add_new_id.py 2.37 KB
import os
import numpy as np
import cv2
from tqdm import tqdm

from face_id import Face_Recognizer


def get_embeddings(id_dir):
    embedding_names = os.listdir(id_dir)
    embeddings = []
    for embedding_name in embedding_names:
        embedding_path = os.path.join(id_dir, embedding_name)
        embedding = np.load(embedding_path)
        embeddings.append(embedding)

    return embeddings


def get_high_similarity():

    add_file_txt = open('add_id.txt', 'w')

    id_names = os.listdir(embeddings_dir)
    id_names_set = set(id_names)

    new_id_names = os.listdir(add_image_dir)

    for new_id_name in tqdm(new_id_names):
        new_id_dir = os.path.join(add_image_dir, new_id_name)
        add_image_names = os.listdir(new_id_dir)
        add_norm_images = []
        for add_image_name in add_image_names:
            add_image_path = os.path.join(new_id_dir, add_image_name)

            add_image = cv2.imread(add_image_path)
            add_image = cv2.resize(add_image, (112, 112))
            add_norm_images.append(add_image)
            
        add_embeddings = face_recognizer.recognize(add_norm_images)

        is_add = 1
        for id_name in id_names_set:
            id_dir = os.path.join(embeddings_dir, id_name)
            embeddings = get_embeddings(id_dir)
            for embedding in embeddings:
                embedding = np.mat(embedding)
                for add_embedding in add_embeddings:    
                    add_embedding = np.mat(add_embedding)
                    dot = np.sum(np.multiply(embedding, add_embedding), axis=1)
                    norm = np.linalg.norm(embedding, axis=1) * np.linalg.norm(add_embedding, axis=1)
                    dist_1 = dot / norm

                    sim = dist_1.tolist()
                    sim = sim[0][0]
                    
                    if sim > 0.4:
                        print('same file:{}'.format(sim))
                        is_add = 0
                        
        add_file_txt.write(new_id_name)
        add_file_txt.write(',')
        add_file_txt.write(str(is_add))
        add_file_txt.write('\n')

    add_file_txt.close()
            
      
reg_face_id_model_path = r'models/cls_face_mnn_1.0.0_v0.0.3.mnn'
add_image_dir = r'/data2/face_id/situ_other/add'
embeddings_dir = r'/data2/face_id/situ_other/train_norm_embeddings'

face_recognizer = Face_Recognizer(reg_face_id_model_path)

get_high_similarity()