dataset.py
1.17 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import os
import random
import cv2
import torch
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from utils import *
from torchvision import transforms
classes_names = ['normal', 'mask']
class FaceMaskDataset(Dataset):
def __init__(self, root_path):
self.transform = transforms.Compose([
transforms.ToTensor()
])
self.dataset = []
class_names = os.listdir(root_path)
for cls in class_names:
image_names = os.listdir(os.path.join(root_path, cls))
for image in image_names:
self.dataset.append([os.path.join(root_path, cls, image), classes_names.index(cls)])
def __len__(self):
return len(self.dataset)
def __getitem__(self, index):
lights=[0.6,0.8,1,1.2,1.4,1.6]
data = self.dataset[index]
image_path = data[0]
image_data = keep_resize_image(image_path)
image_data=cv2.convertScaleAbs(image_data,alpha=lights[random.randint(0,4)])
image_label = data[1]
return self.transform(image_data), image_label
if __name__ == '__main__':
import tqdm
d = FaceMaskDataset('image')
for i in d:
i