__init__.py 16.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Logging utils
"""

import os
import warnings
from pathlib import Path

import pkg_resources as pkg
import torch
from torch.utils.tensorboard import SummaryWriter

from utils.general import LOGGER, colorstr, cv2
from utils.loggers.clearml.clearml_utils import ClearmlLogger
from utils.loggers.wandb.wandb_utils import WandbLogger
from utils.plots import plot_images, plot_labels, plot_results
from utils.torch_utils import de_parallel

LOGGERS = ('csv', 'tb', 'wandb', 'clearml', 'comet')  # *.csv, TensorBoard, Weights & Biases, ClearML
RANK = int(os.getenv('RANK', -1))

try:
    import wandb

    assert hasattr(wandb, '__version__')  # verify package import not local dir
    if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}:
        try:
            wandb_login_success = wandb.login(timeout=30)
        except wandb.errors.UsageError:  # known non-TTY terminal issue
            wandb_login_success = False
        if not wandb_login_success:
            wandb = None
except (ImportError, AssertionError):
    wandb = None

try:
    import clearml

    assert hasattr(clearml, '__version__')  # verify package import not local dir
except (ImportError, AssertionError):
    clearml = None

try:
    if RANK not in [0, -1]:
        comet_ml = None
    else:
        import comet_ml

        assert hasattr(comet_ml, '__version__')  # verify package import not local dir
        from utils.loggers.comet import CometLogger

except (ModuleNotFoundError, ImportError, AssertionError):
    comet_ml = None


class Loggers():
    # YOLOv5 Loggers class
    def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
        self.save_dir = save_dir
        self.weights = weights
        self.opt = opt
        self.hyp = hyp
        self.plots = not opt.noplots  # plot results
        self.logger = logger  # for printing results to console
        self.include = include
        self.keys = [
            'train/box_loss',
            'train/obj_loss',
            'train/cls_loss',  # train loss
            'metrics/precision',
            'metrics/recall',
            'metrics/mAP_0.5',
            'metrics/mAP_0.5:0.95',  # metrics
            'val/box_loss',
            'val/obj_loss',
            'val/cls_loss',  # val loss
            'x/lr0',
            'x/lr1',
            'x/lr2']  # params
        self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95']
        for k in LOGGERS:
            setattr(self, k, None)  # init empty logger dictionary
        self.csv = True  # always log to csv

        # Messages
        if not wandb:
            prefix = colorstr('Weights & Biases: ')
            s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs in Weights & Biases"
            self.logger.info(s)
        if not clearml:
            prefix = colorstr('ClearML: ')
            s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML"
            self.logger.info(s)
        if not comet_ml:
            prefix = colorstr('Comet: ')
            s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet"
            self.logger.info(s)
        # TensorBoard
        s = self.save_dir
        if 'tb' in self.include and not self.opt.evolve:
            prefix = colorstr('TensorBoard: ')
            self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
            self.tb = SummaryWriter(str(s))

        # W&B
        if wandb and 'wandb' in self.include:
            wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
            run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
            self.opt.hyp = self.hyp  # add hyperparameters
            self.wandb = WandbLogger(self.opt, run_id)
            # temp warn. because nested artifacts not supported after 0.12.10
            if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'):
                s = "YOLOv5 temporarily requires wandb version 0.12.10 or below. Some features may not work as expected."
                self.logger.warning(s)
        else:
            self.wandb = None

        # ClearML
        if clearml and 'clearml' in self.include:
            self.clearml = ClearmlLogger(self.opt, self.hyp)
        else:
            self.clearml = None

        # Comet
        if comet_ml and 'comet' in self.include:
            if isinstance(self.opt.resume, str) and self.opt.resume.startswith("comet://"):
                run_id = self.opt.resume.split("/")[-1]
                self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id)

            else:
                self.comet_logger = CometLogger(self.opt, self.hyp)

        else:
            self.comet_logger = None

    @property
    def remote_dataset(self):
        # Get data_dict if custom dataset artifact link is provided
        data_dict = None
        if self.clearml:
            data_dict = self.clearml.data_dict
        if self.wandb:
            data_dict = self.wandb.data_dict
        if self.comet_logger:
            data_dict = self.comet_logger.data_dict

        return data_dict

    def on_train_start(self):
        if self.comet_logger:
            self.comet_logger.on_train_start()

    def on_pretrain_routine_start(self):
        if self.comet_logger:
            self.comet_logger.on_pretrain_routine_start()

    def on_pretrain_routine_end(self, labels, names):
        # Callback runs on pre-train routine end
        if self.plots:
            plot_labels(labels, names, self.save_dir)
            paths = self.save_dir.glob('*labels*.jpg')  # training labels
            if self.wandb:
                self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
            # if self.clearml:
            #    pass  # ClearML saves these images automatically using hooks
            if self.comet_logger:
                self.comet_logger.on_pretrain_routine_end(paths)

    def on_train_batch_end(self, model, ni, imgs, targets, paths, vals):
        log_dict = dict(zip(self.keys[0:3], vals))
        # Callback runs on train batch end
        # ni: number integrated batches (since train start)
        if self.plots:
            if ni < 3:
                f = self.save_dir / f'train_batch{ni}.jpg'  # filename
                plot_images(imgs, targets, paths, f)
                if ni == 0 and self.tb and not self.opt.sync_bn:
                    log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz))
            if ni == 10 and (self.wandb or self.clearml):
                files = sorted(self.save_dir.glob('train*.jpg'))
                if self.wandb:
                    self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
                if self.clearml:
                    self.clearml.log_debug_samples(files, title='Mosaics')

        if self.comet_logger:
            self.comet_logger.on_train_batch_end(log_dict, step=ni)

    def on_train_epoch_end(self, epoch):
        # Callback runs on train epoch end
        if self.wandb:
            self.wandb.current_epoch = epoch + 1

        if self.comet_logger:
            self.comet_logger.on_train_epoch_end(epoch)

    def on_val_start(self):
        if self.comet_logger:
            self.comet_logger.on_val_start()

    def on_val_image_end(self, pred, predn, path, names, im):
        # Callback runs on val image end
        if self.wandb:
            self.wandb.val_one_image(pred, predn, path, names, im)
        if self.clearml:
            self.clearml.log_image_with_boxes(path, pred, names, im)

    def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out):
        if self.comet_logger:
            self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out)

    def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
        # Callback runs on val end
        if self.wandb or self.clearml:
            files = sorted(self.save_dir.glob('val*.jpg'))
            if self.wandb:
                self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
            if self.clearml:
                self.clearml.log_debug_samples(files, title='Validation')

        if self.comet_logger:
            self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)

    def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
        # Callback runs at the end of each fit (train+val) epoch
        x = dict(zip(self.keys, vals))
        if self.csv:
            file = self.save_dir / 'results.csv'
            n = len(x) + 1  # number of cols
            s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n')  # add header
            with open(file, 'a') as f:
                f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')

        if self.tb:
            for k, v in x.items():
                self.tb.add_scalar(k, v, epoch)
        elif self.clearml:  # log to ClearML if TensorBoard not used
            for k, v in x.items():
                title, series = k.split('/')
                self.clearml.task.get_logger().report_scalar(title, series, v, epoch)

        if self.wandb:
            if best_fitness == fi:
                best_results = [epoch] + vals[3:7]
                for i, name in enumerate(self.best_keys):
                    self.wandb.wandb_run.summary[name] = best_results[i]  # log best results in the summary
            self.wandb.log(x)
            self.wandb.end_epoch(best_result=best_fitness == fi)

        if self.clearml:
            self.clearml.current_epoch_logged_images = set()  # reset epoch image limit
            self.clearml.current_epoch += 1

        if self.comet_logger:
            self.comet_logger.on_fit_epoch_end(x, epoch=epoch)

    def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
        # Callback runs on model save event
        if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1:
            if self.wandb:
                self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
            if self.clearml:
                self.clearml.task.update_output_model(model_path=str(last),
                                                      model_name='Latest Model',
                                                      auto_delete_file=False)

        if self.comet_logger:
            self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi)

    def on_train_end(self, last, best, epoch, results):
        # Callback runs on training end, i.e. saving best model
        if self.plots:
            plot_results(file=self.save_dir / 'results.csv')  # save results.png
        files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
        files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()]  # filter
        self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")

        if self.tb and not self.clearml:  # These images are already captured by ClearML by now, we don't want doubles
            for f in files:
                self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')

        if self.wandb:
            self.wandb.log(dict(zip(self.keys[3:10], results)))
            self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
            # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
            if not self.opt.evolve:
                wandb.log_artifact(str(best if best.exists() else last),
                                   type='model',
                                   name=f'run_{self.wandb.wandb_run.id}_model',
                                   aliases=['latest', 'best', 'stripped'])
            self.wandb.finish_run()

        if self.clearml and not self.opt.evolve:
            self.clearml.task.update_output_model(model_path=str(best if best.exists() else last),
                                                  name='Best Model',
                                                  auto_delete_file=False)

        if self.comet_logger:
            final_results = dict(zip(self.keys[3:10], results))
            self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results)

    def on_params_update(self, params: dict):
        # Update hyperparams or configs of the experiment
        if self.wandb:
            self.wandb.wandb_run.config.update(params, allow_val_change=True)
        if self.comet_logger:
            self.comet_logger.on_params_update(params)


class GenericLogger:
    """
    YOLOv5 General purpose logger for non-task specific logging
    Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...)
    Arguments
        opt:             Run arguments
        console_logger:  Console logger
        include:         loggers to include
    """

    def __init__(self, opt, console_logger, include=('tb', 'wandb')):
        # init default loggers
        self.save_dir = Path(opt.save_dir)
        self.include = include
        self.console_logger = console_logger
        self.csv = self.save_dir / 'results.csv'  # CSV logger
        if 'tb' in self.include:
            prefix = colorstr('TensorBoard: ')
            self.console_logger.info(
                f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/")
            self.tb = SummaryWriter(str(self.save_dir))

        if wandb and 'wandb' in self.include:
            self.wandb = wandb.init(project=web_project_name(str(opt.project)),
                                    name=None if opt.name == "exp" else opt.name,
                                    config=opt)
        else:
            self.wandb = None

    def log_metrics(self, metrics, epoch):
        # Log metrics dictionary to all loggers
        if self.csv:
            keys, vals = list(metrics.keys()), list(metrics.values())
            n = len(metrics) + 1  # number of cols
            s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n')  # header
            with open(self.csv, 'a') as f:
                f.write(s + ('%23.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')

        if self.tb:
            for k, v in metrics.items():
                self.tb.add_scalar(k, v, epoch)

        if self.wandb:
            self.wandb.log(metrics, step=epoch)

    def log_images(self, files, name='Images', epoch=0):
        # Log images to all loggers
        files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])]  # to Path
        files = [f for f in files if f.exists()]  # filter by exists

        if self.tb:
            for f in files:
                self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')

        if self.wandb:
            self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)

    def log_graph(self, model, imgsz=(640, 640)):
        # Log model graph to all loggers
        if self.tb:
            log_tensorboard_graph(self.tb, model, imgsz)

    def log_model(self, model_path, epoch=0, metadata={}):
        # Log model to all loggers
        if self.wandb:
            art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata)
            art.add_file(str(model_path))
            wandb.log_artifact(art)

    def update_params(self, params):
        # Update the paramters logged
        if self.wandb:
            wandb.run.config.update(params, allow_val_change=True)


def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
    # Log model graph to TensorBoard
    try:
        p = next(model.parameters())  # for device, type
        imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz  # expand
        im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p)  # input image (WARNING: must be zeros, not empty)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress jit trace warning
            tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), [])
    except Exception as e:
        LOGGER.warning(f'WARNING ⚠️ TensorBoard graph visualization failure {e}')


def web_project_name(project):
    # Convert local project name to web project name
    if not project.startswith('runs/train'):
        return project
    suffix = '-Classify' if project.endswith('-cls') else '-Segment' if project.endswith('-seg') else ''
    return f'YOLOv5{suffix}'