efficientnet.py 23.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=invalid-name
# pylint: disable=missing-docstring
"""EfficientNet models for Keras.
Reference:
  - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](
      https://arxiv.org/abs/1905.11946) (ICML 2019)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import copy
import math

from tensorflow.keras import layers

from tensorflow.python.keras import backend
from tensorflow.python.keras.applications import imagenet_utils
from tensorflow.python.keras.engine import training
# from tensorflow.python.keras.layers import VersionAwareLayers
from tensorflow.python.keras.utils import data_utils
from tensorflow.python.keras.utils import layer_utils
from tensorflow.python.lib.io import file_io
from tensorflow.python.util.tf_export import keras_export


BASE_WEIGHTS_PATH = 'https://storage.googleapis.com/keras-applications/'

WEIGHTS_HASHES = {
    'b0': ('902e53a9f72be733fc0bcb005b3ebbac',
           '50bc09e76180e00e4465e1a485ddc09d'),
    'b1': ('1d254153d4ab51201f1646940f018540',
           '74c4e6b3e1f6a1eea24c589628592432'),
    'b2': ('b15cce36ff4dcbd00b6dd88e7857a6ad',
           '111f8e2ac8aa800a7a99e3239f7bfb39'),
    'b3': ('ffd1fdc53d0ce67064dc6a9c7960ede0',
           'af6d107764bb5b1abb91932881670226'),
    'b4': ('18c95ad55216b8f92d7e70b3a046e2fc',
           'ebc24e6d6c33eaebbd558eafbeedf1ba'),
    'b5': ('ace28f2a6363774853a83a0b21b9421a',
           '38879255a25d3c92d5e44e04ae6cec6f'),
    'b6': ('165f6e37dce68623721b423839de8be5',
           '9ecce42647a20130c1f39a5d4cb75743'),
    'b7': ('8c03f828fec3ef71311cd463b6759d99',
           'cbcfe4450ddf6f3ad90b1b398090fe4a'),
}

DEFAULT_BLOCKS_ARGS = [{
    'kernel_size': 3,
    'repeats': 1,
    'filters_in': 32,
    'filters_out': 16,
    'expand_ratio': 1,
    'id_skip': True,
    'strides': 1,
    'se_ratio': 0.25
}, {
    'kernel_size': 3,
    'repeats': 2,
    'filters_in': 16,
    'filters_out': 24,
    'expand_ratio': 6,
    'id_skip': True,
    'strides': 2,
    'se_ratio': 0.25
}, {
    'kernel_size': 5,
    'repeats': 2,
    'filters_in': 24,
    'filters_out': 40,
    'expand_ratio': 6,
    'id_skip': True,
    'strides': 2,
    'se_ratio': 0.25
}, {
    'kernel_size': 3,
    'repeats': 3,
    'filters_in': 40,
    'filters_out': 80,
    'expand_ratio': 6,
    'id_skip': True,
    'strides': 2,
    'se_ratio': 0.25
}, {
    'kernel_size': 5,
    'repeats': 3,
    'filters_in': 80,
    'filters_out': 112,
    'expand_ratio': 6,
    'id_skip': True,
    'strides': 1,
    'se_ratio': 0.25
}, {
    'kernel_size': 5,
    'repeats': 4,
    'filters_in': 112,
    'filters_out': 192,
    'expand_ratio': 6,
    'id_skip': True,
    'strides': 2,
    'se_ratio': 0.25
}, {
    'kernel_size': 3,
    'repeats': 1,
    'filters_in': 192,
    'filters_out': 320,
    'expand_ratio': 6,
    'id_skip': True,
    'strides': 1,
    'se_ratio': 0.25
}]

CONV_KERNEL_INITIALIZER = {
    'class_name': 'VarianceScaling',
    'config': {
        'scale': 2.0,
        'mode': 'fan_out',
        'distribution': 'truncated_normal'
    }
}

DENSE_KERNEL_INITIALIZER = {
    'class_name': 'VarianceScaling',
    'config': {
        'scale': 1. / 3.,
        'mode': 'fan_out',
        'distribution': 'uniform'
    }
}

# layers = VersionAwareLayers()

BASE_DOCSTRING = """Instantiates the {name} architecture.
  Reference:
  - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](
      https://arxiv.org/abs/1905.11946) (ICML 2019)
  Optionally loads weights pre-trained on ImageNet.
  Note that the data format convention used by the model is
  the one specified in your Keras config at `~/.keras/keras.json`.
  If you have never configured it, it defaults to `"channels_last"`.
  Arguments:
    include_top: Whether to include the fully-connected
        layer at the top of the network. Defaults to True.
    weights: One of `None` (random initialization),
          'imagenet' (pre-training on ImageNet),
          or the path to the weights file to be loaded. Defaults to 'imagenet'.
    input_tensor: Optional Keras tensor
        (i.e. output of `layers.Input()`)
        to use as image input for the model.
    input_shape: Optional shape tuple, only to be specified
        if `include_top` is False.
        It should have exactly 3 inputs channels.
    pooling: Optional pooling mode for feature extraction
        when `include_top` is `False`. Defaults to None.
        - `None` means that the output of the model will be
            the 4D tensor output of the
            last convolutional layer.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional layer, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will
            be applied.
    classes: Optional number of classes to classify images
        into, only to be specified if `include_top` is True, and
        if no `weights` argument is specified. Defaults to 1000 (number of
        ImageNet classes).
    classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        Defaults to 'softmax'.
  Returns:
    A `keras.Model` instance.
"""


def EfficientNet(
    width_coefficient,
    depth_coefficient,
    default_size,
    dropout_rate=0.2,
    drop_connect_rate=0.2,
    depth_divisor=8,
    activation='swish',
    blocks_args='default',
    model_name='efficientnet',
    include_top=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation='softmax'):
  """Instantiates the EfficientNet architecture using given scaling coefficients.
  Reference:
  - [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](
      https://arxiv.org/abs/1905.11946) (ICML 2019)
  Optionally loads weights pre-trained on ImageNet.
  Note that the data format convention used by the model is
  the one specified in your Keras config at `~/.keras/keras.json`.
  Arguments:
    width_coefficient: float, scaling coefficient for network width.
    depth_coefficient: float, scaling coefficient for network depth.
    default_size: integer, default input image size.
    dropout_rate: float, dropout rate before final classifier layer.
    drop_connect_rate: float, dropout rate at skip connections.
    depth_divisor: integer, a unit of network width.
    activation: activation function.
    blocks_args: list of dicts, parameters to construct block modules.
    model_name: string, model name.
    include_top: whether to include the fully-connected
        layer at the top of the network.
    weights: one of `None` (random initialization),
          'imagenet' (pre-training on ImageNet),
          or the path to the weights file to be loaded.
    input_tensor: optional Keras tensor
        (i.e. output of `layers.Input()`)
        to use as image input for the model.
    input_shape: optional shape tuple, only to be specified
        if `include_top` is False.
        It should have exactly 3 inputs channels.
    pooling: optional pooling mode for feature extraction
        when `include_top` is `False`.
        - `None` means that the output of the model will be
            the 4D tensor output of the
            last convolutional layer.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional layer, and thus
            the output of the model will be a 2D tensor.
        - `max` means that global max pooling will
            be applied.
    classes: optional number of classes to classify images
        into, only to be specified if `include_top` is True, and
        if no `weights` argument is specified.
    classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
  Returns:
    A `keras.Model` instance.
  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape.
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
  if blocks_args == 'default':
    blocks_args = DEFAULT_BLOCKS_ARGS

  if not (weights in {'imagenet', None} or file_io.file_exists_v2(weights)):
    raise ValueError('The `weights` argument should be either '
                     '`None` (random initialization), `imagenet` '
                     '(pre-training on ImageNet), '
                     'or the path to the weights file to be loaded.')

  if weights == 'imagenet' and include_top and classes != 1000:
    raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
                     ' as true, `classes` should be 1000')

  # Determine proper input shape
  input_shape = imagenet_utils.obtain_input_shape(
      input_shape,
      default_size=default_size,
      min_size=32,
      data_format=backend.image_data_format(),
      require_flatten=include_top,
      weights=weights)

  if input_tensor is None:
    img_input = layers.Input(shape=input_shape)
  else:
    if not backend.is_keras_tensor(input_tensor):
      img_input = layers.Input(tensor=input_tensor, shape=input_shape)
    else:
      img_input = input_tensor

  bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1

  def round_filters(filters, divisor=depth_divisor):
    """Round number of filters based on depth multiplier."""
    filters *= width_coefficient
    new_filters = max(divisor, int(filters + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_filters < 0.9 * filters:
      new_filters += divisor
    return int(new_filters)

  def round_repeats(repeats):
    """Round number of repeats based on depth multiplier."""
    return int(math.ceil(depth_coefficient * repeats))

  # Build stem
  x = img_input
  x = layers.experimental.preprocessing.Rescaling(1. / 255.)(x)
  x = layers.experimental.preprocessing.Normalization(axis=bn_axis)(x)

  x = layers.ZeroPadding2D(
      padding=imagenet_utils.correct_pad(x, 3),
      name='stem_conv_pad')(x)
  x = layers.Conv2D(
      round_filters(32),
      3,
      strides=2,
      padding='valid',
      use_bias=False,
      kernel_initializer=CONV_KERNEL_INITIALIZER,
      name='stem_conv')(x)
  x = layers.BatchNormalization(axis=bn_axis, name='stem_bn')(x)
  x = layers.Activation(activation, name='stem_activation')(x)

  # Build blocks
  blocks_args = copy.deepcopy(blocks_args)

  b = 0
  blocks = float(sum(round_repeats(args['repeats']) for args in blocks_args))
  for (i, args) in enumerate(blocks_args):
    assert args['repeats'] > 0
    # Update block input and output filters based on depth multiplier.
    args['filters_in'] = round_filters(args['filters_in'])
    args['filters_out'] = round_filters(args['filters_out'])

    for j in range(round_repeats(args.pop('repeats'))):
      # The first block needs to take care of stride and filter size increase.
      if j > 0:
        args['strides'] = 1
        args['filters_in'] = args['filters_out']
      x = block(
          x,
          activation,
          drop_connect_rate * b / blocks,
          name='block{}{}_'.format(i + 1, chr(j + 97)),
          **args)
      b += 1

  # Build top
  x = layers.Conv2D(
      round_filters(1280),
      1,
      padding='same',
      use_bias=False,
      kernel_initializer=CONV_KERNEL_INITIALIZER,
      name='top_conv')(x)
  x = layers.BatchNormalization(axis=bn_axis, name='top_bn')(x)
  x = layers.Activation(activation, name='top_activation')(x)
  if include_top:
    x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
    if dropout_rate > 0:
      x = layers.Dropout(dropout_rate, name='top_dropout')(x)
    imagenet_utils.validate_activation(classifier_activation, weights)
    x = layers.Dense(
        classes,
        activation=classifier_activation,
        kernel_initializer=DENSE_KERNEL_INITIALIZER,
        name='predictions')(x)
  else:
    if pooling == 'avg':
      x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
    elif pooling == 'max':
      x = layers.GlobalMaxPooling2D(name='max_pool')(x)

  # Ensure that the model takes into account
  # any potential predecessors of `input_tensor`.
  if input_tensor is not None:
    inputs = layer_utils.get_source_inputs(input_tensor)
  else:
    inputs = img_input

  # Create model.
  model = training.Model(inputs, x, name=model_name)

  # Load weights.
  if weights == 'imagenet':
    if include_top:
      file_suffix = '.h5'
      file_hash = WEIGHTS_HASHES[model_name[-2:]][0]
    else:
      file_suffix = '_notop.h5'
      file_hash = WEIGHTS_HASHES[model_name[-2:]][1]
    file_name = model_name + file_suffix
    weights_path = data_utils.get_file(
        file_name,
        BASE_WEIGHTS_PATH + file_name,
        cache_subdir='models',
        file_hash=file_hash)
    model.load_weights(weights_path)
  elif weights is not None:
    model.load_weights(weights)
  return model


def block(inputs,
          activation='swish',
          drop_rate=0.,
          name='',
          filters_in=32,
          filters_out=16,
          kernel_size=3,
          strides=1,
          expand_ratio=1,
          se_ratio=0.,
          id_skip=True):
  """An inverted residual block.
  Arguments:
      inputs: input tensor.
      activation: activation function.
      drop_rate: float between 0 and 1, fraction of the input units to drop.
      name: string, block label.
      filters_in: integer, the number of input filters.
      filters_out: integer, the number of output filters.
      kernel_size: integer, the dimension of the convolution window.
      strides: integer, the stride of the convolution.
      expand_ratio: integer, scaling coefficient for the input filters.
      se_ratio: float between 0 and 1, fraction to squeeze the input filters.
      id_skip: boolean.
  Returns:
      output tensor for the block.
  """
  bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1

  # Expansion phase
  filters = filters_in * expand_ratio
  if expand_ratio != 1:
    x = layers.Conv2D(
        filters,
        1,
        padding='same',
        use_bias=False,
        kernel_initializer=CONV_KERNEL_INITIALIZER,
        name=name + 'expand_conv')(
            inputs)
    x = layers.BatchNormalization(axis=bn_axis, name=name + 'expand_bn')(x)
    x = layers.Activation(activation, name=name + 'expand_activation')(x)
  else:
    x = inputs

  # Depthwise Convolution
  if strides == 2:
    x = layers.ZeroPadding2D(
        padding=imagenet_utils.correct_pad(x, kernel_size),
        name=name + 'dwconv_pad')(x)
    conv_pad = 'valid'
  else:
    conv_pad = 'same'
  x = layers.DepthwiseConv2D(
      kernel_size,
      strides=strides,
      padding=conv_pad,
      use_bias=False,
      depthwise_initializer=CONV_KERNEL_INITIALIZER,
      name=name + 'dwconv')(x)
  x = layers.BatchNormalization(axis=bn_axis, name=name + 'bn')(x)
  x = layers.Activation(activation, name=name + 'activation')(x)

  # Squeeze and Excitation phase
  if 0 < se_ratio <= 1:
    filters_se = max(1, int(filters_in * se_ratio))
    se = layers.GlobalAveragePooling2D(name=name + 'se_squeeze')(x)
    se = layers.Reshape((1, 1, filters), name=name + 'se_reshape')(se)
    se = layers.Conv2D(
        filters_se,
        1,
        padding='same',
        activation=activation,
        kernel_initializer=CONV_KERNEL_INITIALIZER,
        name=name + 'se_reduce')(
            se)
    se = layers.Conv2D(
        filters,
        1,
        padding='same',
        activation='sigmoid',
        kernel_initializer=CONV_KERNEL_INITIALIZER,
        name=name + 'se_expand')(se)
    x = layers.multiply([x, se], name=name + 'se_excite')

  # Output phase
  x = layers.Conv2D(
      filters_out,
      1,
      padding='same',
      use_bias=False,
      kernel_initializer=CONV_KERNEL_INITIALIZER,
      name=name + 'project_conv')(x)
  x = layers.BatchNormalization(axis=bn_axis, name=name + 'project_bn')(x)
  if id_skip and strides == 1 and filters_in == filters_out:
    if drop_rate > 0:
      x = layers.Dropout(
          drop_rate, noise_shape=(None, 1, 1, 1), name=name + 'drop')(x)
    x = layers.add([x, inputs], name=name + 'add')
  return x


@keras_export('keras.applications.efficientnet.EfficientNetB0',
              'keras.applications.EfficientNetB0')
def EfficientNetB0(include_top=True,
                   weights='imagenet',
                   input_tensor=None,
                   input_shape=None,
                   pooling=None,
                   classes=1000,
                   classifier_activation='softmax',
                   **kwargs):
  return EfficientNet(
      1.0,
      1.0,
      224,
      0.2,
      model_name='efficientnetb0',
      include_top=include_top,
      weights=weights,
      input_tensor=input_tensor,
      input_shape=input_shape,
      pooling=pooling,
      classes=classes,
      classifier_activation=classifier_activation,
      **kwargs)


@keras_export('keras.applications.efficientnet.EfficientNetB1',
              'keras.applications.EfficientNetB1')
def EfficientNetB1(include_top=True,
                   weights='imagenet',
                   input_tensor=None,
                   input_shape=None,
                   pooling=None,
                   classes=1000,
                   classifier_activation='softmax',
                   **kwargs):
  return EfficientNet(
      1.0,
      1.1,
      240,
      0.2,
      model_name='efficientnetb1',
      include_top=include_top,
      weights=weights,
      input_tensor=input_tensor,
      input_shape=input_shape,
      pooling=pooling,
      classes=classes,
      classifier_activation=classifier_activation,
      **kwargs)


@keras_export('keras.applications.efficientnet.EfficientNetB2',
              'keras.applications.EfficientNetB2')
def EfficientNetB2(include_top=True,
                   weights='imagenet',
                   input_tensor=None,
                   input_shape=None,
                   pooling=None,
                   classes=1000,
                   classifier_activation='softmax',
                   **kwargs):
  return EfficientNet(
      1.1,
      1.2,
      260,
      0.3,
      model_name='efficientnetb2',
      include_top=include_top,
      weights=weights,
      input_tensor=input_tensor,
      input_shape=input_shape,
      pooling=pooling,
      classes=classes,
      classifier_activation=classifier_activation,
      **kwargs)


@keras_export('keras.applications.efficientnet.EfficientNetB3',
              'keras.applications.EfficientNetB3')
def EfficientNetB3(include_top=True,
                   weights='imagenet',
                   input_tensor=None,
                   input_shape=None,
                   pooling=None,
                   classes=1000,
                   classifier_activation='softmax',
                   **kwargs):
  return EfficientNet(
      1.2,
      1.4,
      300,
      0.3,
      model_name='efficientnetb3',
      include_top=include_top,
      weights=weights,
      input_tensor=input_tensor,
      input_shape=input_shape,
      pooling=pooling,
      classes=classes,
      classifier_activation=classifier_activation,
      **kwargs)


@keras_export('keras.applications.efficientnet.EfficientNetB4',
              'keras.applications.EfficientNetB4')
def EfficientNetB4(include_top=True,
                   weights='imagenet',
                   input_tensor=None,
                   input_shape=None,
                   pooling=None,
                   classes=1000,
                   classifier_activation='softmax',
                   **kwargs):
  return EfficientNet(
      1.4,
      1.8,
      380,
      0.4,
      model_name='efficientnetb4',
      include_top=include_top,
      weights=weights,
      input_tensor=input_tensor,
      input_shape=input_shape,
      pooling=pooling,
      classes=classes,
      classifier_activation=classifier_activation,
      **kwargs)


@keras_export('keras.applications.efficientnet.EfficientNetB5',
              'keras.applications.EfficientNetB5')
def EfficientNetB5(include_top=True,
                   weights='imagenet',
                   input_tensor=None,
                   input_shape=None,
                   pooling=None,
                   classes=1000,
                   classifier_activation='softmax',
                   **kwargs):
  return EfficientNet(
      1.6,
      2.2,
      456,
      0.4,
      model_name='efficientnetb5',
      include_top=include_top,
      weights=weights,
      input_tensor=input_tensor,
      input_shape=input_shape,
      pooling=pooling,
      classes=classes,
      classifier_activation=classifier_activation,
      **kwargs)


@keras_export('keras.applications.efficientnet.EfficientNetB6',
              'keras.applications.EfficientNetB6')
def EfficientNetB6(include_top=True,
                   weights='imagenet',
                   input_tensor=None,
                   input_shape=None,
                   pooling=None,
                   classes=1000,
                   classifier_activation='softmax',
                   **kwargs):
  return EfficientNet(
      1.8,
      2.6,
      528,
      0.5,
      model_name='efficientnetb6',
      include_top=include_top,
      weights=weights,
      input_tensor=input_tensor,
      input_shape=input_shape,
      pooling=pooling,
      classes=classes,
      classifier_activation=classifier_activation,
      **kwargs)


@keras_export('keras.applications.efficientnet.EfficientNetB7',
              'keras.applications.EfficientNetB7')
def EfficientNetB7(include_top=True,
                   weights='imagenet',
                   input_tensor=None,
                   input_shape=None,
                   pooling=None,
                   classes=1000,
                   classifier_activation='softmax',
                   **kwargs):
  return EfficientNet(
      2.0,
      3.1,
      600,
      0.5,
      model_name='efficientnetb7',
      include_top=include_top,
      weights=weights,
      input_tensor=input_tensor,
      input_shape=input_shape,
      pooling=pooling,
      classes=classes,
      classifier_activation=classifier_activation,
      **kwargs)


EfficientNetB0.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB0')
EfficientNetB1.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB1')
EfficientNetB2.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB2')
EfficientNetB3.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB3')
EfficientNetB4.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB4')
EfficientNetB5.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB5')
EfficientNetB6.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB6')
EfficientNetB7.__doc__ = BASE_DOCSTRING.format(name='EfficientNetB7')


@keras_export('keras.applications.efficientnet.preprocess_input')
def preprocess_input(x, data_format=None):  # pylint: disable=unused-argument
  return x


@keras_export('keras.applications.efficientnet.decode_predictions')
def decode_predictions(preds, top=5):
  return imagenet_utils.decode_predictions(preds, top=top)


decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__