test.py
588 Bytes
import os
import cv2
import torch
from net import *
from dataset import *
transform = transforms.Compose([
transforms.ToTensor()
])
data=FaceMaskDataset('/data2/face_mask')
d = DataLoader(data, batch_size=1000, shuffle=True)
with torch.no_grad():
for i,(image,label) in enumerate(d):
net=FaceMaskNet().cuda()
net.load_state_dict(torch.load('params/face_mobilenet_v2.pth'))
net.eval()
out=net(image.cuda())
out=torch.argmax(out,dim=1)
acc=torch.mean(torch.eq(label.cuda(), out).float()).item()
print(acc)