submmit
0 parents
Showing
11 changed files
with
524 additions
and
0 deletions
CMakeLists.txt
0 → 100644
1 | cmake_minimum_required(VERSION 3.10) | ||
2 | project(main) | ||
3 | |||
4 | set(CMAKE_CXX_STANDARD 11) | ||
5 | |||
6 | find_package(OpenCV REQUIRED) | ||
7 | set(MNN_DIR /home/situ/MNN/MNN1.0/MNN) | ||
8 | include_directories(${MNN_DIR}/include) | ||
9 | LINK_DIRECTORIES(${MNN_DIR}/build) | ||
10 | add_executable(main main.cpp faceLandmarks.cpp) | ||
11 | # add_executable(main z.cpp) | ||
12 | target_link_libraries(main -lMNN ${OpenCV_LIBS}) | ||
13 |
faceLandmarks.cpp
0 → 100644
1 | #include "faceLandmarks.h" | ||
2 | |||
3 | |||
4 | vector<vector<float>> FaceLandmarks::detect_landmarks(std::string image_path){ | ||
5 | |||
6 | Mat input_data_=cv::imread(image_path); | ||
7 | float w_r=float(input_data_.cols)/112.0f; | ||
8 | float h_r=float(input_data_.rows)/112.0f; | ||
9 | |||
10 | Mat input_data; | ||
11 | cv::resize(input_data_,input_data,Size2d(112,112)); | ||
12 | input_data.convertTo(input_data, CV_32F); | ||
13 | input_data = input_data /256.0f; | ||
14 | std::vector<std::vector<cv::Mat>> nChannels; | ||
15 | std::vector<cv::Mat> rgbChannels(3); | ||
16 | cv::split(input_data, rgbChannels); | ||
17 | nChannels.push_back(rgbChannels); // NHWC 转NCHW | ||
18 | auto *pvData = malloc(1 * 3 * 112 * 112 *sizeof(float)); | ||
19 | int nPlaneSize = 112 * 112; | ||
20 | for (int c = 0; c < 3; ++c) | ||
21 | { | ||
22 | cv::Mat matPlane = nChannels[0][c]; | ||
23 | memcpy((float *)(pvData) + c * nPlaneSize,\ | ||
24 | matPlane.data, nPlaneSize * sizeof(float)); | ||
25 | } | ||
26 | auto inTensor = net->getSessionInput(session, NULL); | ||
27 | net->resizeTensor(inTensor, {1, 3, 112,112}); | ||
28 | net->resizeSession(session); | ||
29 | auto nchwTensor = new Tensor(inTensor, Tensor::CAFFE); | ||
30 | ::memcpy(nchwTensor->host<float>(), pvData, nPlaneSize * 3 * sizeof(float)); | ||
31 | inTensor->copyFromHostTensor(nchwTensor); | ||
32 | // //推理 | ||
33 | net->runSession(session); | ||
34 | auto output= net->getSessionOutput(session, NULL); | ||
35 | |||
36 | MNN::Tensor feat_tensor(output, output->getDimensionType()); | ||
37 | output->copyToHostTensor(&feat_tensor); | ||
38 | |||
39 | vector<vector<float>> landmarks; | ||
40 | for(int idx =0;idx<106;++idx){ | ||
41 | float x_= *(feat_tensor.host<float>()+2*idx)*w_r; | ||
42 | float y_= *(feat_tensor.host<float>()+2*idx+1)*h_r; | ||
43 | vector<float> tmp={x_,y_}; | ||
44 | landmarks.push_back(tmp); | ||
45 | } | ||
46 | return landmarks; | ||
47 | } | ||
48 | |||
49 | vector<vector<float>> FaceLandmarks::detect_image_landmarks(Mat image){ | ||
50 | |||
51 | Mat input_data_=image; | ||
52 | float w_r=float(input_data_.cols)/112.0f; | ||
53 | float h_r=float(input_data_.rows)/112.0f; | ||
54 | |||
55 | Mat input_data; | ||
56 | cv::resize(input_data_,input_data,Size2d(112,112)); | ||
57 | input_data.convertTo(input_data, CV_32F); | ||
58 | input_data = input_data /256.0f; | ||
59 | std::vector<std::vector<cv::Mat>> nChannels; | ||
60 | std::vector<cv::Mat> rgbChannels(3); | ||
61 | cv::split(input_data, rgbChannels); | ||
62 | nChannels.push_back(rgbChannels); // NHWC 转NCHW | ||
63 | auto *pvData = malloc(1 * 3 * 112 * 112 *sizeof(float)); | ||
64 | int nPlaneSize = 112 * 112; | ||
65 | for (int c = 0; c < 3; ++c) | ||
66 | { | ||
67 | cv::Mat matPlane = nChannels[0][c]; | ||
68 | memcpy((float *)(pvData) + c * nPlaneSize,\ | ||
69 | matPlane.data, nPlaneSize * sizeof(float)); | ||
70 | } | ||
71 | auto inTensor = net->getSessionInput(session, NULL); | ||
72 | net->resizeTensor(inTensor, {1, 3, 112,112}); | ||
73 | net->resizeSession(session); | ||
74 | auto nchwTensor = new Tensor(inTensor, Tensor::CAFFE); | ||
75 | ::memcpy(nchwTensor->host<float>(), pvData, nPlaneSize * 3 * sizeof(float)); | ||
76 | inTensor->copyFromHostTensor(nchwTensor); | ||
77 | // //推理 | ||
78 | net->runSession(session); | ||
79 | auto output= net->getSessionOutput(session, NULL); | ||
80 | |||
81 | MNN::Tensor feat_tensor(output, output->getDimensionType()); | ||
82 | output->copyToHostTensor(&feat_tensor); | ||
83 | |||
84 | vector<vector<float>> landmarks; | ||
85 | for(int idx =0;idx<106;++idx){ | ||
86 | float x_= *(feat_tensor.host<float>()+2*idx)*w_r; | ||
87 | float y_= *(feat_tensor.host<float>()+2*idx+1)*h_r; | ||
88 | vector<float> tmp={x_,y_}; | ||
89 | landmarks.push_back(tmp); | ||
90 | } | ||
91 | return landmarks; | ||
92 | } | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
faceLandmarks.h
0 → 100644
1 | #ifndef FACELANDMARKS_H | ||
2 | #define FACELANDMARKS_H | ||
3 | |||
4 | #include <opencv2/opencv.hpp> | ||
5 | #include<MNN/Interpreter.hpp> | ||
6 | #include<MNN/ImageProcess.hpp> | ||
7 | #include<iostream> | ||
8 | |||
9 | using namespace std; | ||
10 | using namespace cv; | ||
11 | using namespace MNN; | ||
12 | |||
13 | class FaceLandmarks{ | ||
14 | private: | ||
15 | vector<float> input_size={112,112}; | ||
16 | std::shared_ptr<MNN::Interpreter> net; | ||
17 | Session *session = nullptr; | ||
18 | ScheduleConfig config; | ||
19 | |||
20 | public: | ||
21 | FaceLandmarks(){}; | ||
22 | FaceLandmarks(string model_path){ | ||
23 | net = std::shared_ptr<MNN::Interpreter>(MNN::Interpreter::createFromFile(model_path.c_str()));//创建解释器 | ||
24 | config.numThread = 8; | ||
25 | config.type = MNN_FORWARD_CPU; | ||
26 | session = net->createSession(config);//创建session | ||
27 | } | ||
28 | |||
29 | vector<vector<float>> detect_landmarks(string image_path); | ||
30 | vector<vector<float>> detect_image_landmarks(cv::Mat image); | ||
31 | |||
32 | }; | ||
33 | |||
34 | |||
35 | #endif | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
facerecognize.cpp
0 → 100644
1 | #include "facerecognize.h" | ||
2 | |||
3 | cv::Mat FaceRecognize::meanAxis0(const cv::Mat &src) | ||
4 | { | ||
5 | int num = src.rows; | ||
6 | int dim = src.cols; | ||
7 | |||
8 | cv::Mat output(1,dim,CV_32F); | ||
9 | for(int i = 0 ; i < dim; i ++) | ||
10 | { | ||
11 | float sum = 0 ; | ||
12 | for(int j = 0 ; j < num ; j++) | ||
13 | { | ||
14 | sum+=src.at<float>(j,i); | ||
15 | } | ||
16 | output.at<float>(0,i) = sum/num; | ||
17 | } | ||
18 | |||
19 | return output; | ||
20 | } | ||
21 | |||
22 | cv::Mat FaceRecognize::elementwiseMinus(const cv::Mat &A,const cv::Mat &B) | ||
23 | { | ||
24 | cv::Mat output(A.rows,A.cols,A.type()); | ||
25 | |||
26 | assert(B.cols == A.cols); | ||
27 | if(B.cols == A.cols) | ||
28 | { | ||
29 | for(int i = 0 ; i < A.rows; i ++) | ||
30 | { | ||
31 | for(int j = 0 ; j < B.cols; j++) | ||
32 | { | ||
33 | output.at<float>(i,j) = A.at<float>(i,j) - B.at<float>(0,j); | ||
34 | } | ||
35 | } | ||
36 | } | ||
37 | return output; | ||
38 | } | ||
39 | |||
40 | cv::Mat FaceRecognize::varAxis0(const cv::Mat &src) | ||
41 | { | ||
42 | cv:Mat temp_ = elementwiseMinus(src,meanAxis0(src)); | ||
43 | cv::multiply(temp_ ,temp_ ,temp_ ); | ||
44 | return meanAxis0(temp_); | ||
45 | |||
46 | } | ||
47 | |||
48 | int FaceRecognize::MatrixRank(cv::Mat M) | ||
49 | { | ||
50 | Mat w, u, vt; | ||
51 | SVD::compute(M, w, u, vt); | ||
52 | Mat1b nonZeroSingularValues = w > 0.0001; | ||
53 | int rank = countNonZero(nonZeroSingularValues); | ||
54 | return rank; | ||
55 | |||
56 | } | ||
57 | |||
58 | cv::Mat FaceRecognize::similarTransform(cv::Mat src,cv::Mat dst) { | ||
59 | int num = src.rows; | ||
60 | int dim = src.cols; | ||
61 | cv::Mat src_mean = meanAxis0(src); | ||
62 | cv::Mat dst_mean = meanAxis0(dst); | ||
63 | cv::Mat src_demean = elementwiseMinus(src, src_mean); | ||
64 | cv::Mat dst_demean = elementwiseMinus(dst, dst_mean); | ||
65 | cv::Mat A = (dst_demean.t() * src_demean) / static_cast<float>(num); | ||
66 | cv::Mat d(dim, 1, CV_32F); | ||
67 | d.setTo(1.0f); | ||
68 | if (cv::determinant(A) < 0) { | ||
69 | d.at<float>(dim - 1, 0) = -1; | ||
70 | } | ||
71 | Mat T = cv::Mat::eye(dim + 1, dim + 1, CV_32F); | ||
72 | cv::Mat U, S, V; | ||
73 | SVD::compute(A, S,U, V); | ||
74 | |||
75 | // the SVD function in opencv differ from scipy . | ||
76 | int rank = MatrixRank(A); | ||
77 | if (rank == 0) { | ||
78 | assert(rank == 0); | ||
79 | |||
80 | } else if (rank == dim - 1) { | ||
81 | if (cv::determinant(U) * cv::determinant(V) > 0) { | ||
82 | T.rowRange(0, dim).colRange(0, dim) = U * V; | ||
83 | } else { | ||
84 | int s = d.at<float>(dim - 1, 0) = -1; | ||
85 | d.at<float>(dim - 1, 0) = -1; | ||
86 | |||
87 | T.rowRange(0, dim).colRange(0, dim) = U * V; | ||
88 | cv::Mat diag_ = cv::Mat::diag(d); | ||
89 | cv::Mat twp = diag_*V; //np.dot(np.diag(d), V.T) | ||
90 | Mat B = Mat::zeros(3, 3, CV_8UC1); | ||
91 | Mat C = B.diag(0); | ||
92 | T.rowRange(0, dim).colRange(0, dim) = U* twp; | ||
93 | d.at<float>(dim - 1, 0) = s; | ||
94 | } | ||
95 | } | ||
96 | else{ | ||
97 | cv::Mat diag_ = cv::Mat::diag(d); | ||
98 | cv::Mat twp = diag_*V.t(); //np.dot(np.diag(d), V.T) | ||
99 | cv::Mat res = U* twp; // U | ||
100 | T.rowRange(0, dim).colRange(0, dim) = -U.t()* twp; | ||
101 | } | ||
102 | cv::Mat var_ = varAxis0(src_demean); | ||
103 | float val = cv::sum(var_).val[0]; | ||
104 | cv::Mat res; | ||
105 | cv::multiply(d,S,res); | ||
106 | float scale = 1.0/val*cv::sum(res).val[0]; | ||
107 | T.rowRange(0, dim).colRange(0, dim) = - T.rowRange(0, dim).colRange(0, dim).t(); | ||
108 | cv::Mat temp1 = T.rowRange(0, dim).colRange(0, dim); // T[:dim, :dim] | ||
109 | cv::Mat temp2 = src_mean.t(); //src_mean.T | ||
110 | cv::Mat temp3 = temp1*temp2; // np.dot(T[:dim, :dim], src_mean.T) | ||
111 | cv::Mat temp4 = scale*temp3; | ||
112 | T.rowRange(0, dim).colRange(dim, dim+1)= -(temp4 - dst_mean.t()) ; | ||
113 | T.rowRange(0, dim).colRange(0, dim) *= scale; | ||
114 | return T; | ||
115 | } | ||
116 | |||
117 | Mat FaceRecognize::preprocess_face(Mat image,vector<vector<float>> land){ | ||
118 | Mat out; | ||
119 | cv::resize(image,out,Size(112,112)); | ||
120 | float default1[5][2] = { | ||
121 | {38.2946f, 51.6963f}, | ||
122 | {73.5318f, 51.6963f}, | ||
123 | {56.0252f, 71.7366f}, | ||
124 | {41.5493f, 92.3655f}, | ||
125 | {70.7299f, 92.3655f} | ||
126 | }; | ||
127 | |||
128 | float lands[5][2]={ | ||
129 | {float(land[0][0]*112.0)/float(image.cols),float(land[0][1]*112.0)/float(image.rows)}, | ||
130 | {float(land[1][0]*112.0)/float(image.cols),float(land[1][1]*112.0)/float(image.rows)}, | ||
131 | {float(land[2][0]*112.0)/float(image.cols),float(land[2][1]*112.0)/float(image.rows)}, | ||
132 | {float(land[3][0]*112.0)/float(image.cols),float(land[3][1]*112.0)/float(image.rows)}, | ||
133 | {float(land[4][0]*112.0)/float(image.cols),float(land[4][1]*112.0)/float(image.rows)} | ||
134 | }; | ||
135 | cv::Mat src(5,2,CV_32FC1,default1); | ||
136 | memcpy(src.data, default1, 2 * 5 * sizeof(float)); | ||
137 | cv::Mat dst(5,2,CV_32FC1,lands); | ||
138 | memcpy(dst.data, lands, 2 * 5 * sizeof(float)); | ||
139 | cv::Mat M = similarTransform(dst, src); | ||
140 | float M_[2][3]={ | ||
141 | {M.at<float>(0,0),M.at<float>(0,1),M.at<float>(0,2)}, | ||
142 | {M.at<float>(1,0),M.at<float>(1,1),M.at<float>(1,2)}, | ||
143 | }; | ||
144 | |||
145 | cv::Mat M__(2,3,CV_32FC1,M_); | ||
146 | cv::Mat align_image; | ||
147 | cv::warpAffine(out,align_image,M__,Size(112, 112)); | ||
148 | return align_image; | ||
149 | } | ||
150 | |||
151 | double FaceRecognize::getMold(const vector<double>& vec) | ||
152 | { | ||
153 | int n = vec.size(); | ||
154 | double sum = 0.0; | ||
155 | for (int i = 0; i < n; ++i) | ||
156 | sum += vec[i] * vec[i]; | ||
157 | return sqrt(sum); | ||
158 | } | ||
159 | |||
160 | double FaceRecognize::cos_distance(const vector<double>& base, const vector<double>& target) | ||
161 | { | ||
162 | int n = base.size(); | ||
163 | assert(n == target.size()); | ||
164 | double tmp = 0.0; | ||
165 | for (int i = 0; i < n; ++i) | ||
166 | tmp += base[i] * target[i]; | ||
167 | double simility = tmp / (getMold(base)*getMold(target)); | ||
168 | return simility; | ||
169 | } | ||
170 | |||
171 | double FaceRecognize::get_samilar(Mat image1,Mat image2){ | ||
172 | cv::resize(image1,image1,Size2d(input_size[0],input_size[1])); | ||
173 | cv::resize(image2,image2,Size2d(input_size[0],input_size[1])); | ||
174 | image1.convertTo(image1, CV_32F); | ||
175 | image2.convertTo(image2, CV_32F); | ||
176 | image1 = (image1-mean)*scale; | ||
177 | image2 = (image2-mean)*scale; | ||
178 | |||
179 | std::vector<std::vector<cv::Mat>> nChannels1; | ||
180 | std::vector<cv::Mat> rgbChannels1(3); | ||
181 | cv::split(image1, rgbChannels1); | ||
182 | nChannels1.push_back(rgbChannels1); // NHWC 转NCHW | ||
183 | auto *pvData1 = malloc(1 * 3 * input_size[1] * input_size[0] *sizeof(float)); | ||
184 | int nPlaneSize = input_size[0] * input_size[1]; | ||
185 | for (int c = 0; c < 3; ++c) | ||
186 | { | ||
187 | cv::Mat matPlane1 = nChannels1[0][c]; | ||
188 | memcpy((float *)(pvData1) + c * nPlaneSize,\ | ||
189 | matPlane1.data, nPlaneSize * sizeof(float)); | ||
190 | } | ||
191 | auto inTensor1 = net->getSessionInput(session1, NULL); | ||
192 | net->resizeTensor(inTensor1, {1, 3, input_size[1],input_size[0]}); | ||
193 | net->resizeSession(session1); | ||
194 | |||
195 | auto nchwTensor1 = new Tensor(inTensor1, Tensor::CAFFE); | ||
196 | ::memcpy(nchwTensor1->host<float>(), pvData1, nPlaneSize * 3 * sizeof(float)); | ||
197 | inTensor1->copyFromHostTensor(nchwTensor1); | ||
198 | // //推理 | ||
199 | net->runSession(session1); | ||
200 | auto output1= net->getSessionOutput(session1, NULL); | ||
201 | |||
202 | std::vector<std::vector<cv::Mat>> nChannels2; | ||
203 | std::vector<cv::Mat> rgbChannels2(3); | ||
204 | cv::split(image2, rgbChannels2); | ||
205 | nChannels2.push_back(rgbChannels2); // NHWC 转NCHW | ||
206 | auto *pvData2 = malloc(1 * 3 * input_size[1] * input_size[0] *sizeof(float)); | ||
207 | for (int c = 0; c < 3; ++c) | ||
208 | { | ||
209 | cv::Mat matPlane2 = nChannels2[0][c]; | ||
210 | memcpy((float *)(pvData2) + c * nPlaneSize,\ | ||
211 | matPlane2.data, nPlaneSize * sizeof(float)); | ||
212 | } | ||
213 | auto inTensor2 = net->getSessionInput(session2, NULL); | ||
214 | net->resizeTensor(inTensor2, {1, 3, input_size[1],input_size[0]}); | ||
215 | net->resizeSession(session2); | ||
216 | auto nchwTensor2 = new Tensor(inTensor2, Tensor::CAFFE); | ||
217 | ::memcpy(nchwTensor2->host<float>(), pvData2, nPlaneSize * 3 * sizeof(float)); | ||
218 | inTensor2->copyFromHostTensor(nchwTensor2); | ||
219 | // //推理 | ||
220 | net->runSession(session2); | ||
221 | auto output2= net->getSessionOutput(session2, NULL); | ||
222 | |||
223 | |||
224 | MNN::Tensor feat_tensor1(output1, MNN::Tensor::CAFFE); | ||
225 | MNN::Tensor feat_tensor2(output2, MNN::Tensor::CAFFE); | ||
226 | output1->copyToHostTensor(&feat_tensor1); | ||
227 | output2->copyToHostTensor(&feat_tensor2); | ||
228 | auto feature1 = feat_tensor1.host<float>(); | ||
229 | auto feature2 = feat_tensor2.host<float>(); | ||
230 | |||
231 | vector<double> v1,v2; | ||
232 | for(int i=0;i<int(feat_tensor1.size()/4);i++){ | ||
233 | v1.push_back((double)feature1[i]); | ||
234 | v2.push_back((double)feature2[i]); | ||
235 | } | ||
236 | double cos_score=cos_distance(v1,v2); | ||
237 | return cos_score; | ||
238 | } | ||
239 |
facerecognize.h
0 → 100644
1 | #ifndef FACERECOGNIZE_H | ||
2 | #define FACERECOGNIZE_H | ||
3 | #include<opencv2/opencv.hpp> | ||
4 | #include<MNN/Interpreter.hpp> | ||
5 | #include<MNN/ImageProcess.hpp> | ||
6 | #include<iostream> | ||
7 | |||
8 | using namespace MNN; | ||
9 | using namespace std; | ||
10 | using namespace cv; | ||
11 | class FaceRecognize{ | ||
12 | private: | ||
13 | vector<float> input_size={112,112}; | ||
14 | std::shared_ptr<MNN::Interpreter> net; | ||
15 | Session *session1 = nullptr; | ||
16 | Session *session2 = nullptr; | ||
17 | ScheduleConfig config; | ||
18 | Scalar mean=Scalar(127.5f,127.5f,127.5f); | ||
19 | float scale = 1.0f/127.5f; | ||
20 | |||
21 | public: | ||
22 | FaceRecognize(){}; | ||
23 | FaceRecognize(string model_path){ | ||
24 | net = std::shared_ptr<MNN::Interpreter>(MNN::Interpreter::createFromFile(model_path.c_str()));//创建解释器 | ||
25 | config.numThread = 8; | ||
26 | config.type = MNN_FORWARD_CPU; | ||
27 | session1 = net->createSession(config);//创建session | ||
28 | session2 = net->createSession(config);//创建session | ||
29 | } | ||
30 | //预处理 | ||
31 | cv::Mat meanAxis0(const cv::Mat &src); | ||
32 | cv::Mat elementwiseMinus(const cv::Mat &A,const cv::Mat &B); | ||
33 | cv::Mat varAxis0(const cv::Mat &src); | ||
34 | int MatrixRank(cv::Mat M); | ||
35 | cv::Mat similarTransform(cv::Mat src,cv::Mat dst); | ||
36 | Mat preprocess_face(Mat image,vector<vector<float>> land); | ||
37 | double getMold(const vector<double>& vec); | ||
38 | double cos_distance(const vector<double>& base, const vector<double>& target); | ||
39 | // 推理 | ||
40 | double get_samilar(Mat image1,Mat image2); | ||
41 | }; | ||
42 | #endif | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
main.cpp
0 → 100644
1 | #include "faceLandmarks.h" | ||
2 | int main(){ | ||
3 | FaceLandmarks face_landmarks1 = FaceLandmarks("/home/situ/qfs/sdk_project/gitlab_demo/face_recognize_mnn/model/det_landmarks_106_v0.0.1.mnn"); | ||
4 | vector<string> filenames; | ||
5 | cv::glob("/home/situ/图片/img3", filenames, false); | ||
6 | for(auto path:filenames){ | ||
7 | |||
8 | // cout<<path<<endl; | ||
9 | Mat img1 =cv::imread(path); | ||
10 | auto landmarks1 = face_landmarks1.detect_landmarks(path); | ||
11 | for(auto landm:landmarks1){ | ||
12 | cv::circle(img1,Point2d(landm[0],landm[1]),2,Scalar(255,0,0)); | ||
13 | } | ||
14 | cv::imshow("img",img1); | ||
15 | cv::waitKey(0); | ||
16 | } | ||
17 | |||
18 | // Mat image1 = cv::imread("/home/situ/图片/4.jpg"); | ||
19 | // Mat image2 = cv::imread("/home/situ/图片/img3/1.jpg"); | ||
20 | // string face_det_model = "/home/situ/qfs/sdk_project/face_recognize_mnn/model/mnn/det_face_retina_mnn_1.0.0_v0.1.1.mnn"; | ||
21 | // string face_landm_model = "/home/situ/qfs/sdk_project/face_recognize_mnn/model/mnn/det_landmarks_106_v0.0.1.mnn"; | ||
22 | // string face_rec_model = "/home/situ/qfs/mobile_face_recognize/models/cls_face_mnn_1.0.0_v0.1.0.mnn"; | ||
23 | |||
24 | // FaceComparison face_rec = FaceComparison(face_det_model,face_landm_model,face_rec_model); | ||
25 | // bool result = face_rec.face_compare("/home/situ/图片/2.png","/home/situ/图片/2.png"); | ||
26 | // cout<<result<<endl; | ||
27 | } |
model/cls_face_mnn_1.0.0_v0.0.2.mnn
0 → 100644
No preview for this file type
model/det_face_retina_mnn_1.0.0_v0.1.1.mnn
0 → 100644
No preview for this file type
model/det_landmarks_106_v0.0.1.mnn
0 → 100644
No preview for this file type
retinaface.cpp
0 → 100644
This diff is collapsed.
Click to expand it.
retinaface.h
0 → 100644
1 | #ifndef RETINAFACE_H | ||
2 | #define RETINAFACE_H | ||
3 | #include<opencv2/opencv.hpp> | ||
4 | #include<MNN/Interpreter.hpp> | ||
5 | #include<MNN/ImageProcess.hpp> | ||
6 | #include<iostream> | ||
7 | |||
8 | using namespace MNN; | ||
9 | using namespace std; | ||
10 | using namespace cv; | ||
11 | struct Bbox{ | ||
12 | float xmin; | ||
13 | float ymin; | ||
14 | float xmax; | ||
15 | float ymax; | ||
16 | float score; | ||
17 | float x1; | ||
18 | float y1; | ||
19 | float x2; | ||
20 | float y2; | ||
21 | float x3; | ||
22 | float y3; | ||
23 | float x4; | ||
24 | float y4; | ||
25 | float x5; | ||
26 | float y5; | ||
27 | }; | ||
28 | class RetinaFace{ | ||
29 | public: | ||
30 | float confidence_threshold = 0.5; | ||
31 | bool is_bbox_process=true; | ||
32 | |||
33 | private: | ||
34 | bool use_gpu=true; | ||
35 | vector<float> input_size={640,640}; | ||
36 | vector<float> variances={0.1,0.2}; | ||
37 | Scalar mean = Scalar(104.0f, 117.0f, 123.0f); | ||
38 | float keep_top_k = 100; | ||
39 | float nms_threshold = 0.4; | ||
40 | float resize_scale = 1.0; | ||
41 | |||
42 | std::shared_ptr<MNN::Interpreter> net; | ||
43 | Session *session = nullptr; | ||
44 | ScheduleConfig config; | ||
45 | vector<vector<float>> anchors; | ||
46 | |||
47 | private: | ||
48 | // 生成anchors | ||
49 | vector<vector<float>> priorBox(vector<float> image_size); | ||
50 | // 解析bounding box landmarks 包含置信度 | ||
51 | vector<Bbox> decode(float *loc,float *score,float *pre,vector<vector<float>> priors,vector<float> variances); | ||
52 | // 解析landmarks | ||
53 | // vector<vector<float>> decode_landm(vector<vector<float>> pre,vector<vector<float>> priors,vector<float> variances); | ||
54 | //NMS | ||
55 | void nms_cpu(std::vector<Bbox> &bboxes, float threshold); | ||
56 | // 根据阈值筛选 | ||
57 | vector<Bbox> select_score(vector<Bbox> bboxes,float threshold,float w_r,float h_r); | ||
58 | // 数据后处理 | ||
59 | vector<Bbox> bbox_process(vector<Bbox> bboxes,float frame_w,float frame_h); | ||
60 | |||
61 | public: | ||
62 | |||
63 | RetinaFace(){}; | ||
64 | RetinaFace(string model_path){ | ||
65 | net = std::shared_ptr<MNN::Interpreter>(MNN::Interpreter::createFromFile(model_path.c_str()));//创建解释器 | ||
66 | config.numThread = 8; | ||
67 | config.type = MNN_FORWARD_CPU; | ||
68 | session = net->createSession(config);//创建session | ||
69 | anchors=priorBox(input_size); | ||
70 | } | ||
71 | |||
72 | // 推理 | ||
73 | vector<Bbox> detect(string image_path); | ||
74 | vector<Bbox> detect_image(Mat image); | ||
75 | }; | ||
76 | #endif | ||
... | \ No newline at end of file | ... | \ No newline at end of file |
-
Please register or sign in to post a comment