general.py 43.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
General utils
"""

import contextlib
import glob
import inspect
import logging
import math
import os
import platform
import random
import re
import shutil
import signal
import sys
import time
import urllib
from copy import deepcopy
from datetime import datetime
from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path
from subprocess import check_output
from typing import Optional
from zipfile import ZipFile

import cv2
import numpy as np
import pandas as pd
import pkg_resources as pkg
import torch
import torchvision
import yaml

from utils import TryExcept, emojis
from utils.downloads import gsutil_getsize
from utils.metrics import box_iou, fitness

FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
RANK = int(os.getenv('RANK', -1))

# Settings
NUM_THREADS = min(8, max(1, os.cpu_count() - 1))  # number of YOLOv5 multiprocessing threads
DATASETS_DIR = Path(os.getenv('YOLOv5_DATASETS_DIR', ROOT.parent / 'datasets'))  # global datasets directory
AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true'  # global auto-install mode
VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true'  # global verbose mode
FONT = 'Arial.ttf'  # https://ultralytics.com/assets/Arial.ttf

torch.set_printoptions(linewidth=320, precision=5, profile='long')
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format})  # format short g, %precision=5
pd.options.display.max_columns = 10
cv2.setNumThreads(0)  # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS)  # NumExpr max threads
os.environ['OMP_NUM_THREADS'] = '1' if platform.system() == 'darwin' else str(NUM_THREADS)  # OpenMP (PyTorch and SciPy)


def is_ascii(s=''):
    # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
    s = str(s)  # convert list, tuple, None, etc. to str
    return len(s.encode().decode('ascii', 'ignore')) == len(s)


def is_chinese(s='人工智能'):
    # Is string composed of any Chinese characters?
    return bool(re.search('[\u4e00-\u9fff]', str(s)))


def is_colab():
    # Is environment a Google Colab instance?
    return 'COLAB_GPU' in os.environ


def is_kaggle():
    # Is environment a Kaggle Notebook?
    return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'


def is_docker() -> bool:
    """Check if the process runs inside a docker container."""
    if Path("/.dockerenv").exists():
        return True
    try:  # check if docker is in control groups
        with open("/proc/self/cgroup") as file:
            return any("docker" in line for line in file)
    except OSError:
        return False


def is_writeable(dir, test=False):
    # Return True if directory has write permissions, test opening a file with write permissions if test=True
    if not test:
        return os.access(dir, os.W_OK)  # possible issues on Windows
    file = Path(dir) / 'tmp.txt'
    try:
        with open(file, 'w'):  # open file with write permissions
            pass
        file.unlink()  # remove file
        return True
    except OSError:
        return False


def set_logging(name=None, verbose=VERBOSE):
    # Sets level and returns logger
    if is_kaggle() or is_colab():
        for h in logging.root.handlers:
            logging.root.removeHandler(h)  # remove all handlers associated with the root logger object
    rank = int(os.getenv('RANK', -1))  # rank in world for Multi-GPU trainings
    level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
    log = logging.getLogger(name)
    log.setLevel(level)
    handler = logging.StreamHandler()
    handler.setFormatter(logging.Formatter("%(message)s"))
    handler.setLevel(level)
    log.addHandler(handler)


set_logging()  # run before defining LOGGER
LOGGER = logging.getLogger("yolov5")  # define globally (used in train.py, val.py, detect.py, etc.)
if platform.system() == 'Windows':
    for fn in LOGGER.info, LOGGER.warning:
        setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x)))  # emoji safe logging


def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'):
    # Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
    env = os.getenv(env_var)
    if env:
        path = Path(env)  # use environment variable
    else:
        cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'}  # 3 OS dirs
        path = Path.home() / cfg.get(platform.system(), '')  # OS-specific config dir
        path = (path if is_writeable(path) else Path('/tmp')) / dir  # GCP and AWS lambda fix, only /tmp is writeable
    path.mkdir(exist_ok=True)  # make if required
    return path


CONFIG_DIR = user_config_dir()  # Ultralytics settings dir


class Profile(contextlib.ContextDecorator):
    # YOLOv5 Profile class. Usage: @Profile() decorator or 'with Profile():' context manager
    def __init__(self, t=0.0):
        self.t = t
        self.cuda = torch.cuda.is_available()

    def __enter__(self):
        self.start = self.time()
        return self

    def __exit__(self, type, value, traceback):
        self.dt = self.time() - self.start  # delta-time
        self.t += self.dt  # accumulate dt

    def time(self):
        if self.cuda:
            torch.cuda.synchronize()
        return time.time()


class Timeout(contextlib.ContextDecorator):
    # YOLOv5 Timeout class. Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
    def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True):
        self.seconds = int(seconds)
        self.timeout_message = timeout_msg
        self.suppress = bool(suppress_timeout_errors)

    def _timeout_handler(self, signum, frame):
        raise TimeoutError(self.timeout_message)

    def __enter__(self):
        if platform.system() != 'Windows':  # not supported on Windows
            signal.signal(signal.SIGALRM, self._timeout_handler)  # Set handler for SIGALRM
            signal.alarm(self.seconds)  # start countdown for SIGALRM to be raised

    def __exit__(self, exc_type, exc_val, exc_tb):
        if platform.system() != 'Windows':
            signal.alarm(0)  # Cancel SIGALRM if it's scheduled
            if self.suppress and exc_type is TimeoutError:  # Suppress TimeoutError
                return True


class WorkingDirectory(contextlib.ContextDecorator):
    # Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
    def __init__(self, new_dir):
        self.dir = new_dir  # new dir
        self.cwd = Path.cwd().resolve()  # current dir

    def __enter__(self):
        os.chdir(self.dir)

    def __exit__(self, exc_type, exc_val, exc_tb):
        os.chdir(self.cwd)


def methods(instance):
    # Get class/instance methods
    return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]


def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
    # Print function arguments (optional args dict)
    x = inspect.currentframe().f_back  # previous frame
    file, _, func, _, _ = inspect.getframeinfo(x)
    if args is None:  # get args automatically
        args, _, _, frm = inspect.getargvalues(x)
        args = {k: v for k, v in frm.items() if k in args}
    try:
        file = Path(file).resolve().relative_to(ROOT).with_suffix('')
    except ValueError:
        file = Path(file).stem
    s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '')
    LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))


def init_seeds(seed=0, deterministic=False):
    # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)  # for Multi-GPU, exception safe
    # torch.backends.cudnn.benchmark = True  # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
    if deterministic and check_version(torch.__version__, '1.12.0'):  # https://github.com/ultralytics/yolov5/pull/8213
        torch.use_deterministic_algorithms(True)
        torch.backends.cudnn.deterministic = True
        os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
        os.environ['PYTHONHASHSEED'] = str(seed)


def intersect_dicts(da, db, exclude=()):
    # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
    return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}


def get_default_args(func):
    # Get func() default arguments
    signature = inspect.signature(func)
    return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}


def get_latest_run(search_dir='.'):
    # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
    last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
    return max(last_list, key=os.path.getctime) if last_list else ''


def file_age(path=__file__):
    # Return days since last file update
    dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime))  # delta
    return dt.days  # + dt.seconds / 86400  # fractional days


def file_date(path=__file__):
    # Return human-readable file modification date, i.e. '2021-3-26'
    t = datetime.fromtimestamp(Path(path).stat().st_mtime)
    return f'{t.year}-{t.month}-{t.day}'


def file_size(path):
    # Return file/dir size (MB)
    mb = 1 << 20  # bytes to MiB (1024 ** 2)
    path = Path(path)
    if path.is_file():
        return path.stat().st_size / mb
    elif path.is_dir():
        return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb
    else:
        return 0.0


def check_online():
    # Check internet connectivity
    import socket
    try:
        socket.create_connection(("1.1.1.1", 443), 5)  # check host accessibility
        return True
    except OSError:
        return False


def git_describe(path=ROOT):  # path must be a directory
    # Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
    try:
        assert (Path(path) / '.git').is_dir()
        return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
    except Exception:
        return ''


@TryExcept()
@WorkingDirectory(ROOT)
def check_git_status(repo='ultralytics/yolov5', branch='master'):
    # YOLOv5 status check, recommend 'git pull' if code is out of date
    url = f'https://github.com/{repo}'
    msg = f', for updates see {url}'
    s = colorstr('github: ')  # string
    assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg
    assert check_online(), s + 'skipping check (offline)' + msg

    splits = re.split(pattern=r'\s', string=check_output('git remote -v', shell=True).decode())
    matches = [repo in s for s in splits]
    if any(matches):
        remote = splits[matches.index(True) - 1]
    else:
        remote = 'ultralytics'
        check_output(f'git remote add {remote} {url}', shell=True)
    check_output(f'git fetch {remote}', shell=True, timeout=5)  # git fetch
    local_branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip()  # checked out
    n = int(check_output(f'git rev-list {local_branch}..{remote}/{branch} --count', shell=True))  # commits behind
    if n > 0:
        pull = 'git pull' if remote == 'origin' else f'git pull {remote} {branch}'
        s += f"⚠️ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use `{pull}` or `git clone {url}` to update."
    else:
        s += f'up to date with {url} ✅'
    LOGGER.info(s)


def check_python(minimum='3.7.0'):
    # Check current python version vs. required python version
    check_version(platform.python_version(), minimum, name='Python ', hard=True)


def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
    # Check version vs. required version
    current, minimum = (pkg.parse_version(x) for x in (current, minimum))
    result = (current == minimum) if pinned else (current >= minimum)  # bool
    s = f'WARNING ⚠️ {name}{minimum} is required by YOLOv5, but {name}{current} is currently installed'  # string
    if hard:
        assert result, emojis(s)  # assert min requirements met
    if verbose and not result:
        LOGGER.warning(s)
    return result


@TryExcept()
def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=''):
    # Check installed dependencies meet YOLOv5 requirements (pass *.txt file or list of packages or single package str)
    prefix = colorstr('red', 'bold', 'requirements:')
    check_python()  # check python version
    if isinstance(requirements, Path):  # requirements.txt file
        file = requirements.resolve()
        assert file.exists(), f"{prefix} {file} not found, check failed."
        with file.open() as f:
            requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
    elif isinstance(requirements, str):
        requirements = [requirements]

    s = ''
    n = 0
    for r in requirements:
        try:
            pkg.require(r)
        except (pkg.VersionConflict, pkg.DistributionNotFound):  # exception if requirements not met
            s += f'"{r}" '
            n += 1

    if s and install and AUTOINSTALL:  # check environment variable
        LOGGER.info(f"{prefix} YOLOv5 requirement{'s' * (n > 1)} {s}not found, attempting AutoUpdate...")
        try:
            assert check_online(), "AutoUpdate skipped (offline)"
            LOGGER.info(check_output(f'pip install {s} {cmds}', shell=True).decode())
            source = file if 'file' in locals() else requirements
            s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
                f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
            LOGGER.info(s)
        except Exception as e:
            LOGGER.warning(f'{prefix} ❌ {e}')


def check_img_size(imgsz, s=32, floor=0):
    # Verify image size is a multiple of stride s in each dimension
    if isinstance(imgsz, int):  # integer i.e. img_size=640
        new_size = max(make_divisible(imgsz, int(s)), floor)
    else:  # list i.e. img_size=[640, 480]
        imgsz = list(imgsz)  # convert to list if tuple
        new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
    if new_size != imgsz:
        LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
    return new_size


def check_imshow():
    # Check if environment supports image displays
    try:
        assert not is_docker(), 'cv2.imshow() is disabled in Docker environments'
        assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments'
        cv2.imshow('test', np.zeros((1, 1, 3)))
        cv2.waitKey(1)
        cv2.destroyAllWindows()
        cv2.waitKey(1)
        return True
    except Exception as e:
        LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
        return False


def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''):
    # Check file(s) for acceptable suffix
    if file and suffix:
        if isinstance(suffix, str):
            suffix = [suffix]
        for f in file if isinstance(file, (list, tuple)) else [file]:
            s = Path(f).suffix.lower()  # file suffix
            if len(s):
                assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"


def check_yaml(file, suffix=('.yaml', '.yml')):
    # Search/download YAML file (if necessary) and return path, checking suffix
    return check_file(file, suffix)


def check_file(file, suffix=''):
    # Search/download file (if necessary) and return path
    check_suffix(file, suffix)  # optional
    file = str(file)  # convert to str()
    if Path(file).is_file() or not file:  # exists
        return file
    elif file.startswith(('http:/', 'https:/')):  # download
        url = file  # warning: Pathlib turns :// -> :/
        file = Path(urllib.parse.unquote(file).split('?')[0]).name  # '%2F' to '/', split https://url.com/file.txt?auth
        if Path(file).is_file():
            LOGGER.info(f'Found {url} locally at {file}')  # file already exists
        else:
            LOGGER.info(f'Downloading {url} to {file}...')
            torch.hub.download_url_to_file(url, file)
            assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}'  # check
        return file
    elif file.startswith('clearml://'):  # ClearML Dataset ID
        assert 'clearml' in sys.modules, "ClearML is not installed, so cannot use ClearML dataset. Try running 'pip install clearml'."
        return file
    else:  # search
        files = []
        for d in 'data', 'models', 'utils':  # search directories
            files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True))  # find file
        assert len(files), f'File not found: {file}'  # assert file was found
        assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}"  # assert unique
        return files[0]  # return file


def check_font(font=FONT, progress=False):
    # Download font to CONFIG_DIR if necessary
    font = Path(font)
    file = CONFIG_DIR / font.name
    if not font.exists() and not file.exists():
        url = f'https://ultralytics.com/assets/{font.name}'
        LOGGER.info(f'Downloading {url} to {file}...')
        torch.hub.download_url_to_file(url, str(file), progress=progress)


def check_dataset(data, autodownload=True):
    # Download, check and/or unzip dataset if not found locally

    # Download (optional)
    extract_dir = ''
    if isinstance(data, (str, Path)) and str(data).endswith('.zip'):  # i.e. gs://bucket/dir/coco128.zip
        download(data, dir=f'{DATASETS_DIR}/{Path(data).stem}', unzip=True, delete=False, curl=False, threads=1)
        data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml'))
        extract_dir, autodownload = data.parent, False

    # Read yaml (optional)
    if isinstance(data, (str, Path)):
        data = yaml_load(data)  # dictionary

    # Checks
    for k in 'train', 'val', 'names':
        assert k in data, f"data.yaml '{k}:' field missing ❌"
    if isinstance(data['names'], (list, tuple)):  # old array format
        data['names'] = dict(enumerate(data['names']))  # convert to dict
    data['nc'] = len(data['names'])

    # Resolve paths
    path = Path(extract_dir or data.get('path') or '')  # optional 'path' default to '.'
    if not path.is_absolute():
        path = (ROOT / path).resolve()
    for k in 'train', 'val', 'test':
        if data.get(k):  # prepend path
            if isinstance(data[k], str):
                x = (path / data[k]).resolve()
                if not x.exists() and data[k].startswith('../'):
                    x = (path / data[k][3:]).resolve()
                data[k] = str(x)
            else:
                data[k] = [str((path / x).resolve()) for x in data[k]]

    # Parse yaml
    train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
    if val:
        val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])]  # val path
        if not all(x.exists() for x in val):
            LOGGER.info('\nDataset not found ⚠️, missing paths %s' % [str(x) for x in val if not x.exists()])
            if not s or not autodownload:
                raise Exception('Dataset not found ❌')
            t = time.time()
            if s.startswith('http') and s.endswith('.zip'):  # URL
                f = Path(s).name  # filename
                LOGGER.info(f'Downloading {s} to {f}...')
                torch.hub.download_url_to_file(s, f)
                Path(DATASETS_DIR).mkdir(parents=True, exist_ok=True)  # create root
                ZipFile(f).extractall(path=DATASETS_DIR)  # unzip
                Path(f).unlink()  # remove zip
                r = None  # success
            elif s.startswith('bash '):  # bash script
                LOGGER.info(f'Running {s} ...')
                r = os.system(s)
            else:  # python script
                r = exec(s, {'yaml': data})  # return None
            dt = f'({round(time.time() - t, 1)}s)'
            s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f"failure {dt} ❌"
            LOGGER.info(f"Dataset download {s}")
    check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True)  # download fonts
    return data  # dictionary


def check_amp(model):
    # Check PyTorch Automatic Mixed Precision (AMP) functionality. Return True on correct operation
    from models.common import AutoShape, DetectMultiBackend

    def amp_allclose(model, im):
        # All close FP32 vs AMP results
        m = AutoShape(model, verbose=False)  # model
        a = m(im).xywhn[0]  # FP32 inference
        m.amp = True
        b = m(im).xywhn[0]  # AMP inference
        return a.shape == b.shape and torch.allclose(a, b, atol=0.1)  # close to 10% absolute tolerance

    prefix = colorstr('AMP: ')
    device = next(model.parameters()).device  # get model device
    if device.type in ('cpu', 'mps'):
        return False  # AMP only used on CUDA devices
    f = ROOT / 'data' / 'images' / 'bus.jpg'  # image to check
    im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if check_online() else np.ones((640, 640, 3))
    try:
        assert amp_allclose(deepcopy(model), im) or amp_allclose(DetectMultiBackend('yolov5n.pt', device), im)
        LOGGER.info(f'{prefix}checks passed ✅')
        return True
    except Exception:
        help_url = 'https://github.com/ultralytics/yolov5/issues/7908'
        LOGGER.warning(f'{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}')
        return False


def yaml_load(file='data.yaml'):
    # Single-line safe yaml loading
    with open(file, errors='ignore') as f:
        return yaml.safe_load(f)


def yaml_save(file='data.yaml', data={}):
    # Single-line safe yaml saving
    with open(file, 'w') as f:
        yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False)


def url2file(url):
    # Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt
    url = str(Path(url)).replace(':/', '://')  # Pathlib turns :// -> :/
    return Path(urllib.parse.unquote(url)).name.split('?')[0]  # '%2F' to '/', split https://url.com/file.txt?auth


def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3):
    # Multithreaded file download and unzip function, used in data.yaml for autodownload
    def download_one(url, dir):
        # Download 1 file
        success = True
        if Path(url).is_file():
            f = Path(url)  # filename
        else:  # does not exist
            f = dir / Path(url).name
            LOGGER.info(f'Downloading {url} to {f}...')
            for i in range(retry + 1):
                if curl:
                    s = 'sS' if threads > 1 else ''  # silent
                    r = os.system(
                        f'curl -# -{s}L "{url}" -o "{f}" --retry 9 -C -')  # curl download with retry, continue
                    success = r == 0
                else:
                    torch.hub.download_url_to_file(url, f, progress=threads == 1)  # torch download
                    success = f.is_file()
                if success:
                    break
                elif i < retry:
                    LOGGER.warning(f'⚠️ Download failure, retrying {i + 1}/{retry} {url}...')
                else:
                    LOGGER.warning(f'❌ Failed to download {url}...')

        if unzip and success and f.suffix in ('.zip', '.tar', '.gz'):
            LOGGER.info(f'Unzipping {f}...')
            if f.suffix == '.zip':
                ZipFile(f).extractall(path=dir)  # unzip
            elif f.suffix == '.tar':
                os.system(f'tar xf {f} --directory {f.parent}')  # unzip
            elif f.suffix == '.gz':
                os.system(f'tar xfz {f} --directory {f.parent}')  # unzip
            if delete:
                f.unlink()  # remove zip

    dir = Path(dir)
    dir.mkdir(parents=True, exist_ok=True)  # make directory
    if threads > 1:
        pool = ThreadPool(threads)
        pool.imap(lambda x: download_one(*x), zip(url, repeat(dir)))  # multithreaded
        pool.close()
        pool.join()
    else:
        for u in [url] if isinstance(url, (str, Path)) else url:
            download_one(u, dir)


def make_divisible(x, divisor):
    # Returns nearest x divisible by divisor
    if isinstance(divisor, torch.Tensor):
        divisor = int(divisor.max())  # to int
    return math.ceil(x / divisor) * divisor


def clean_str(s):
    # Cleans a string by replacing special characters with underscore _
    return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)


def one_cycle(y1=0.0, y2=1.0, steps=100):
    # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
    return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1


def colorstr(*input):
    # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e.  colorstr('blue', 'hello world')
    *args, string = input if len(input) > 1 else ('blue', 'bold', input[0])  # color arguments, string
    colors = {
        'black': '\033[30m',  # basic colors
        'red': '\033[31m',
        'green': '\033[32m',
        'yellow': '\033[33m',
        'blue': '\033[34m',
        'magenta': '\033[35m',
        'cyan': '\033[36m',
        'white': '\033[37m',
        'bright_black': '\033[90m',  # bright colors
        'bright_red': '\033[91m',
        'bright_green': '\033[92m',
        'bright_yellow': '\033[93m',
        'bright_blue': '\033[94m',
        'bright_magenta': '\033[95m',
        'bright_cyan': '\033[96m',
        'bright_white': '\033[97m',
        'end': '\033[0m',  # misc
        'bold': '\033[1m',
        'underline': '\033[4m'}
    return ''.join(colors[x] for x in args) + f'{string}' + colors['end']


def labels_to_class_weights(labels, nc=80):
    # Get class weights (inverse frequency) from training labels
    if labels[0] is None:  # no labels loaded
        return torch.Tensor()

    labels = np.concatenate(labels, 0)  # labels.shape = (866643, 5) for COCO
    classes = labels[:, 0].astype(int)  # labels = [class xywh]
    weights = np.bincount(classes, minlength=nc)  # occurrences per class

    # Prepend gridpoint count (for uCE training)
    # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum()  # gridpoints per image
    # weights = np.hstack([gpi * len(labels)  - weights.sum() * 9, weights * 9]) ** 0.5  # prepend gridpoints to start

    weights[weights == 0] = 1  # replace empty bins with 1
    weights = 1 / weights  # number of targets per class
    weights /= weights.sum()  # normalize
    return torch.from_numpy(weights).float()


def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
    # Produces image weights based on class_weights and image contents
    # Usage: index = random.choices(range(n), weights=image_weights, k=1)  # weighted image sample
    class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels])
    return (class_weights.reshape(1, nc) * class_counts).sum(1)


def coco80_to_coco91_class():  # converts 80-index (val2014) to 91-index (paper)
    # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
    # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
    # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
    # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]  # darknet to coco
    # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]  # coco to darknet
    return [
        1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
        35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
        64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]


def xyxy2xywh(x):
    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = (x[:, 0] + x[:, 2]) / 2  # x center
    y[:, 1] = (x[:, 1] + x[:, 3]) / 2  # y center
    y[:, 2] = x[:, 2] - x[:, 0]  # width
    y[:, 3] = x[:, 3] - x[:, 1]  # height
    return y


def xywh2xyxy(x):
    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
    return y


def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
    # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw  # top left x
    y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh  # top left y
    y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw  # bottom right x
    y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh  # bottom right y
    return y


def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
    if clip:
        clip_boxes(x, (h - eps, w - eps))  # warning: inplace clip
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w  # x center
    y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h  # y center
    y[:, 2] = (x[:, 2] - x[:, 0]) / w  # width
    y[:, 3] = (x[:, 3] - x[:, 1]) / h  # height
    return y


def xyn2xy(x, w=640, h=640, padw=0, padh=0):
    # Convert normalized segments into pixel segments, shape (n,2)
    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
    y[:, 0] = w * x[:, 0] + padw  # top left x
    y[:, 1] = h * x[:, 1] + padh  # top left y
    return y


def segment2box(segment, width=640, height=640):
    # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
    x, y = segment.T  # segment xy
    inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
    x, y, = x[inside], y[inside]
    return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4))  # xyxy


def segments2boxes(segments):
    # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
    boxes = []
    for s in segments:
        x, y = s.T  # segment xy
        boxes.append([x.min(), y.min(), x.max(), y.max()])  # cls, xyxy
    return xyxy2xywh(np.array(boxes))  # cls, xywh


def resample_segments(segments, n=1000):
    # Up-sample an (n,2) segment
    for i, s in enumerate(segments):
        s = np.concatenate((s, s[0:1, :]), axis=0)
        x = np.linspace(0, len(s) - 1, n)
        xp = np.arange(len(s))
        segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T  # segment xy
    return segments


def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
    # Rescale boxes (xyxy) from img1_shape to img0_shape
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    boxes[:, [0, 2]] -= pad[0]  # x padding
    boxes[:, [1, 3]] -= pad[1]  # y padding
    boxes[:, :4] /= gain
    clip_boxes(boxes, img0_shape)
    return boxes


def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None):
    # Rescale coords (xyxy) from img1_shape to img0_shape
    if ratio_pad is None:  # calculate from img0_shape
        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
    else:
        gain = ratio_pad[0][0]
        pad = ratio_pad[1]

    segments[:, 0] -= pad[0]  # x padding
    segments[:, 1] -= pad[1]  # y padding
    segments /= gain
    clip_segments(segments, img0_shape)
    return segments


def clip_boxes(boxes, shape):
    # Clip boxes (xyxy) to image shape (height, width)
    if isinstance(boxes, torch.Tensor):  # faster individually
        boxes[:, 0].clamp_(0, shape[1])  # x1
        boxes[:, 1].clamp_(0, shape[0])  # y1
        boxes[:, 2].clamp_(0, shape[1])  # x2
        boxes[:, 3].clamp_(0, shape[0])  # y2
    else:  # np.array (faster grouped)
        boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1])  # x1, x2
        boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0])  # y1, y2


def clip_segments(boxes, shape):
    # Clip segments (xy1,xy2,...) to image shape (height, width)
    if isinstance(boxes, torch.Tensor):  # faster individually
        boxes[:, 0].clamp_(0, shape[1])  # x
        boxes[:, 1].clamp_(0, shape[0])  # y
    else:  # np.array (faster grouped)
        boxes[:, 0] = boxes[:, 0].clip(0, shape[1])  # x
        boxes[:, 1] = boxes[:, 1].clip(0, shape[0])  # y


def non_max_suppression(
        prediction,
        conf_thres=0.25,
        iou_thres=0.45,
        classes=None,
        agnostic=False,
        multi_label=False,
        labels=(),
        max_det=300,
        nm=0,  # number of masks
):
    """Non-Maximum Suppression (NMS) on inference results to reject overlapping detections

    Returns:
         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
    """

    if isinstance(prediction, (list, tuple)):  # YOLOv5 model in validation model, output = (inference_out, loss_out)
        prediction = prediction[0]  # select only inference output

    device = prediction.device
    mps = 'mps' in device.type  # Apple MPS
    if mps:  # MPS not fully supported yet, convert tensors to CPU before NMS
        prediction = prediction.cpu()
    bs = prediction.shape[0]  # batch size
    nc = prediction.shape[2] - nm - 5  # number of classes
    xc = prediction[..., 4] > conf_thres  # candidates

    # Checks
    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'

    # Settings
    # min_wh = 2  # (pixels) minimum box width and height
    max_wh = 7680  # (pixels) maximum box width and height
    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
    time_limit = 0.5 + 0.05 * bs  # seconds to quit after
    redundant = True  # require redundant detections
    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
    merge = False  # use merge-NMS

    t = time.time()
    mi = 5 + nc  # mask start index
    output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
    for xi, x in enumerate(prediction):  # image index, image inference
        # Apply constraints
        # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
        x = x[xc[xi]]  # confidence

        # Cat apriori labels if autolabelling
        if labels and len(labels[xi]):
            lb = labels[xi]
            v = torch.zeros((len(lb), nc + nm + 5), device=x.device)
            v[:, :4] = lb[:, 1:5]  # box
            v[:, 4] = 1.0  # conf
            v[range(len(lb)), lb[:, 0].long() + 5] = 1.0  # cls
            x = torch.cat((x, v), 0)

        # If none remain process next image
        if not x.shape[0]:
            continue

        # Compute conf
        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf

        # Box/Mask
        box = xywh2xyxy(x[:, :4])  # center_x, center_y, width, height) to (x1, y1, x2, y2)
        mask = x[:, mi:]  # zero columns if no masks

        # Detections matrix nx6 (xyxy, conf, cls)
        if multi_label:
            i, j = (x[:, 5:mi] > conf_thres).nonzero(as_tuple=False).T
            x = torch.cat((box[i], x[i, 5 + j, None], j[:, None].float(), mask[i]), 1)
        else:  # best class only
            conf, j = x[:, 5:mi].max(1, keepdim=True)
            x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]

        # Filter by class
        if classes is not None:
            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]

        # Apply finite constraint
        # if not torch.isfinite(x).all():
        #     x = x[torch.isfinite(x).all(1)]

        # Check shape
        n = x.shape[0]  # number of boxes
        if not n:  # no boxes
            continue
        elif n > max_nms:  # excess boxes
            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence
        else:
            x = x[x[:, 4].argsort(descending=True)]  # sort by confidence

        # Batched NMS
        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
        if i.shape[0] > max_det:  # limit detections
            i = i[:max_det]
        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
            weights = iou * scores[None]  # box weights
            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
            if redundant:
                i = i[iou.sum(1) > 1]  # require redundancy

        output[xi] = x[i]
        if mps:
            output[xi] = output[xi].to(device)
        if (time.time() - t) > time_limit:
            LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
            break  # time limit exceeded

    return output


def strip_optimizer(f='best.pt', s=''):  # from utils.general import *; strip_optimizer()
    # Strip optimizer from 'f' to finalize training, optionally save as 's'
    x = torch.load(f, map_location=torch.device('cpu'))
    if x.get('ema'):
        x['model'] = x['ema']  # replace model with ema
    for k in 'optimizer', 'best_fitness', 'wandb_id', 'ema', 'updates':  # keys
        x[k] = None
    x['epoch'] = -1
    x['model'].half()  # to FP16
    for p in x['model'].parameters():
        p.requires_grad = False
    torch.save(x, s or f)
    mb = os.path.getsize(s or f) / 1E6  # filesize
    LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")


def print_mutation(keys, results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')):
    evolve_csv = save_dir / 'evolve.csv'
    evolve_yaml = save_dir / 'hyp_evolve.yaml'
    keys = tuple(keys) + tuple(hyp.keys())  # [results + hyps]
    keys = tuple(x.strip() for x in keys)
    vals = results + tuple(hyp.values())
    n = len(keys)

    # Download (optional)
    if bucket:
        url = f'gs://{bucket}/evolve.csv'
        if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0):
            os.system(f'gsutil cp {url} {save_dir}')  # download evolve.csv if larger than local

    # Log to evolve.csv
    s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n')  # add header
    with open(evolve_csv, 'a') as f:
        f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')

    # Save yaml
    with open(evolve_yaml, 'w') as f:
        data = pd.read_csv(evolve_csv)
        data = data.rename(columns=lambda x: x.strip())  # strip keys
        i = np.argmax(fitness(data.values[:, :4]))  #
        generations = len(data)
        f.write('# YOLOv5 Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' +
                f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) +
                '\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
        yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False)

    # Print to screen
    LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix +
                ', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}'
                                                                                         for x in vals) + '\n\n')

    if bucket:
        os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}')  # upload


def apply_classifier(x, model, img, im0):
    # Apply a second stage classifier to YOLO outputs
    # Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval()
    im0 = [im0] if isinstance(im0, np.ndarray) else im0
    for i, d in enumerate(x):  # per image
        if d is not None and len(d):
            d = d.clone()

            # Reshape and pad cutouts
            b = xyxy2xywh(d[:, :4])  # boxes
            b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # rectangle to square
            b[:, 2:] = b[:, 2:] * 1.3 + 30  # pad
            d[:, :4] = xywh2xyxy(b).long()

            # Rescale boxes from img_size to im0 size
            scale_boxes(img.shape[2:], d[:, :4], im0[i].shape)

            # Classes
            pred_cls1 = d[:, 5].long()
            ims = []
            for a in d:
                cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
                im = cv2.resize(cutout, (224, 224))  # BGR

                im = im[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
                im = np.ascontiguousarray(im, dtype=np.float32)  # uint8 to float32
                im /= 255  # 0 - 255 to 0.0 - 1.0
                ims.append(im)

            pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1)  # classifier prediction
            x[i] = x[i][pred_cls1 == pred_cls2]  # retain matching class detections

    return x


def increment_path(path, exist_ok=False, sep='', mkdir=False):
    # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
    path = Path(path)  # os-agnostic
    if path.exists() and not exist_ok:
        path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')

        # Method 1
        for n in range(2, 9999):
            p = f'{path}{sep}{n}{suffix}'  # increment path
            if not os.path.exists(p):  #
                break
        path = Path(p)

        # Method 2 (deprecated)
        # dirs = glob.glob(f"{path}{sep}*")  # similar paths
        # matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs]
        # i = [int(m.groups()[0]) for m in matches if m]  # indices
        # n = max(i) + 1 if i else 2  # increment number
        # path = Path(f"{path}{sep}{n}{suffix}")  # increment path

    if mkdir:
        path.mkdir(parents=True, exist_ok=True)  # make directory

    return path


# OpenCV Chinese-friendly functions ------------------------------------------------------------------------------------
imshow_ = cv2.imshow  # copy to avoid recursion errors


def imread(path, flags=cv2.IMREAD_COLOR):
    return cv2.imdecode(np.fromfile(path, np.uint8), flags)


def imwrite(path, im):
    try:
        cv2.imencode(Path(path).suffix, im)[1].tofile(path)
        return True
    except Exception:
        return False


def imshow(path, im):
    imshow_(path.encode('unicode_escape').decode(), im)


cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow  # redefine

# Variables ------------------------------------------------------------------------------------------------------------
NCOLS = 0 if is_docker() else shutil.get_terminal_size().columns  # terminal window size for tqdm