): | ||
| 9 | from queue import Queue | ||
| 10 | |||
| 11 | # otherwise, import the Queue class for Python 2.7 | ||
| 12 | else: | ||
| 13 | from Queue import Queue | ||
| 14 | |||
| 15 | |||
| 16 | class FileVideoStream: | ||
| 17 | def __init__(self, path, transform=None, queue_size=128): | ||
| 18 | # initialize the file video stream along with the boolean | ||
| 19 | # used to indicate if the thread should be stopped or not | ||
| 20 | self.stream = cv2.VideoCapture(path) | ||
| 21 | self.stopped = False | ||
| 22 | self.transform = transform | ||
| 23 | |||
| 24 | # initialize the queue used to store frames read from | ||
| 25 | # the video file | ||
| 26 | self.Q = Queue(maxsize=queue_size) | ||
| 27 | # intialize thread | ||
| 28 | self.thread = Thread(target=self.update, args=()) | ||
| 29 | self.thread.daemon = True | ||
| 30 | |||
| 31 | def start(self): | ||
| 32 | # start a thread to read frames from the file video stream | ||
| 33 | self.thread.start() | ||
| 34 | return self | ||
| 35 | |||
| 36 | def update(self): | ||
| 37 | # keep looping infinitely | ||
| 38 | while True: | ||
| 39 | # if the thread indicator variable is set, stop the | ||
| 40 | # thread | ||
| 41 | if self.stopped: | ||
| 42 | break | ||
| 43 | |||
| 44 | # otherwise, ensure the queue has room in it | ||
| 45 | if not self.Q.full(): | ||
| 46 | # read the next frame from the file | ||
| 47 | (grabbed, frame) = self.stream.read() | ||
| 48 | |||
| 49 | # if the `grabbed` boolean is `False`, then we have | ||
| 50 | # reached the end of the video file | ||
| 51 | if not grabbed: | ||
| 52 | self.stopped = True | ||
| 53 | break | ||
| 54 | |||
| 55 | # if there are transforms to be done, might as well | ||
| 56 | # do them on producer thread before handing back to | ||
| 57 | # consumer thread. ie. Usually the producer is so far | ||
| 58 | # ahead of consumer that we have time to spare. | ||
| 59 | # | ||
| 60 | # Python is not parallel but the transform operations | ||
| 61 | # are usually OpenCV native so release the GIL. | ||
| 62 | # | ||
| 63 | # Really just trying to avoid spinning up additional | ||
| 64 | # native threads and overheads of additional | ||
| 65 | # producer/consumer queues since this one was generally | ||
| 66 | # idle grabbing frames. | ||
| 67 | if self.transform: | ||
| 68 | frame = self.transform(frame) | ||
| 69 | |||
| 70 | # add the frame to the queue | ||
| 71 | self.Q.put(frame) | ||
| 72 | else: | ||
| 73 | time.sleep(0.1) # Rest for 10ms, we have a full queue | ||
| 74 | |||
| 75 | self.stream.release() | ||
| 76 | |||
| 77 | def read(self): | ||
| 78 | # return next frame in the queue | ||
| 79 | return self.Q.get() | ||
| 80 | |||
| 81 | # Insufficient to have consumer use while(more()) which does | ||
| 82 | # not take into account if the producer has reached end of | ||
| 83 | # file stream. | ||
| 84 | def running(self): | ||
| 85 | return self.more() or not self.stopped | ||
| 86 | |||
| 87 | def more(self): | ||
| 88 | # return True if there are still frames in the queue. If stream is not stopped, try to wait a moment | ||
| 89 | tries = 0 | ||
| 90 | while self.Q.qsize() == 0 and not self.stopped and tries < 5: | ||
| 91 | time.sleep(0.1) | ||
| 92 | tries += 1 | ||
| 93 | |||
| 94 | return self.Q.qsize() > 0 | ||
| 95 | |||
| 96 | def stop(self): | ||
| 97 | # indicate that the thread should be stopped | ||
| 98 | self.stopped = True | ||
| 99 | # wait until stream resources are released (producer thread might be still grabbing frame) | ||
| 100 | self.thread.join() |
ocr_engine/turnsole/video/fps.py
0 → 100644
| 1 | # import the necessary packages | ||
| 2 | import datetime | ||
| 3 | |||
| 4 | class FPS: | ||
| 5 | def __init__(self): | ||
| 6 | # store the start time, end time, and total number of frames | ||
| 7 | # that were examined between the start and end intervals | ||
| 8 | self._start = None | ||
| 9 | self._end = None | ||
| 10 | self._numFrames = 0 | ||
| 11 | |||
| 12 | def start(self): | ||
| 13 | # start the timer | ||
| 14 | self._start = datetime.datetime.now() | ||
| 15 | return self | ||
| 16 | |||
| 17 | def stop(self): | ||
| 18 | # stop the timer | ||
| 19 | self._end = datetime.datetime.now() | ||
| 20 | |||
| 21 | def update(self): | ||
| 22 | # increment the total number of frames examined during the | ||
| 23 | # start and end intervals | ||
| 24 | self._numFrames += 1 | ||
| 25 | |||
| 26 | def elapsed(self): | ||
| 27 | # return the total number of seconds between the start and | ||
| 28 | # end interval | ||
| 29 | return (self._end - self._start).total_seconds() | ||
| 30 | |||
| 31 | def fps(self): | ||
| 32 | # compute the (approximate) frames per second | ||
| 33 | return self._numFrames / self.elapsed() | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
ocr_engine/turnsole/video/pivideostream.py
0 → 100644
| 1 | # import the necessary packages | ||
| 2 | from picamera.array import PiRGBArray | ||
| 3 | from picamera import PiCamera | ||
| 4 | from threading import Thread | ||
| 5 | import cv2 | ||
| 6 | |||
| 7 | class PiVideoStream: | ||
| 8 | def __init__(self, resolution=(320, 240), framerate=32, **kwargs): | ||
| 9 | # initialize the camera | ||
| 10 | self.camera = PiCamera() | ||
| 11 | |||
| 12 | # set camera parameters | ||
| 13 | self.camera.resolution = resolution | ||
| 14 | self.camera.framerate = framerate | ||
| 15 | |||
| 16 | # set optional camera parameters (refer to PiCamera docs) | ||
| 17 | for (arg, value) in kwargs.items(): | ||
| 18 | setattr(self.camera, arg, value) | ||
| 19 | |||
| 20 | # initialize the stream | ||
| 21 | self.rawCapture = PiRGBArray(self.camera, size=resolution) | ||
| 22 | self.stream = self.camera.capture_continuous(self.rawCapture, | ||
| 23 | format="bgr", use_video_port=True) | ||
| 24 | |||
| 25 | # initialize the frame and the variable used to indicate | ||
| 26 | # if the thread should be stopped | ||
| 27 | self.frame = None | ||
| 28 | self.stopped = False | ||
| 29 | |||
| 30 | def start(self): | ||
| 31 | # start the thread to read frames from the video stream | ||
| 32 | t = Thread(target=self.update, args=()) | ||
| 33 | t.daemon = True | ||
| 34 | t.start() | ||
| 35 | return self | ||
| 36 | |||
| 37 | def update(self): | ||
| 38 | # keep looping infinitely until the thread is stopped | ||
| 39 | for f in self.stream: | ||
| 40 | # grab the frame from the stream and clear the stream in | ||
| 41 | # preparation for the next frame | ||
| 42 | self.frame = f.array | ||
| 43 | self.rawCapture.truncate(0) | ||
| 44 | |||
| 45 | # if the thread indicator variable is set, stop the thread | ||
| 46 | # and resource camera resources | ||
| 47 | if self.stopped: | ||
| 48 | self.stream.close() | ||
| 49 | self.rawCapture.close() | ||
| 50 | self.camera.close() | ||
| 51 | return | ||
| 52 | |||
| 53 | def read(self): | ||
| 54 | # return the frame most recently read | ||
| 55 | return self.frame | ||
| 56 | |||
| 57 | def stop(self): | ||
| 58 | # indicate that the thread should be stopped | ||
| 59 | self.stopped = True |
ocr_engine/turnsole/video/videostream.py
0 → 100644
| 1 | # import the necessary packages | ||
| 2 | from .webcamvideostream import WebcamVideoStream | ||
| 3 | |||
| 4 | class VideoStream: | ||
| 5 | def __init__(self, src=0, usePiCamera=False, resolution=(320, 240), | ||
| 6 | framerate=32, **kwargs): | ||
| 7 | # check to see if the picamera module should be used | ||
| 8 | if usePiCamera: | ||
| 9 | # only import the picamera packages unless we are | ||
| 10 | # explicity told to do so -- this helps remove the | ||
| 11 | # requirement of `picamera[array]` from desktops or | ||
| 12 | # laptops that still want to use the `imutils` package | ||
| 13 | from .pivideostream import PiVideoStream | ||
| 14 | |||
| 15 | # initialize the picamera stream and allow the camera | ||
| 16 | # sensor to warmup | ||
| 17 | self.stream = PiVideoStream(resolution=resolution, | ||
| 18 | framerate=framerate, **kwargs) | ||
| 19 | |||
| 20 | # otherwise, we are using OpenCV so initialize the webcam | ||
| 21 | # stream | ||
| 22 | else: | ||
| 23 | self.stream = WebcamVideoStream(src=src) | ||
| 24 | |||
| 25 | def start(self): | ||
| 26 | # start the threaded video stream | ||
| 27 | return self.stream.start() | ||
| 28 | |||
| 29 | def update(self): | ||
| 30 | # grab the next frame from the stream | ||
| 31 | self.stream.update() | ||
| 32 | |||
| 33 | def read(self): | ||
| 34 | # return the current frame | ||
| 35 | return self.stream.read() | ||
| 36 | |||
| 37 | def stop(self): | ||
| 38 | # stop the thread and release any resources | ||
| 39 | self.stream.stop() |
| 1 | # import the necessary packages | ||
| 2 | from threading import Thread | ||
| 3 | import cv2 | ||
| 4 | |||
| 5 | class WebcamVideoStream: | ||
| 6 | def __init__(self, src=0, name="WebcamVideoStream"): | ||
| 7 | # initialize the video camera stream and read the first frame | ||
| 8 | # from the stream | ||
| 9 | self.stream = cv2.VideoCapture(src) | ||
| 10 | (self.grabbed, self.frame) = self.stream.read() | ||
| 11 | |||
| 12 | # initialize the thread name | ||
| 13 | self.name = name | ||
| 14 | |||
| 15 | # initialize the variable used to indicate if the thread should | ||
| 16 | # be stopped | ||
| 17 | self.stopped = False | ||
| 18 | |||
| 19 | def start(self): | ||
| 20 | # start the thread to read frames from the video stream | ||
| 21 | t = Thread(target=self.update, name=self.name, args=()) | ||
| 22 | t.daemon = True | ||
| 23 | t.start() | ||
| 24 | return self | ||
| 25 | |||
| 26 | def update(self): | ||
| 27 | # keep looping infinitely until the thread is stopped | ||
| 28 | while True: | ||
| 29 | # if the thread indicator variable is set, stop the thread | ||
| 30 | if self.stopped: | ||
| 31 | return | ||
| 32 | |||
| 33 | # otherwise, read the next frame from the stream | ||
| 34 | (self.grabbed, self.frame) = self.stream.read() | ||
| 35 | |||
| 36 | def read(self): | ||
| 37 | # return the frame most recently read | ||
| 38 | return self.frame | ||
| 39 | |||
| 40 | def stop(self): | ||
| 41 | # indicate that the thread should be stopped | ||
| 42 | self.stopped = True |
-
Please register or sign in to post a comment