retinaface.cpp
10.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#include "retinaface.h"
RetinaFace::RetinaFace(){}
// RetinaFace::~RetinaFace(){
// net->releaseModel();
// net->releaseSession(session);
// }
bool RetinaFace::init_model(string model_path){
net = std::shared_ptr<MNN::Interpreter>(MNN::Interpreter::createFromFile(model_path.c_str()));//创建解释器
if(nullptr==net){
return false;
}
ScheduleConfig config;
config.numThread = num_thread;
config.type = forward_type;
session = net->createSession(config);//创建session
anchors=priorBox(input_size); //生成建议框
input_tensor = net->getSessionInput(session,NULL);
net->resizeTensor(input_tensor,{1,3,input_size[1],input_size[0]});
net->resizeSession(session);
//数据预处理
MNN::CV::ImageProcess::Config image_config;
image_config.sourceFormat = MNN::CV::BGR;
image_config.destFormat = MNN::CV::BGR;
::memcpy(image_config.mean,mean,sizeof(mean));
pretreat = shared_ptr<MNN::CV::ImageProcess>(CV::ImageProcess::create(image_config));
model_init = true;
}
// 生成anchors
vector<vector<float>> RetinaFace::priorBox(vector<int> image_size){
vector<int> tmp1={16,32};
vector<int> tmp2={64,128};
vector<int> tmp3={256,512};
vector<vector<int>> min_sizes_;
min_sizes_.push_back(tmp1);
min_sizes_.push_back(tmp2);
min_sizes_.push_back(tmp3);
vector<int> steps={8,16,32};
vector<vector<int>> feature_maps;
vector<vector<float>> anchors;
for(int &step:steps){
vector<int> tmp(2,0);
tmp[0]=ceil(image_size[0]/step);
tmp[1]=ceil(image_size[1]/step);
feature_maps.push_back(tmp);
}
for(int k=0;k<feature_maps.size();k++){
vector<int> min_sizes=min_sizes_[k];
for(int i=0;i<feature_maps[k][0];i++){
for(int j=0;j<feature_maps[k][1];j++){
for(int &min_size:min_sizes){
float s_kx=float(min_size)/float(image_size[1]);
float s_ky=float(min_size)/float(image_size[0]);
float dense_cx=float((float(j)+float(0.5))*steps[k])/float(image_size[1]);
float dense_cy=float((float(i)+float(0.5))*steps[k])/float(image_size[1]);
vector<float> tmp_anchor={dense_cx,dense_cy,s_kx,s_ky};
anchors.push_back(tmp_anchor);
}
}
}
}
return anchors;
}
// 解析bounding box 包含置信度
vector<Bbox> RetinaFace::decode(float *loc,float *score,float *pre,vector<vector<float>> priors,vector<float> variances){
vector<float> input_size={640,640};
float resize_scale=1.0;
vector<Bbox> boxes;
for(int i=0;i<priors.size();++i){
float b1=priors[i][0]+loc[4*i]*variances[0]*priors[i][2];
float b2=priors[i][1]+loc[4*i+1]*variances[0]*priors[i][3];
float b3=priors[i][2]*exp(loc[4*i+2]*variances[1]);
float b4=priors[i][3]*exp(loc[4*i+3]*variances[1]);
b1=b1-b3/float(2);
b2=b2-b4/float(2);
b3=b3+b1;
b4=b4+b2;
float l1=priors[i][0]+pre[10*i]*variances[0]*priors[i][2];
float l2=priors[i][1]+pre[10*i+1]*variances[0]*priors[i][3];
float l3=priors[i][0]+pre[10*i+2]*variances[0]*priors[i][2];
float l4=priors[i][1]+pre[10*i+3]*variances[0]*priors[i][3];
float l5=priors[i][0]+pre[10*i+4]*variances[0]*priors[i][2];
float l6=priors[i][1]+pre[10*i+5]*variances[0]*priors[i][3];
float l7=priors[i][0]+pre[10*i+6]*variances[0]*priors[i][2];
float l8=priors[i][1]+pre[10*i+7]*variances[0]*priors[i][3];
float l9=priors[i][0]+pre[10*i+8]*variances[0]*priors[i][2];
float l10=priors[i][1]+pre[10*i+9]*variances[0]*priors[i][3];
b1>0?b1:0;
b2>0?b2:0;
b3>640?640:b3;
b4>640?640:b4;
Bbox tmp_box={.xmin=b1*input_size[0]/resize_scale,.ymin=b2*input_size[1]/resize_scale,.xmax=b3*input_size[0]/resize_scale,.ymax=b4*input_size[1]/resize_scale,
.score=score[2*i+1],.x1=(l1*input_size[0])/resize_scale,.y1=l2*input_size[1]/resize_scale,.x2=l3*input_size[0]/resize_scale,.y2=l4*input_size[1]/resize_scale,
.x3=l5*input_size[0]/resize_scale,.y3=l6*input_size[1]/resize_scale,.x4=l7*input_size[0]/resize_scale,.y4=l8*input_size[1]/resize_scale,.x5=l9*input_size[0]/resize_scale,.y5=l10*input_size[1]/resize_scale};
boxes.push_back(tmp_box);
}
return boxes;
}
//NMS
void RetinaFace::nms_cpu(std::vector<Bbox> &bboxes, float threshold){
if (bboxes.empty()){
return ;
}
// 1.之前需要按照score排序
std::sort(bboxes.begin(), bboxes.end(), [&](Bbox b1, Bbox b2){return b1.score>b2.score;});
// 2.先求出所有bbox自己的大小
std::vector<float> area(bboxes.size());
for (int i=0; i<bboxes.size(); ++i){
area[i] = (bboxes[i].xmax - bboxes[i].xmin + 1) * (bboxes[i].ymax - bboxes[i].ymin + 1);
}
// 3.循环
for (int i=0; i<bboxes.size(); ++i){
for (int j=i+1; j<bboxes.size(); ){
float left = std::max(bboxes[i].xmin, bboxes[j].xmin);
float right = std::min(bboxes[i].xmax, bboxes[j].xmax);
float top = std::max(bboxes[i].ymin, bboxes[j].ymin);
float bottom = std::min(bboxes[i].ymax, bboxes[j].ymax);
float width = std::max(right - left + 1, 0.f);
float height = std::max(bottom - top + 1, 0.f);
float u_area = height * width;
float iou = (u_area) / (area[i] + area[j] - u_area);
if (iou>=threshold){
bboxes.erase(bboxes.begin()+j);
area.erase(area.begin()+j);
}else{
++j;
}
}
}
}
// 根据阈值筛选
vector<Bbox> RetinaFace::select_score(vector<Bbox> bboxes,float threshold,float w_r,float h_r){
vector<Bbox> results;
for(Bbox &box:bboxes){
if (float(box.score)>=threshold){
box.xmin=box.xmin/w_r;
box.ymin=box.ymin/h_r;
box.xmax=box.xmax/w_r;
box.ymax=box.ymax/h_r;
box.x1=box.x1/w_r;
box.y1=box.y1/h_r;
box.x2=box.x2/w_r;
box.y2=box.y2/h_r;
box.x3=box.x3/w_r;
box.y3=box.y3/h_r;
box.x4=box.x4/w_r;
box.y4=box.y4/h_r;
box.x5=box.x5/w_r;
box.y5=box.y5/h_r;
results.push_back(box);
}
}
return results;
}
// 数据后处理
vector<Bbox> RetinaFace::bbox_process(vector<Bbox> bboxes,float frame_w,float frame_h){
vector<Bbox> result_bboxes;
for(Bbox &bbox:bboxes){
Bbox new_bbox;
float face_w=bbox.xmax-bbox.xmin;
float face_h=bbox.ymax-bbox.ymin;
new_bbox.xmin=bbox.xmin-face_w*0.15;
new_bbox.xmax=bbox.xmax+face_w*0.15;
new_bbox.ymin=bbox.ymin;
new_bbox.ymax=bbox.ymax+face_h*0.15;
new_bbox.xmin=new_bbox.xmin>0?new_bbox.xmin:0;
new_bbox.ymin=new_bbox.ymin>0?new_bbox.ymin:0;
new_bbox.xmax=new_bbox.xmax>frame_w?frame_w:new_bbox.xmax;
new_bbox.ymax=new_bbox.ymax>frame_h?frame_h:new_bbox.ymax;
new_bbox.score=bbox.score;
new_bbox.x1=bbox.x1>0?bbox.x1:0;
new_bbox.y1=bbox.y1>0?bbox.y1:0;
new_bbox.x2=bbox.x2>0?bbox.x2:0;
new_bbox.y2=bbox.y2>0?bbox.y2:0;
new_bbox.x3=bbox.x3>0?bbox.x3:0;
new_bbox.y3=bbox.y3>0?bbox.y3:0;
new_bbox.x4=bbox.x4>0?bbox.x4:0;
new_bbox.y4=bbox.y4>0?bbox.y4:0;
new_bbox.x5=bbox.x5>0?bbox.x5:0;
new_bbox.y5=bbox.y5>0?bbox.y5:0;
result_bboxes.push_back(new_bbox);
}
return result_bboxes;
}
// 推理
vector<Bbox> RetinaFace::inference(string image_path){
Mat image = cv::imread(image_path);
float w_r=float(input_size[0])/float(image.cols);
float h_r=float(input_size[1])/float(image.rows);
Mat input_data;
cv::resize(image,input_data,Size(input_size[1],input_size[0]));
pretreat->convert(input_data.data,input_size[0],input_size[1],0,input_tensor);
// //推理
net->runSession(session);
auto output0= net->getSessionOutput(session, "output0");
auto output1= net->getSessionOutput(session, "output1");
auto output2= net->getSessionOutput(session, "output2");
MNN::Tensor feat_tensor0(output0, MNN::Tensor::CAFFE);
MNN::Tensor feat_tensor1(output1, MNN::Tensor::CAFFE);
MNN::Tensor feat_tensor2(output2, MNN::Tensor::CAFFE);
output0->copyToHostTensor(&feat_tensor0);
output1->copyToHostTensor(&feat_tensor1);
output2->copyToHostTensor(&feat_tensor2);
auto loc = feat_tensor0.host<float>();
auto score = feat_tensor1.host<float>();
auto landm = feat_tensor2.host<float>();
vector<Bbox> result_boxes = decode(loc,score,landm,anchors,variances);
vector<Bbox> results=select_score(result_boxes,confidence_threshold,w_r,h_r);
nms_cpu(results,nms_threshold);
if(is_bbox_process){
vector<Bbox> res_bboxes=bbox_process(results,image.cols,image.rows);
return res_bboxes;
}else{
return results;
}
}
vector<Bbox> RetinaFace::inference(Mat image){
float w_r=float(input_size[0])/float(image.cols);
float h_r=float(input_size[1])/float(image.rows);
Mat input_data;
cv::resize(image,input_data,Size(input_size[1],input_size[0]));
pretreat->convert(input_data.data,input_size[0],input_size[1],0,input_tensor);
// //推理
net->runSession(session);
auto output0= net->getSessionOutput(session, "output0");
auto output1= net->getSessionOutput(session, "output1");
auto output2= net->getSessionOutput(session, "output2");
MNN::Tensor feat_tensor0(output0, output0->getDimensionType());
MNN::Tensor feat_tensor1(output1, output1->getDimensionType());
MNN::Tensor feat_tensor2(output2, output2->getDimensionType());
output0->copyToHostTensor(&feat_tensor0);
output1->copyToHostTensor(&feat_tensor1);
output2->copyToHostTensor(&feat_tensor2);
auto loc = feat_tensor0.host<float>();
auto score = feat_tensor1.host<float>();
auto landm = feat_tensor2.host<float>();
vector<Bbox> result_boxes = decode(loc,score,landm,anchors,variances);
vector<Bbox> results=select_score(result_boxes,confidence_threshold,w_r,h_r);
nms_cpu(results,nms_threshold);
if(is_bbox_process){
vector<Bbox> res_bboxes=bbox_process(results,image.cols,image.rows);
return res_bboxes;
}else{
return results;
}
}